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Chapter 1

BOSONS AFTER SYMMETRY BREAKING

IN QUANTUM FIELD THEORY

Takehisa Fujita∗, Makoto Hiramoto†, and Hidenori Takahashi‡

Department of Physics, Faculty of Science and Technology,
Nihon University, Tokyo, Japan

Abstract

We present a unified description of the spontaneous symmetry breaking and its as-
sociated bosons in fermion field theory. There is no Goldstone boson in the fermion
field theory models of Nambu-Jona-Lasinio, Thirring and QCD2 after the chiral sym-
metry is spontaneously broken in the new vacuum. The defect of the Goldstone the-
orem is clarified, and the ”massless boson” predicted by the theorem is virtual and
corresponds to just afree massless fermion and antifermion pair. Further, we discuss
the exact spectrum of the Thirring model by the Bethe ansatz solutions, and the analyt-
ical expressions of all the physical observables enable us to understand the essence of
the spontaneous symmetry breaking in depth. Also, we examine the boson spectrum
in QCD2, and show that bosons always have a finite mass forSU(Nc) colors. The
problem of the light cone prescription in QCD2 is discussed, and it is shown that the
trivial light cone vacuum is responsible for the wrong prediction of the boson mass.

1 Introduction

Most of the field theory models should possess some kind of symmetries. Apart from the
basic symmetry like the Lorentz invariance, there are symmetries which play a fundamental
role in determining the structure of the vacuum state. The chiral symmetry is one of the most
popular ones in quantum field theory of fermions.
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The physics of the chiral symmetry and its spontaneous symmetry breaking in fermion
field theory models has been discussed quite extensively since the invent of the Goldstone
theorem [1, 2]. In particular, the current current interaction model of Nambu and Jona-
Lasinio (NJL) has been studied by many people since it is believed that the NJL model
can present a good example of exhibiting the Goldstone boson after the chiral symmetry is
spontaneously broken [3].

However, recent careful studies clarify that there appears no massless boson in the NJL
model [4, 5]. Further, it is shown that the Goldstone theorem cannot be applied to the
fermion field theory models due to a serious defect in the course of proving the theorem
[6]. That is, the existence of a massless boson that should be proved as the result of the
Goldstone equation has to be assumed as the initial input of the equation, and this is of
course no proof at all.

In the NJL model, the Lagrangian density possesses the chiral symmetry, but the vac-
uum state prefers the chiral symmetry broken state since it has the lower energy than the
one with preserving its symmetry. In this procedure, the chiral current is conserved and
therefore the symmetry breaking is considered to be spontaneous due to the definition of
thespontaneous symmetry breaking in proving the Goldstone theorem. However, if one
calculates the boson mass properly, then there appears no massless boson in the NJL model.
In this case, a question may arise as to why people obtained the massless boson in the NJL
model. Not only Nambu and Jona-Lasinio but also quite a few physicists found a massless
boson in their boson mass calculation [7]. Surprisingly, the reason why they found a mass-
less boson is simple. They calculated the boson mass by summing up one loop Feynman
diagrams, but their calculation is based on the perturbative vacuum state. However, after
the spontaneous symmetry breaking, one finds the new vacuum which has the lower energy
than the perturbative vacuum state. Therefore, the physical vacuum state is of course the
new vacuum that breaks the chiral symmetry, and thus if one wishes to calculate any phys-
ical observables in field theory, then one must employ the formulation which is based on
the physical vacuum state. In fact, the quantum field theory is constructed on the physical
vacuum state, and therefore it is essential to make the formulation which is based on the
physical vacuum state. Those calculations which start from the perturbative vacuum state
should find a unphysical boson. Indeed, this unphysical massless boson is just what Nambu
and all other people obtained in their calculations.

In this chapter, we review the spontaneous symmetry breaking and its appearance of
bosons associated with the symmetry breaking phenomena. The symmetry breaking of the
vacuum occurs in the boson field theory as well as in the fermion field theory models. In
the boson field theory, the symmetry breaking is clear in four dimensions, but the symmetry
should not be broken in two dimensions since there should not exist a physical massless
boson due to the infra-red divergence of its propagator. In the fermion field theory, the
symmetry is broken in the vacuum in two and four dimensions. This is quite simple because
there is no Goldstone boson and therefore the two dimensional field theory is not special
any more.

The picture of the chiral symmetry breaking in the fermion field theory can be drawn
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in the following way. One starts from the perturbative vacuum which is the same as the
free vacuum state of fermions. This preserves the chiral symmetry. When one takes the
interactions into account, then the distributions of the negative energy particles in the vac-
uum state change and the vacuum energy becomes lower than that of the free vacuum state.
The momentum distributions of the negative energy particles become different for right and
left mover fermions so that the chiral symmetry is broken in the new vacuum. In addi-
tion, the distribution of the negative energy particles in the new vacuum is rearranged such
that the finite gap is seen in the excitation spectrum. This is essentially all that happens to
the symmetry breaking phenomena in the fermion field theory models like NJL, Thirring
model, QED2 and QCD2 with massless fermions. On this vacuum state, one may find
bosons or there may be no boson, and this depends on the interactions between fermions
and antifermions. For the current current interaction models like the NJL or the massless
Thirring model, one cannot make any bosons since the interaction is aδ−function type po-
tential. On the other hand, the gauge field theory models of QED2 and QCD2 find massive
bosons since the interaction is a confining potential in two dimensions. At this point, it
is probably fair to mention that, if one finds the true vacuum state in quantum field theory
model, then it means that one could solve this field theory model exactly. However, the NJL
model is not exactly solvable, and we believe the solution of the vacuum state constructed
by Bogoliubov transformation method is not exact. However, the new vacuum state has the
lower energy than the perturbative vacuum state, and the qualitatively right picture of the
symmetry breaking phenomena should be obtained from this approximate vacuum state.

For the symmetry broken vacuum states, the chiral condensate value is finite in all of the
massless fermion field theory models. This is a representation of the vacuum structure, and
it is quite natural that the symmetry broken vacuum state has a complicated vacuum struc-
ture with a finite condensate value. However, QED2 and QCD2 with massive fermions have
no chiral symmetry, and therefore one cannot discuss about the symmetry broken vacuum.
Nevertheless, the vacuum state has a finite condensate value, and it keeps the complicated
vacuum structure. In these field theory models of QED2 and QCD2, the fermion mass term
seems to play a role of just like a perturbative interaction term. The boson mass increases
linearly as the function of the fermion massm0. The behavior of the chiral condensate is
somewhat similar to the boson mass, and it decreases as the function of the fermion mass
m0 and the condensate value goes to zero at the very large fermion mass where the system
becomes nonrelativistic. In this respect, it is still not very clear how the chiral condensate
value can be related to the symmetry breaking phenomena.

This chapter is organized in the following way. In the second section, we review the
Goldstone theorem and discuss its problem related to the fermion field theory models. This
theorem is originally meant for the boson field theory models, but it was believed that the
theorem should be valid for the fermion field theory models as well. However, one can
easily notice the basic defect of the theorem, that is, the existence of the massless boson
that should be proved as a final goal has to be assumed in the initial equation. Here, we
present a proof why the Goldstone theorem is justified for the boson field case while it does
not hold for the fermion field case.
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In section 3, we treat the spontaneous symmetry breaking in boson field theory models.
This is well established in four dimensions, and we present it only for the clarification
of the essence of the physics of the spontaneous symmetry breaking phenomena and the
appearance of the massless boson associated with the symmetry breaking. However, the
symmetry breaking and the spectrum of the boson field theory in two dimensions is not so
clear as in four dimensions, and we discuss problems behind the two dimensional boson
fields.

In section 4, we discuss the non-appearance of a massless boson after the spontaneous
symmetry breaking in fermion field theory models. Since the spontaneous symmetry break-
ing has a long history, the non-appearance of the Goldstone boson is indeed a surprising
result. But it was due to the lack of the deep understanding of the vacuum structure, and, in
a sense, it should have been very difficult to clearly realize the importance of the change in
the vacuum structure which arises from the symmetry breaking. Here, we present the sym-
metry breaking and its boson associated with the symmetry breaking in the NJL and the
Thirring models. We first give intuitive discussions why the chiral symmetry is broken in
the vacuum of the NJL and the Thirring models, and clarify why there should not appear any
massless boson. Further, we carry out more elaborate calculations of the symmetry break-
ing in these fermion field theory models based on the Bogoliubov transformation method.
In this calculation, one sees that there should be a massive boson depending on the strength
of the coupling constant, but the boson is not a consequence of the symmetry breaking, but
it is due to the result of the approximate scheme of the Bogoliubov transformation. It is
most probable that there should be no boson in the NJL and the Thirring models.

In section 5, we present the Bethe ansatz solutions of the massless Thirring model.
This is quite important to understand the structure of the new vacuum and its change of the
negative energy particle distribution in the vacuum state. One clearly sees that the new vac-
uum state that breaks the chiral symmetry has the lower energy than the symmetric vacuum
state. In this case, the momentum distribution of the negative energy state changes dras-
tically. This means that the symmetry is spontaneously broken even though the Thirring
model is a two dimensional field theory model. However, there is neither a massless bo-
son nor a massive boson. There is only a finite gap for the excitation spectrum. In this
respect, one can learn a lot about the symmetry breaking and its boson associated with the
spontaneous symmetry breaking. The non-existence of a massless boson is very reasonable
since there should not exist any massless boson in two dimensions. Here, we also show that
the bosonization procedure which is commonly used for the massless Thirring model has
a serious defect in that one cannot find the corresponding degree of freedom for the zero
mode. Therefore, the massless Thirring model is not bosonized properly, and therefore it is
indeed consistent with the finite gap in the spectrum.

In section 6, we discuss the Schwinger model, and one knows that it is well understood.
There is no new thing added to this section. However, we believe that it should be impor-
tant to understand the origin of the chiral symmetry breaking. In the Schwinger model, the
chiral symmetry is broken, but it is not spontaneous since the chiral current is not conserved
any more due to the anomaly term after the regularization of the vacuum state. The anomaly
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term arises from the conflict between the gauge invariance and the chiral current conserva-
tion. However, it is interesting to note that the chiral condensate is a smooth function of the
fermion mass, and it is not very clear yet whether the chiral condensate is a consequence of
the chiral symmetry breaking or not.

In section 7, we present the recent results of the numerical calculations of SU(Nc) QCD
in two dimensions in terms of the Bogoliubov transformation method. The calculations are
carried out up to very large values of theNc color degree, and it is shown that the SU(50)
calculation is already quite similar to the result with theNc → ∞. However, it turns out
that the light cone calculation cannot reproduce neither the right boson spectrum nor the
right condensate values. This must be due to the fact that the light cone vacuum is trivial
even though the real vacuum has a complicated structure with a finite condensate value. In
fact, ’t Hooft calculation is not an exception and gives wrong results of the spectrum since
he employed the light cone vacuum, even though the largeNc expansion itself is a right
and good scheme for SU(Nc) QCD2. Therefore, if one wishes to find the correct spectrum
of the field theory model, then one has to start from the right vacuum state as a minimum
condition. Here, the calculated results of the spectrum and the condensate values by the
Bogoliubov transformation method indicate that the symmetry is spontaneously broken in
the vacuum state, and there is no massless boson. This is again consistent with the fact that
there should be no physical massless boson in two dimensions.

In section 8, we summarize what we have clarified in the spontaneous symmetry break-
ing and its boson associated with the symmetry breaking phenomena. Some comments on
the Heisenberg XXZ model and the lattice field theory are included.

2 Goldstone Theorem and its Applicability

The Goldstone theorem has played a central role for understanding the symmetry breaking
and its massless boson after the spontaneous symmetry breaking. When the Lagrangian
density has some continuous symmetry which can be represented by the unitary operator
U(α), there is a conserved current associated with the symmetry

∂µjµ = 0. (2.1)

In this case, there is a conserved chargeQ which is defined as

Q =
∫

j0(x)d3x. (2.2)

The Hamiltonian of this systemH is invariant under the unitary transformationU(α),

U(α)HU(α)−1 = H. (2.3a)

Writing theU(α) explicitly asU(α) = eiαQ, we obtain

QH = HQ. (2.3b)
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Now, the vacuum state can break the symmetry, and we define the symmetric vacuum|0〉
and symmetry broken vacuum|Ω〉, respectively, which satisfy the following equations,

U(α)|0〉 = |0〉 (2.4a)

U(α)|Ω〉 6= |Ω〉. (2.4b)

These equations can be written in terms of the charge operatorQ as

Q|0〉 = 0 (2.5a)

Q|Ω〉 6= 0. (2.5b)

In the Goldstone theorem, it is assumed that the current conservation arising from the sym-
metry should hold after the symmetry is broken in the vacuum state. Therefore, the commu-
tation relation between the charge and some boson field operatorφ(x) is time independent,
and we write it as

[Q(t), φ(x)] = Ĉ (2.6)

whereĈ is some operator that is described by the field operators. This is of course an
identity equation, but the choice of the fieldφ(x) itself is not at all trivial. It should also
be important to note that eq.(2.6) is derived independently from the Hamiltonian of field
theory models.

Now, we take the expectation value of eq. (2.6) with the vacuum state, and there the
information of the field theory model should be put in eq.(2.6) through the vacuum state.
First, we employ the symmetric vacuum|0〉,

〈0 | [Q(t), φ(x)] | 0〉 = 〈0 | Ĉ | 0〉. (2.7a)

In this case, the left hand side vanishes. Therefore, the right hand side must also vanish,
and eq. (2.6) gives just the identity equation as expected.

Next, we take the expectation value of eq.(2.6) with the symmetry broken vacuum|Ω〉,

〈Ω | [Q(t), φ(x)] | Ω〉 = 〈Ω | Ĉ | Ω〉 6= 0. (2.7b)

If the right hand side is non-zero, then the vacuum of the system has the symmetry broken
state since the left hand side survives only when the operatorQ satisfies eq.(2.5b).

The Goldstone theorem starts from the vacuum expectation value of the commutation
relation eq.(2.7b) with the symmetry broken vacuum|Ω〉, and the boson fieldφ eventually
corresponds to a massless boson.

Further, we assume that the fieldφ and the current densityj0(x) satisfies the following
translational property

φ(x) = eipxφ(0)e−ipx (2.8a)

j0(x) = eipxj0(0)e−ipx. (2.8b)
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Now, we insert a complete set of intermediate bosonic states|n〉 in eq.(2.7b). Since it should
be excited by the charge operatorQ, this state|n〉 should have the same momentum as the
vacuum state, and this means that the momentum of the bosonic state|n〉 is zero.

Thus, we obtain from eq.(2.7b),

∑
n

(2π)3δ(pn)
[
〈Ω|j0(0)|n〉〈n|φ(0)|Ω〉e−iEnt − 〈Ω|φ(0)|n〉〈n|j0(0)|Ω〉eiEnt

]
6= 0.

(2.9)
The right hand side is non-zero and is also time-independent. However, in the left hand
side, the positive and negative energy terms cannot cancel with each other as long as the
energyEn is non-zero. Therefore, the time dependence of eq.(2.9) in the left hand side can
be taken away only when the following condition is satisfied,

En = 0 for pn = 0. (2.10)

From this constraint, one learns that if this bosonic state is an isolated system, then this
should correspond to a massless boson. Thus, there should appear a massless boson after
the spontaneous symmetry breaking. However, there is a serious difference between the
boson field and fermion field theory models, and we show that the proof of the Goldstone
theorem cannot be applied to the fermion field theory models since the existence of the
boson field has to be assumed while the boson field itself is, however, the one that must be
proved as a result.

The difficult part in eq.(2.9) is to find the boson field operatorφ, and if one can find
it properly, then one can obtain some physical information from the identity equation. It
should be noted that, normally, one cannot get any important information from the identity
equation since it is not directly related to the dynamics of the field theory model.

At this point, we should comment on a possible degeneracy of the symmetry broken
vacuum state associated with the charge operatorQ in the total Hamiltonian system since
there is a belief that the symmetry broken vacuum may have infinite degenerate states. First,
we define the symmetry broken vacuum energy which is the eigenstate of the Hamiltonian
H,

H|Ω〉 = EΩ|Ω〉. (2.11)

Now, if we define a new state|ϕn〉 by

|ϕn〉 ≡ NQn|Ω〉 (2.12)

with N a normalization constant, then the state|ϕn〉 has the same vacuum energyEΩ

because of eq.(2.3b),

H|ϕn〉 = NHQn|Ω〉 = NQnH|Ω〉 = EΩ|ϕn〉. (2.13)

This equation seems to indicate that the vacuum state hasn−degeneracy. However,Q has
the same eigenstate asH due to eq.(2.3b), and therefore we write with its eigenvalueq

Q|Ω〉 = q|Ω〉. (2.14)
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Thus, we obtain
|ϕn〉 = N qn|Ω〉 = |Ω〉 (2.15)

since we can choose the normalization constantN asN = q−n. Therefore, the state
|ϕn〉 is nothing but the vacuum state|Ω〉 itself, and there is no degeneracy because the
charge operatorQ cannot change the vacuum structure. This degeneracy is spurious, but
the degeneracy of the potential vacuum in the double well potential problem in the boson
field theory model is real, and this will be discussed in section 3.

2.1 Boson Field Theory Model

The Goldstone theorem is proved by employing eqs.(2.7) and (2.8). In the boson field theory
models, the boson fieldφ exists from the beginning. This is of course a trivial thing in the
boson field theory models. This boson fieldφ in eq.(2.7) corresponds eventually to the
Goldstone boson. Here, the most important point is that boson is characterized by its mass,
and therefore the determination of the boson mass is the only concern for the boson field
theory models. Also, eq.(2.8) has no problem since the boson should exist as an elementary
boson state and therefore it satisfies the translational invariance.

From eqs.(2.9), one obtains the constraint on the bosonic state as given by eq.(2.10).
This constraint does not necessarily mean that this bosonic state should have the dispersion
relation of a massless boson. But if this system is an isolated one, then this is just the
dispersion relation of a massless boson, and therefore there should be a massless boson,
and this is just the Goldstone boson.

2.2 Fermion Field Theory Model

Now, we discuss the fermion field theory models [6]. It is important to note that, in the
fermion field theory models, bosons must be constructed by the fermions and antifermions
as their bound states. There is no elementary boson field in this field theory model itself.

In this case, we should ask ourselves what is the boson fieldφ in eq.(2.7) in the fermion
field theory models. This boson fieldφ should eventually correspond to a massless boson
if at all exists in the fermion field theory models. But who shows that there are any bound
states of the fermions and antifermions in this field theory models ? This should involve
dynamics and it should be very hard to solve any of the fermion field theory models until
one finds bound states.

Now, in the proof of the Goldstone theorem, the existence of the boson fieldφ is as-
sumed, and this is just the one that should be proved as a final goal. Thus, it is clear that
eq.(2.7) cannot be applied to the fermion field theory models. Eq.(2.7) can give one in-
formation which is the dispersion relation, but one cannot take out the information on the
existence of the bound state between fermions and antifermions. Further, if one wishes to
evaluate the commutation relation between the conserved charge and the boson fieldφ in
eq.(2.7), then one has to be able to describe the boson fieldφ in terms of the fermion field
operators. This is quite clear since the chargeQ5(t) =

∫
j0
5(x)d3x is written in terms of
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the fermion field operators, and therefore one should have the expression of the boson field
φ by the fermion fields.

φ = F [ψ̄, ψ]. (2.16)

The functional dependence ofF [ψ̄, ψ] should be determined by solving the dynamics, and
it should be extremely difficult to find the functional dependence ofF [ψ̄, ψ]. In fact, it is
practically impossible to find the functional dependence ofF [ψ̄, ψ] unless the field theory
model is exactly solvable. In two dimensional field theory models, there is one example
which is solved exactly, and that is the Schwinger model as we treat it in section 6. In this
case, one can describe the boson field in terms of the fermion field operators.

Here, we show a common mistake which is often found in the textbook to describe how
the Goldstone theorem holds in fermion field theory model. One says that one may take the
following φ in the case of the chiral symmetry breaking

φ(x) = ψ̄(x)γ5ψ(x). (2.17)

In this case, one can easily prove that thisφ satisfies eq.(2.6). In fact, one obtains for eq.
(2.6) [

Q5(t), ψ̄(x)γ5ψ(x)
]

= 2ψ̄(x)ψ(x) (2.18)

whereQ5 denotes the chiral charge which is a conserved quantity for the chiral symmetry
preserving system. It should be quite important to note that eq.(2.18) is derived indepen-
dently from the shape of the interaction Lagrangian density. The only condition is that
the interaction term should be invariant under the chiral symmetry. Therefore, eq.(2.18)
does not carry any information about the dynamics of the fermion and anti-fermion system,
and therefore there is no chance that one obtains any information about the bound state of
fermion and ant-fermion from eq.(2.18).

If we take the expectation value of eq.(2.18) with the symmetry broken vacuum state,
then we obtain

∑
n

(2π)3δ(pn)
[
〈Ω|j0

5 |n〉〈n|ψ̄γ5ψ|Ω〉e−iEnt − 〈Ω|ψ̄γ5ψ|n〉〈n|j0
5 |Ω〉eiEnt

]
6= 0 (2.19)

where|n〉 denotes the complete set of the fermion number zero states of the field theory
model one considers. Therefore, bosonic states as well as the massless free fermion and
antifermion states should be included in the intermediate states. Eq.(2.19) is just the same
equation as the boson case, and therefore, it gives an impression that the Goldstone theorem
is meaningful for the fermion field theory models as well.

However, one easily notices that thisφ has nothing to do with any bound state of
fermions and antifermions since, as we mention above, eq. (2.19) does not contain any
information on the interaction term. Namely, we obtain from eq.(2.19),

En = 0 for pn = 0 (2.20)

where
En = Ef + Ef̄ (2.21a)
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pn = pf + pf̄ (2.21b)

wherepf (pf̄ ) andEf (Ef̄ ) denote the momentum and energy of the fermion (anti-fermion),
respectively. For the free massless fermion and anti-fermion pair, eq.(2.20) is indeed satis-
fied. This energy dispersion looks like a massless boson, but of course it has nothing to do
with the massless boson.

Obviously, the existence of the boson fieldφ can be confirmed only after the whole
dynamics of this field theory model is completely solved. As mentioned above, eq. (2.19)
does not contain any information on the interaction term of the Lagrangian density, and
therefore it is natural that eq. (2.19) cannot prove the existence of the bosonic states in the
corresponding field theory model. Further, even if one could solve the dynamics properly,
it would not mean that theφ can be expressed in terms of fermion field operators.

3 Goldstone Boson in Boson Field Theory

The physics of the spontaneous symmetry breaking started from the boson field theory
models, and Goldstone discovered that there should appear a massless boson when the
symmetry is spontaneously broken in the vacuum state. The basic point in this theorem
is that the vacuum state always prefers the lowest energy state of the total Hamiltonian
and therefore when the minimum energy state of the interaction field energy is located at
the point which breaks the symmetry of the Lagrangian density, then one should find the
vacuum state which breaks this symmetry. The interesting discovery of Goldstone is that
there should appear a massless boson when one adds the kinetic energy terms of the boson
field to the interaction field energy term. This is quite similar to the situation where the
degenerate states in quantum mechanics are split into several states due to the perturbative
interaction. Here, the role of the perturbative interaction is played by the boson’s kinetic
energy terms, and this is quite important to realize since the degeneracy is resolved by
the kinetic energy term of the boson field, and thus this indeed leads to a massless boson
in the Goldstone theorem. In this respect, one says that the degrees of freedom of the
degeneracy of the symmetry become the Goldstone boson since the interaction that breaks
the degeneracy is the boson’s kinetic energy term.

3.1 Symmetry Breaking in Four Dimensional Boson Fields

Now the discussion of the spontaneous symmetry breaking in boson field theory in four
dimensions can be found in any field theory text books, and therefore we only sketch the
simple picture why the massless boson appears in the spontaneous symmetry breaking.

The Hamiltonian density for complex boson fields can be written as

H =
1
2
(pφ†)(pφ) + U (|φ|) . (3.1)

This has aU(1) symmetry, and when one takes the potential as

U (|φ|) = U0

(|φ|2 − λ2
)2 (3.2)
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then, the minimum of the potentialU (|φ|) can be found at|φ| = λ. But one must notice
that this is a minimum of the potential, but not the minimum of the total energy.

The minimum of the total energy must be found together with the kinetic energy term.
When one rewrites the complex field as

φ = (λ + ρ)ei ξ
λ (3.3)

then, one can rewrite eq.(3.1) as

H =
1
2
[
(pξ)(pξ) + (pρ)(pρ)

]
+ U (|λ + ρ|) + ... (3.4)

Here, one finds the massless bosonξ which is associated with the degeneracy of the vac-
uum energy. The important point is that this infinite degeneracy of the potential vacuum is
converted into the massless boson degrees of freedom when the degeneracy of the potential
vacuum is resolved by the kinetic energy term.

Also, it should be noted that the massless boson appears at the time when the new
vacuum is determined. Namely, the massless boson and the new vacuum creation after the
spontaneous symmetry breaking should occur at the same time because the appearance of
the Goldstone boson is the consequence of the symmetry breaking of the vacuum state.
Eq.(3.4) shows that the excitation spectrum of the boson system with respect to the fieldρ
has nothing to do with the symmetry breaking.

3.2 Symmetry Breaking in Two Dimensional Boson Fields

The spontaneous symmetry breaking should not occur in two dimensional field theory mod-
els due to Coleman’s theorem [8]. However, as discussed in section 2, there appears no
massless boson after the symmetry breaking in fermion field theory models, and there-
fore the symmetry can be spontaneously broken in two dimensional field theory models of
fermions. Indeed, the massless Thirring model and two dimensional QCD breaks the chiral
symmetry in the vacuum state, and there is no massless boson in these models.

Now, the boson field theory models in two dimensions cannot break the symmetry
spontaneously since there should appear a massless boson associated with the symmetry
breaking. In this case, however, it is interesting to ask ourselves what then happens to the
spectrum with the double well potential case as an example as we discussed in the preceding
subsection.

It is clear that there should not be any continuum spectrum arising from a massless
boson since there is no physical massless boson in two dimensions. Does this imply that
the appearance of the massless bosonHamiltonian is forbidden after the spontaneous
symmetry breaking ?

This is not a very easy question to answer since clearly the vacuum should prefer the
lower energy state to the symmetric vacuum. What one can say with confidence is that the
massless boson cannot become a physical particle in two dimensions. Since the boson field
ξ should be coupled to the other boson fieldρ in higher order interaction Hamiltonian, one
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may not conclude that the vacuum should be found at the symmetry preserving or broken
state, before one obtains the spectrum of this boson field theory model by solving it exactly.

As discussed in detail in section 2, the Goldstone theorem states that there should be a
bosonic state which has the energy dispersion withE = 0 for p = 0 when the symmetry is
spontaneously broken. It has been believed that this state should be a massless boson. But
this is, of course, a too strong statement. It only says that the dispersion of the state should
beE = 0 for p = 0, and could well be more complicated than the massless one, that is,
E = |p| if the system is not an isolated one.

In other words, the degrees of freedom ofξ field may not become independent of the
field ρ, and in this case, there is no reason to claim that there should appear a massless
boson. It can be said that the state which satisfies the condition ofE = 0 for p = 0 does
not necessarily correspond to a massless boson unless it is an independent field. If this state
couples to other fields, then this complex field can survive free from the infra-red singularity
of the massless boson propagator. In this sense, the condition ofE = 0 for p = 0 is not
sufficient to forbid the existence of the symmetry broken vacuum.

Therefore, it is still an open question what kind of spectrum should emerge from the
boson field theory model with the double well potential in two dimensions. We believe
that the spectrum in this boson field theory model should help us understand the symmetry
breaking in two dimensions in depth.

4 No Goldstone Boson in Fermion Field Theory

It has been believed that, when the symmetry of the Lagrangian density is spontaneously
broken in the vacuum state, there should appear a massless boson in the fermion field theory
models in the same way as the boson field theory. This belief started from the original work
by Nambu and Jona-Lasinio (NJL) who studied the current current interaction model of the
fermion field theory. By now, it is called the NJL model and it has the chiral symmetry. In
their study, they showed that the vacuum prefers the chiral symmetry broken state and there
should appear a massless boson associated with the chiral symmetry breaking. However,
they calculated the boson mass by summing up one loop Feynman diagrams based on the
perturbative vacuum state. But it is obvious that the field theory calculation should be based
on the physical vacuum state, and the physical vacuum in this NJL model is of course the
new vacuum that breaks the chiral symmetry. Therefore, any physical observables should
be evaluated starting from the symmetry broken vacuum. Otherwise one obtains a boson
mass which is unphysical, and this unphysical massless boson is exactly what Nambu and
Jona-Lasinio obtained. The reality is that there is no massless boson, and in addition there
should be no boson in the NJL model even though the latter claim is not proved yet.

In the NJL model, the massless fermion acquires an induced mass when we employ the
Bogoliubov transformation method. Thus, the NJL model becomes a massive fermion field
theory after the spontaneous symmetry breaking. This effective fermion mass was supposed
to be the nucleon mass in the original paper of Nambu and Jona-Lasinio. However, we
believe that this mechanism of the effective fermion mass is spurious, and it is only due to
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the approximation of the Bogoliubov transformation method. The spontaneous symmetry
breaking phenomena can arise from the change of the vacuum state of the field theory
model, and this should not change any property of the elementary fermion field itself. This
is just in contrast to the boson field theory where the property of the boson field is basically
determined by the boson mass, and bosons can be easily created or destroyed. But one
cannot create any fermions since they are fundamental particles and there is no way to
induce the mass scale for the massless fermion from the renormalization procedure. This
point can be seen quite nicely in the Bethe ansatz solution in the massless Thirring model,
and we will discuss it later.

4.1 Intuitive Discussion

Here, we present an intuitive discussion of the chiral symmetry breaking in the NJL models
and show that there should not appear any massless boson at all [4]. The treatment here is
far from rigorous, but we believe that the essential physics of the spontaneous symmetry
breaking phenomena and bosons associated with the symmetry breaking in fermion field
theory models should be clarified since there is still a misunderstanding in this problem. The
treatment is somewhat similar to the Bogoliubov transformation method which is originally
employed by Nambu and Jona-Lasinio when they calculated the vacuum energy after the
symmetry breaking in their model. Here, the determination of the vacuum energy is done
by an educated guess although the result is quite similar to the one which is obtained by the
Bogoliubov transformation method.

The Hamiltonian density of the NJL model is written as

H = ψ†p ·αψ − 1
2
G

[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

]
. (4.1)

Here, we take the chiral representation, and denote theψ as

ψ(n, s) =
1√
2

(
ψ1χ

(s)

ψ2χ
(s)

)
(4.2)

whereχ(s) denotes the spin part. In this case, the Hamiltonian density for the NJL model
can be written after the summation ofs is taken

H = ψ†1(p · n̂)ψ1 − ψ†2(p · n̂)ψ2 + 2G(ψ†1ψ1ψ
†
2ψ2). (4.3)

In the same way as the boson case, we can define the potentialU(ψ1, ψ2) as

U(ψ1, ψ2) = 2G|ψ1|2|ψ2|2. (4.4)

It is clear from this equation that the potential of the fermion field theory models does not
have any nontrivial minimum, apart from the trivial oneψ†1ψ1 = 0, ψ†2ψ2 = 0. This is in
contrast to the boson case where there is a nontrivial minimum in the potential. Therefore,
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there is no degeneracy of the true vacuum state since the minimum of the potential here is
only a trivial one.

Where can one find the new vacuum that breaks the chiral symmetry ? The answer is
simple. One has to consider the kinetic energy term. In the fermion system, the kinetic
energy is negative for the vacuum state.

In what follows, we present a simple and intuitive argument of obtaining a new vacuum
state including the kinetic energy term. This treatment is schematic, but one can learn
the essence of the physics of the chiral symmetry breaking in fermion field theory. The
treatment by employing the Bogoliubov transformation method will be given in the next
section. Now, we can take an average value of the kinetic energy (−Λ0) for the negative
energy state, and thus we write eq.(4.3) as

H ≈ −Λ0

(|ψ1|2 + |ψ2|2
)

+ 2G|ψ1|2|ψ2|2. (4.5)

This can be rewritten as

H = 2G

(
|ψ1|2 − Λ0

2G

)(
|ψ2|2 − Λ0

2G

)
− Λ2

0

2G
. (4.6)

Therefore, it is easy to find the|ψ1|2 and|ψ2|2 for the new vacuum state, that is,

|ψ1|2 =
Λ0

2G
, |ψ2|2 =

Λ0

2G
. (4.7)

This result is somewhat similar to the mean field approximation and indeed the mean field
approximation gives rise to the chiral symmetry breaking.

In this case, the vacuum energyEvac and the condensateC become

Evac = −Λ2
0V

2G
(4.8a)

C =
Λ0

G
(4.8b)

whereV denotes the volume of the system. Now, we write theψ1 andψ2 as

ψi = ψ0 + ψ̃i, (i = 1, 2) (4.9)

whereψ0 denotes the fermion field which is assumed to satisfy the following relations

ψ∗0ψ0 =
Λ0

2G
(4.10a)

ψ0ψ0 = 0. (4.10b)

In this case, the Hamiltonian density becomes

H = −Λ2
0

2G
+ Λ0

(
ψ̃†1ψ̃2 + h.c.

)
+ ψ̃†1(p · n̂)ψ̃1 − ψ̃†2(p · n̂)ψ̃2

+ 2G|ψ̃1|2|ψ̃2|2 + O(ψ̃1, ψ̃
†
2). (4.11)
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Now, it is clear that the second term is the mass term. Therefore, one notices that after the
chiral symmetry breaking, the fermion acquires the finite mass, and the induced massM
becomesM = Λ0. Therefore, at this point, the symmetry breaking problem is completed.
The rest of the field theory becomes just the massive fermion field theory. For example,
the Thirring model becomes the massive Thirring model where one knows well that there
exists one massive boson, and the mass spectrum is obtained as the function of the coupling
constant [9, 33, 10].

This means that one cannot find a massless boson in the Hamiltonian of the fermion
system. It is also quite important to note that the new Hamiltonian is still described by the
same number of the fermion degrees of freedom as the original one. This is in contrast to
the boson case where one of the complex field freedom becomes the massless bosonξ.

Therefore, if one wants to find any boson in the NJL model, then one has to solve the
dynamics since the kinematics cannot produce any Goldstone boson in fermion field theory.
However, it is difficult to find a massless boson as a bound state of fermion and antifermion
system, regardless the strength of the coupling constant in the system of the finite fermion
mass. In any fermion field theory models, the bound state energy should depend on the
strength of the interaction, and if there exists a massless boson in the massive fermion field
theory model, this must be the strong coupling limit of the interaction strength. However,
Nambu claimed the existence of a massless boson, regardless the strength of the coupling
constant, and one can easily see that this claim is physically out of question.

Indeed，there is no massless boson in the NJL as well as in the massless Thirring models
if one solves the dynamics properly as will be seen below in the next section.

Here, it is interesting to note that the vacuum energy and the condensate with this value
of theΛ0 [eq.(4.8a) and eq.(4.8b)] become

Evac = −M2V

2G
(4.12a)

C =
M

G
(4.12b)

which are quite close to the Bogoliubov transformation calculations. Also, the chiral charge
Q5 of the vacuum can be evaluated and is found to be

Q5 = 0 (4.13)

which is also consistent with the one calculated by the Bogoliubov transformation method.
We summarize the intuitive discussions here for the fermion field theory. Even though

there is no nontrivial minimum in the potential, one finds a new vacuum if one considers
the kinetic energy terms of the negative energy particles in the vacuum state. The chiral
symmetry is broken in the new vacuum state of the NJL and the Thirring models. Namely,
the momentum distributions of the negative energy particles in the vacuum states are rear-
ranged such that the new vacuum energy becomes lower than the perturbative vacuum state.
In this process, the left and right moving fermions change the momentum distributions in
the vacuum state such that the chirality is broken since the broken state has simply a lower
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energy than the symmetry preserving vacuum state. After the symmetry breaking, the mass-
less fermion acquires the effective mass though it is an approximate scheme. But there is no
massless boson since the degree of freedom for the massless boson does not exist. The mass
of the boson predicted in the field theory of the finite fermion mass has therefore nothing to
do with the symmetry breaking business since it is just the same as asking for the excitation
spectrum of the fieldρ in eq.(3.4).

4.2 Bogoliubov Transformation

Now, we carry out the calculation which is based on the Bogoliubov transformation, and
show that the chiral symmetry is indeed broken. However, we also show that there appears
no massless boson in this regularized NJL model.

Here, we first quantize the fermion field in a boxL3

ψ(r) =
1√
L3

∑
n,s

[
an,su(n, s)ei 2π

L
n·r + b†n,sv(n, s)e−i 2π

L
n·r

]
(4.14)

wheres denotes the spin index, ands = ±1. Also, the spinors are defined as

u(n, s) =
1√
2

(
σ · n̂χ(s)

χ(s)

)
,

v(n, s) =
1√
2

(
χ(s)

σ · n̂χ(s)

)
.

Now, we define new fermion operators by the Bogoliubov transformation,

cn,s = e−Aan,se
A = cos θnan,s + s sin θnb†−n,s (4.15a)

d†−n,s = e−Ab†−n,se
A = cos θnb†−n,s − s sin θnan,s (4.15b)

where the generator of the Bogoliubov transformation is given by

A =
∑
n,s

sθn

(
a†n,sb

†
−n,s − b−n,san,s

)
. (4.16)

θn denotes the Bogoliubov angle which can be determined by the condition that the vacuum
energy is minimized. In this case, the new vacuum state is obtained as

| Ω〉 = e−A|0〉. (4.17)

In what follows, we treat the NJL Hamiltonian with the Bogoliubov transformed vacuum
state. In order to clearly see some important difference between the massive fermion and
massless fermion cases, we treat the two cases separately.
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4.3 Massive Fermion Case

The Lagrangian density for the NJL model with the massive fermion can be written as

L = iψ̄γµ∂µψ −m0ψ̄ψ + G
[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

]
. (4.18)

Now, we can obtain the new Hamiltonian under the Bogoliubov transformation,

H =
∑
n,s

{
|pn| cos 2θn +

(
m0 +

2G

L3
B

)
sin 2θn

} (
c†n,scn,s + d†−n,sd−n,s

)

+
∑
n,s

{
−|pn|s sin 2θn +

(
m0 +

2G

L3
B

)
s cos 2θn

} (
c†n,sd

†
−n,s + d−n,scn,s

)
+H ′

int

(4.19)

whereH ′
int is the interaction term. Since theH ′

int is quite complicated, and besides its
explicit expression is not needed in this context, we will not write it here.B is defined as

B =
∑
n,s

sin 2θn.

Now, we can define the renormalized fermion massm

m = m0 +
2G

L3
B. (4.20)

The Bogoliubov angleθn can be determined by imposing the condition that thecd term in
eq.(4.19) must vanish. Therefore, we obtain

cot 2θn =
|pn|
m

. (4.21)

This Bogoliubov angleθn does not change when the mass varies fromm0 to m. In this
case, the vacuum is just the same as the trivial vacuum of the massive case, except that
the fermion mass is replaced by the renormalized massm. The rest of the theory becomes
identical to the massive NJL model with the same interaction HamiltonianH ′

int. Therefore,
there is no symmetry breaking, and this vacuum has no condensate.

4.4 Massless Fermion Case

Here, we present the same procedure for the massless fermion case in order to understand
why the fermion has to become massive.

We start from the Lagrangian density with no mass term in eq.(4.18). Under the Bo-
goliubov transformation, we obtain the new Hamiltonian

H =
∑
n,s

{
|pn| cos 2θn +

2G

L3
B sin 2θn

} (
c†n,scn,s + d†−n,sd−n,s

)

+
∑
n,s

{
−|pn|s sin 2θn +

2G

L3
Bs cos 2θn

} (
c†n,sd

†
−n,s + d−n,scn,s

)
+ H ′

int (4.22)
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whereH ′
int is just the same as the one given in eq.(4.19). From this Hamiltonian, we get to

know that the mass term is generated in the same way as the massive case. But we cannot
make any renormalization since there is no mass term. Further, the new term is the only
mass scale in this Hamiltonian since the coupling constant cannot serve as the mass scale.
In fact, it is even worse than the dimensionless coupling constant case, since the coupling
constant in the NJL model is proportional to the inverse square of the mass dimension.
Thus, we define the new fermion massMN by

MN =
2G

L3
B. (4.23)

The Bogoliubov angleθn can be determined from the following equation

cot 2θn =
|pn|
MN

. (4.24)

In this case, the vacuum changes drastically since the original vacuum is trivial.
Further, the constraints of eqs.(4.23) and (4.24) give rise to the equation that determines

the relation between the induced fermion massMN and the cutoff momentumΛ

MN =
4G

(3π)3

∫ Λ

d3p
MN√

M2
N + p2

. (4.25)

This equation has a nontrivial solution forMN , and the vacuum energy becomes lower than
the trivial vacuum (MN = 0). Therefore,MN can be expressed in terms ofΛ as

MN = γΛ

whereγ is a simple numerical constant.
It should be noted that the treatment up to now is exactly the same as the one given by

Nambu and Jona-Lasinio [3]. Further, we stress that the induced fermion massMN can
never be set to zero, and it is always finite.

4.5 Boson Mass in NJL Model

The boson state|B〉 can be expressed as

|B〉 =
∑
n,s

fnc†n,sd
†
−n,s|Ω〉, (4.26)

wherefn is a wave function in momentum space, and|Ω〉 denotes the Bogoliubov vacuum
state. The equation for the boson massM for the NJL model is written in terms of the Fock
space expansion at the largeL limit

Mf(p) = 2Epf(p)− 2G

(3π)3

∫ Λ

d3qf(q)
(

1 +
M2

EpEq
+

p · q
EpEq

)
(4.27)
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whereM should be taken to beM = m for the massive case, andM = MN for the
massless case. It is important to note that the fermion massM after the Bogoliubov trans-
formation, therefore, cannot become zero.

Here, again, we note that the RPA calculation gives the similar boson spectrum to the
Fock space expansion. But we do not know whether the RPA calculation is better than the
Fock space expansion or not, since the derivation of the RPA equation in field theory is
not based on the fundamental principle. In principle, the RPA calculation may take into
account the effect of the deformation of the vacuum in the presence of the particle and
antiparticle. However, this is extremely difficult to do it properly, and indeed the RPA
eigenvalue equation is not Hermite, and thus it is not clear whether the effect is taken into
account in a better way or worse. The examination and the validity of the RPA equation
will be given else where.

The solution of eq.(4.25) can be easily obtained, and the boson mass spectrum for the
NJL model is shown in Fig. 1. Note that the boson mass is measured in units of the cutoff
momentumΛ. As can be seen from the figure, there is a massive boson for some regions
of the values of the coupling constant. Here, as we will see later, the NJL and the Thirring
models are quite similar to each other. This is mainly because the current-current interaction
is essentially a delta function potential in coordinate space. Indeed, as is well known, the
delta function potential in one dimension can always bind the fermion and anti-fermion
while the delta function potential in three dimension cannot normally bind them. Due to the
finite cut off momentum, the delta function potential in three dimensions can make a weak
bound state, depending on the strength of the coupling constant. This result of the delta
function potential in quantum mechanics is almost the same as what is just shown in Fig. 1.
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Figure 1: The boson mass for the NJL model is plotted as the function ofGΛ2. It is
measured by the cutoffΛ.
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Further, we should note that Kleinert and Van den Bossche [12] also found that the
bosons after the symmetry breaking are all massive, which is just consistent with our claim.
Their method and approach are quite different from the present calculation, but both of the
calculations agree with each other that there is no massless boson in the NJL model.

Here, we should add that there is no serious difficulty of proving the non-existence of the
massless boson from the calculated spectrum. However, if it were to prove the existence of
the massless boson, it would have been extremely difficult to do it. For the massless boson,
there should be a continuum spectrum, and this continuum spectrum of the massless boson
should be differentiated from the continuum spectrum arising from the many body nature of
the system. This differentiation must have been an extremely difficult task without having
some analytic expression of the spectrum. In fact, even if one finds a continuum spectrum
which has, for example, the dispersion ofE = c0p

2 as often discussed in solid state physics,
one sees that the spectrum has nothing to do with the Goldstone boson.

4.6 Boson Mass in Thirring Model

The massless Thirring model can be treated just in the same way as the NJL model in terms
of the Bogoliubov transformation method. We do not repeat the detailed calculations, but
instead we present the summary of the calculated results.

First, we can determine the Bogoliubov angles and from the consistency condition we
can determine the induced mass. The induced massM can be expressed in terms of the
cutoff Λ,

M =
Λ

sinh
(

π
g

) . (4.28)

Further, the vacuum energyEvac as measured from the trivial vacuum is given

Evac = − L

2π

Λ2

sinh
(

π
g

)e
−π

g . (4.29)

From this value of the vacuum energy, we get to know that the new vacuum energy is indeed
lower than the trivial one. Therefore, the chiral symmetry is broken in the new vacuum state
and, effectively, the fermion becomes massive.

In the same manner as [5], we carry out the calculations of the spectrum of the bosons
in the Fock space expansion. The boson state|B〉 can be expressed as

|B〉 =
∑

n

fnc†nd†−n|Ω〉, (4.30)

wherefn is a wave function in momentum space, and|Ω〉 denotes the Bogoliubov vacuum
state. The energy eigenvalue of the Hamiltonian for the largeL limit can be written as

Mf(p) = 2Epf(p)− g

2π

∫
dqf(q)

(
1 +

M2

EpEq
+

pq

EpEq

)
(4.31)
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whereM denotes the boson mass.Ep is given as

Ep =
√

M2 + p2. (4.32)

Eq.(4.31) can be solved exactly as shown in [5]. First, we defineA andB by

A =
∫ Λ

−Λ
dpf(p) (4.33a)

B =
∫ Λ

−Λ
dp

f(p)
Ep

. (4.33b)

UsingA andB, we can solve Eq. (4.31) forf(p) and obtain

f(p) =
g/2π

2Ep −M
(

A +
M2

Ep
B

)
. (4.34)

Putting thisf(p) back into Eqs. (4.31), we obtain the matrix equations

A =
g

2π

∫ Λ

0

2dp

2Ep −M
(

A +
M2

Ep
B

)
(4.35a)

B =
g

2π

∫ Λ

0

2dp

(2Ep −M)Ep

(
A +

M2

Ep
B

)
. (4.35b)

Since the model is already regularized, we can easily calculate the boson spectrum which
is given in Fig. 2 as the function of the coupling constantg/π. As can be seen from Fig. 2,
there is no massless boson in this spectrum even though the boson mass for the very small
coupling constantg is exponentially small.

5 Bethe Ansatz Solutions in Thirring Model

The structure of the vacuum and the spectrum of the current current interaction models of
the NJL and the Thirring model have been discussed in terms of the Bogoliubov transfor-
mation method in section 4. It is clear that there should not be any fundamental differences
between the NJL and the Thirring models as far as the vacuum structure is concerned once
one accepts the reliability of the Bogoliubov transformation method. For the perturbative
point of view, however, there is a serious difference between them since the former is an
unrenormalizable field theory model in four dimensions while the latter is a renormalizable
field theory model in two dimensions. Therefore, there is no guarantee that the NJL model
can give any reliable predictions when one evaluates physical observables in the perturba-
tive calculations. In this respect, it is always very important to have some exact solutions of
the field theory model. In two dimensions, the Thirring model can be indeed solved exactly
by the Bethe ansatz method. From the exact solutions, one can learn a lot about the vacuum
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Figure 2: The boson mass for the massless Thirring model is plotted as the function ofg/π.
It is measured by the cutoffΛ.

structure and the spectrum of the excitation in the Thirring model. In particular, we can
discuss the symmetry breaking of the vacuum state from this solution.

In two dimensions, however, the symmetry in the field theory is considered to benot
broken spontaneously in the vacuum state. In fact, Coleman [8] presented the proof that
the two dimensional field theory models cannot spontaneously break the symmetry even
though the vacuum state may prefer the symmetry broken state. However, his proof of the
nonexistence of the spontaneous symmetry breaking in two dimensions is essentially based
on the Goldstone theorem. The Goldstone theorem [1, 2] states that the spontaneous sym-
metry breaking should accompany a massless boson when the vacuum prefers the broken
symmetric state. However, the massless boson cannot exist in two dimensions since it can-
not propagate due to the infra-red singularity of the propagator. Since this non-existence of
the massless boson should hold rigorously, it naturally means that the spontaneous symme-
try breaking should not occur in two dimensions as long as the Goldstone theorem is right.
Coleman’s theorem looks reasonable, and indeed until recently it has been believed to hold
true for fermion field theory models as well.

However, as we see in the preceding sections, the Goldstone theorem does not hold in
the fermion field theory models. Therefore, there is no massless boson in the fermion field
theory after the spontaneous symmetry breaking. This suggests that Coleman’s theorem has
lost its basis in the proof of the theorem. Indeed, as we saw in section 4, the chiral symmetry
of the massless Thirring model is spontaneously broken by the Bogoliubov vacuum state
[4, 5]. There, the energy of the new vacuum is lower than that of the free vacuum state, and
it breaks the chiral symmetry, but there appears no massless boson.

For this claim, however, people may insist that the Bogoliubov transformation does
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not have to be exact, and therefore there might be some excuse for the symmetry breaking
phenomena that occurred in the Thirring model.

In this section, we present a new discovery of the symmetry broken vacuum of the Bethe
ansatz solution in the Thirring model, and show that the energy of the new vacuum state is
indeed lower than that of the symmetric vacuum state even though the symmetric vacuum
was considered to be the lowest state in the Thirring model. The new vacuum state breaks
the chiral symmetry, and becomes a massive fermion field theory model.

Further, we evaluate the energy spectrum of the one particle-one hole states, and show
that the excitation spectrum has indeed a finite gap. This gap energy turns out to be con-
sistent with the effective fermion mass deduced from the momentum distribution of the
negative energy particles in the new vacuum state. This confirms the consistency of the
calculation of the Bethe ansatz solutions in the Thirring model.

After carrying out the numerical calculations, we get to know that the energies of the
vacuum as well as the lowest one particle-one hole state can be expressed analytically. This
is quite nice since we know clearly which of the vacuum state is the lowest. Also, in the
thermodynamic limit, the lowest one particle-one hole state can be reduced to the effective
fermion massMN which is described in terms of the cutoffΛ.

It turns out that there is no massive boson in the Bethe ansatz solutions, contrary to the
prediction of the Bogoliubov transformation method [5, 16]. However, qualitative proper-
ties of the symmetry breaking phenomena between the Bethe ansatz calculations and the
Bogoliubov method agree with each other.

Even though the Bethe ansatz calculations confirm that there is no massless boson in
the massless Thirring model, some people may claim that the massless Thirring model can
be bosonized and is reduced to a massless boson Hamiltonian. Here, we show that the well-
known procedure of bosonization of the massless Thirring model is incomplete because
the zero mode of the boson field cannot be defined and quantized. In other words, the
zero mode of the fieldΦ(0) identically vanishes in the massless Thirring model. This is
in contrast to the Schwinger model in which one finds the zero mode of the fieldΦ(0) by
the gauge fieldA1. Also, it is interesting to note that the massive Thirring model has the
zero mode through the mass term, and this clearly indicates that the massless limit of the
massive Thirring model is indeed a singular point with respect to the dynamics of the field
theory.

Therefore, the massless Thirring model cannot be reduced to a free massless boson
even though it has a similar mathematical structure to the massless boson. The spectrum of
the massless Thirring model has a finite gap, and this is consistent with the fact that there
should not be any physical massless boson in two dimensions. Even though the defect of
the bosonization of the massless Thirring model is only one point of the boson field, that is,
zero mode, it is interesting and surprising thatnature knows it in advance.
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5.1 Thirring Model and Bethe Ansatz Solutions

The massless Thirring model is a 1+1 dimensional field theory with current current interac-
tions [3]. Its Hamiltonian can be written as

H =
∫

dx

{
−i

(
ψ†1

∂

∂x
ψ1 − ψ†2

∂

∂x
ψ2

)
+ 2gψ†1ψ

†
2ψ2ψ1

}
. (5.1)

The Hamiltonian eq.(5.1) can be diagonalized by the Bethe ansatz wave function forN
particles [9, 13, 14]

| k1, · · · , kN 〉 =
∫

dx1 · · · dxN1dy1 · · · dyN2

N1∏

i=1

exp(ikixi)
N2∏

j=1

exp (ikN1+jyj)

×
∏

i,j

[
1 + λθ(xi − yj)

] N1∏

i=1

ψ†1(xi)
N2∏

j=1

ψ†2(yj) |0〉, (5.2)

with N1 + N2 = N . θ(x) denotes the step function.ki represents the momentum of the
i−th particle.λ is determined to be [3]

λ = −g

2
Sij (5.3)

whereSij is defined as

Sij =
kiEj − kjEi

kikj − EiEj − ε2
(5.4)

whereε denotes the infra-red regulator which is eventually set to zero. We note that all of
the momenta and any of the physical observables do not depend on the regulatorε when we
solve the PBC equations as we discuss below.

In this case, the eigenvalue equation becomes

H | k1, · · · , kN 〉 =
N∑

i=1

Ei | k1, · · · , kN 〉. (5.5)

From the periodic boundary condition (PBC), one obtains the following PBC equations,

ki =
2πni

L
+

2
L

N∑

j 6=i

tan−1
(g

2
Sij

)
(5.6)

whereni’s are integer, and runs asni = 0,±1,±2, · · · , N0 where

N0 =
1
2
(N − 1).
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5.2 Vacuum State

First, we want to make a vacuum. We write the PBC equations for the vacuum which is
filled with negative energy particles [9, 15]

ki =
2πni

L
− 2

L

N∑

i 6=j
ki 6=kj

tan−1

(
g

2
ki|kj | − kj |ki|

kikj − |ki||kj | − ε2

)
. (5.7)

Although, the expression of the phase shift function is somewhat different from that of
ref. [18, 19], it produces the same values of the momentum solution of the vacuum state.
However, we believe that the expression of eq.(5.4) with the infra-red regulator must be
better since it is transparent and clear.

Here, we first fix the maximum momentum of the negative energy particles, and denote
it by the cut off momentumΛ. Next, we take the specific value ofN , and this leads to the
determination ofL

L =
2πN0

Λ
. (5.8)

If we solve eq.(5.7), then we can determine the vacuum state, and the vacuum energyEv

can be written as

Ev = −
N∑

i=1

|ki|. (5.9)

It should be noted that physical observables are obtained by taking the thermodynamic
limit where we letL → ∞ andN → ∞, keepingΛ finite. If there is other scale like the
mass, then one should take theΛ which is sufficiently large compared to the other scale.
However, there is no other scale in the massless Thirring model or four dimensional QCD
with massless fermions, and therefore all the physical observables are measured by theΛ.
Here, we can take all the necessary steps, if required, since all the physical quantities are
given analytically. In fact, as we see below, the excitation energy and the effective fermion
mass are expressed in terms of theΛ in the thermodynamic limit.

5.3 Symmetric Vacuum State

The solution of eq.(5.7) has been known and is written as [18, 19]

k1 = 0 (5.10a)

for n1 = 0,

ki =
2πni

L
+

2N0

L
tan−1

(g

2

)
(5.10b)

for ni = 1, 2, · · · , N0,

ki =
2πni

L
− 2N0

L
tan−1

(g

2

)
(5.10c)
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for ni = −1,−2, · · · ,−N0. This gives a symmetric vacuum state, and was considered to
be the lowest state.

The vacuum energyEsym
v can be written as

Esym
v = −Λ

{
N0 + 1 +

2N0

π
tan−1

(g

2

)}
. (5.11)

5.4 True Vacuum State

It is surprising that eq.(5.7) has a completely different solution from the above analytical
solutions. By the numerical calculation of eq.(5.7), we first find the new vacuum state.
After that, we get to know that the solutions can be analytically written like the symmetric
case,

k1 =
2N0

L
tan−1

(g

2

)
(5.12a)

for n1 = 0,

ki =
2πni

L
+

2N0

L
tan−1

(g

2

)
(5.12b)

for ni = 1, 2, · · · , N0,

ki =
2πni

L
− 2(N0 + 1)

L
tan−1

(g

2

)
(5.12c)

for ni = −1,−2, · · · ,−N0. The new vacuum has noki = 0 solution, and breaks the
left-right symmetry. Instead, all of the momenta of the negative energy particles become
finite.

The energyEtrue
v of the true vacuum state can be written as

Etrue
v = −Λ

{
N0 + 1 +

2(N0 + 1)
π

tan−1
(g

2

)}
. (5.13)

From the distributions of the negative energy particles, one sees that this solution breaks
the chiral symmetry. This situation can be easily seen from the analytical solutions since the

absolute value of the momentum of the negative energy particles is higher than
Λ
π

tan−1
(g

2

)
.

Therefore, we can define the effective fermion massMN by

MN =
Λ
π

tan−1
(g

2

)
. (5.14)

In Table 1, we show the calculated results of the new vacuum as well as the symmetric
vacuum energies as the function of the particle numberN . Here, we present the case with
the coupling constant ofg = π.
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Table 1: We show the calculated results of the vacuum energy of Bethe ansatz solutions
at g = π with the particle numberN = 401 andN = 1601. Esym andEtrue denote the
symmetric vacuum and the true vacuum energies, respectively. We also show the effective
fermion massMN deduced from the vacuum momentum distributions. All the energies are
measured in units ofΛ, namely,E ≡ E/Λ andMN ≡ MN/Λ.

N Esym Etrue MN

401 −328.819 −329.458 0.320
1601 −1312.274 −1312.913 0.320

5.5 1p− 1h State

Next, we evaluate one particle-one hole(1p − 1h) states. There, we take out one negative
energy particle (i0-th particle) and put it into a positive energy state. In this case, the PBC
equations become

ki =
2πni

L
− 2

L
tan−1

(
g

2
ki|ki0 |+ ki0 |ki|

kiki0 + |ki||ki0 |+ ε2

)

− 2
L

N∑

j 6=i,i0
kj 6=ki,ki0

tan−1

(
g

2
ki|kj | − kj |ki|

kikj − |ki||kj | − ε2

)
(5.15a)

for i 6= i0.

ki0 =
2πni0

L
− 2

L

N∑

j 6=i0
kj 6=−ki0

tan−1

(
g

2
ki0 |kj |+ kj |ki0 |

ki0kj + |ki0 ||kj |+ ε2

)
(5.15b)

for i = i0. In this case, the energy of the one particle-one hole statesE1p1h
(i0) is given as,

E1p1h
(i0) = |ki0 | −

N∑

i=1
i 6=i0

|ki|. (5.16)

It turns out that the solutions of eqs.(5.15) can be found at the specific value ofni0 and then
from thisni0 value on, we find continuous spectrum of the1p− 1h states.

Here, we show the analytical solution of eqs.(5.15) for the lowest1p− 1h state.

ki0 =
2πni0

L
− 2N0

L
tan−1

(g

2

)
(5.17a)
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for ni0 ,

ki =
2πni

L
+

2(N0 + 1)
L

tan−1
(g

2

)
(5.17b)

for ni = 0, 1, 2, · · · , N0

ki =
2πni

L
− 2N0

L
tan−1

(g

2

)
(5.17c)

for ni = −1,−2, · · · ,−N0. ni0 is given by

ni0 =
[
N0

π
tan−1

(g

2

)]
, (5.18)

where[X] denotes the smallest integer value which is larger thanX. In this case, we can
express the lowest1p− 1h state energy analytically

E1p−1h
0 = −Λ

{
(N0 + 1)− 2ni0

N0
+

2(N0 + 1)
π

tan−1
( g

π

)}
. (5.19)

Therefore, the lowest excitation energy∆E1p−1h
0 with respect to the true vacuum state

becomes

∆E1p−1h
0 ≡ E1p−1h

0 − Etrue
v =

2Λ
N0

ni0 . (5.20)

If we take the thermodynamic limit, that is,N → ∞ andL → ∞, then eq.(5.18) can be
reduced to

∆E1p−1h
0 =

2Λ
π

tan−1
(g

2

)
= 2MN . (5.21)

In Table 2, we show the lowest five states of the1p−1h energy by the numerical calculation.
From this, we can determine the gap energy.

Table 2: We show several lowest states of the calculated results of the 1p-1h states energyE
of eqs.(4.12) atg = π with N = 1601. The gap energy∆E ≡ E(1p1h) − Ev is also shown.
All the energies are measured in units ofΛ.

E ∆E
vacuum −1312.913

1p− 1h (1) −1312.273 0.640
1p− 1h (2) −1312.272 0.641
1p− 1h (3) −1312.271 0.642
1p− 1h (4) −1312.269 0.644
1p− 1h (5) −1312.268 0.645

From this gap energy, we can obtain the effective fermion mass which is one half of the
lowest gap energy. This can be easily given as

MN = 0.320 Λ. (5.22)
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This is consistent with the effective fermion mass deduced from the negative energy distri-
bution of the vacuum. This confirms the consistency of the present calculations.

5.6 Boson State

In this calculation, we do not find any boson state, contrary to the prediction of the Bo-
goliubov transformation method. Since the present calculation is exact, we believe that the
Bogoliubov calculation overestimates the attraction between the particle hole states. The
main difference between the Bethe solutions and the Bogoliubov vacuum arises from the
dispersion relation of the negative energy particles. From the Bethe ansatz solutions, it is
clear that one cannot make a simple free particle dispersion with the fermion mass term
while the Bogoliubov method assumes the free fermion dispersion relation for the nega-
tive energy particles. This should generate slightly stronger attraction for the Bogoliubov
vacuum state than for the Bethe ansatz solution.

However, as far as the symmetry breaking mechanism is concerned, the Bogoliubov
transformation gives a sufficiently reliable description of the dynamics in the spontaneous
symmetry breaking phenomena.

5.7 Bosonization of Massless Thirring Model

Here, we briefly review the bosonization procedure in two dimensional field theory mod-
els. In particular, we discuss the massless and massive Thirring models and show that the
massless Thirring model cannot be bosonized properly due to the lack of the zero mode of
the boson field.

It has been believed that the massless Thirring model can be bosonized [20] in the same
way as above, and its Hamiltonian is written

H =
1
2

∑

p6=0

{(
1− g

2π

)
Π†(p)Π(p) +

(
1 +

g

2π

)
p2Φ†(p)Φ(p)

}
. (5, 23)

This looks plausible, but one knows at the same time that thep = 0 part is not included.
In fact, there is a serious problem in the definition of the boson fieldΦ(0) andΠ(0) at the
zero momentump = 0. From eqs.(4.1), it is clear that one cannot define the zero mode of
the boson field. In the Schwinger model, one finds theΦ(0) due to the anomaly equation.
However, the Thirring model has no anomaly, and therefore theΦ(0) identically vanishes.
That is,

Φ(0) = 0. (5.24)

There is no way to find the corresponding zero mode of the boson field in the massless
Thirring model since the axial vector current is always conserved.

Therefore, the Hamiltonian of the massless Thirring model eq.(5.5) does not correspond
to the massless boson. It is interesting to notice that the problem is closely related to the zero
mode which exhibits the infra-red property of the Hamiltonian. This is just consistent with
the non-existence of the massless boson due to the infra-red singularity of the propagator
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in two dimensions [43]. Further, as discussed in the previous section, the Bethe ansatz
solutions confirm the finite gap of the massless Thirring spectrum, and this rules out a
possibility of any excuse of the massless boson in the massless Thirring model.

5.8 Physics of Zero Mode

What is the physics behind the Hamiltonian without the zero mode ? Here, we discuss the
effect of the zero mode and the eigenvalues of the Hamiltonian in a simplified way. The
Hamiltonian eq.(5.23) can be rewritten as

H = HB − 1
2

(
1− g

2π

)
Π†(0)Π(0) (5.25)

where theΠ(0) field is introduced by hand, and the existence of theΠ(0) andΦ(0) fields is
assumed. Here,HB denotes the free boson Hamiltonian and is written as

HB =
1
2

∑
p

{(
1− g

2π

)
Π†(p)Π(p) +

(
1 +

g

2π

)
p2Φ†(p)Φ(p)

}
. (5.26)

Now, we assume the following eigenstates forHB andΠ†(0)Π(0) by

HB|p〉 = Ep|p〉 (5.27a)

Π†(0)Π(0)|Λ〉 = Λ|Λ〉 (5.27b)

whereEp = 2π
L p with p = 0, 1, 2, · · · , andΛ is related to the box lengthL by Λ = c0

L
with c0 constant.

Eq. (5.27a) is just the normal eigenvalue equation for the massless boson and its spec-
trum. On the other hand, eq.(5.27b) is somewhat artificial since the state|Λ〉 is introduced
by hand. The zero mode state of the HamiltonianHB should couple with the state|Λ〉, and
therefore new states can be made by the superposition of the two states

|v〉 = c1|Λ〉+ c2|0〉 (5.28)

wherec1 and c2 are constants. Further, we assume for simplicity that the overlapping
integral between the|0〉 and the|Λ〉 states is small and is given byε

〈0|Λ〉 = ε. (5.29)

In this case, the energy eigenvalues〈v|H|v〉 of eq.(5.25) become at the order ofO(ε)

EΛ = 〈Λ|HB|Λ〉 − 1
2

(
1− g

2π

)
Λ (5.30a)

E0 = −1
2

(
1− g

2π

)
〈0|Π†(0)Π(0)|0〉. (5.30b)
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If we assume that the magnitude of the〈Λ|HB|Λ〉 and〈0|Π†(0)Π(0)|0〉 should be appre-
ciably smaller than theΛ,

〈Λ|HB|Λ〉 ¿ Λ (5.31a)

〈0|Π†(0)Π(0)|0〉 ¿ Λ (5, .31b)

then the spectrum of the Hamiltonian eq.(5.25) has a finite gap, and the continuum states
of the massless excitations start right above the gap. This is just the same as the spectrum
obtained from the Bethe ansatz solutions discussed in the previous section.

5.9 Bosonization of Massive Thirring Model

It is well known that the massive Thirring model is equivalent to the sine-Gordon field
theory [21]. The proof of the equivalence is based on the observation that the arbitrary
number of the correlation functions between the two models agree with each other if some
constants and the fields of the two models are properly identified between them. This
indicates that the massive Thirring model must be well bosonized.

This is now quite clear since the axial vector current conservation is violated by the
mass term,

∂µjµ
5 = 2imψ̄γ5ψ (5.32)

wherej5
µ is defined as

j5
µ = ψ̄γ5γµψ. (5.33)

It should be noted that thej5
0 is equal toj1 in two dimensions.

Therefore, one can always define theQ̇5 by

Q̇5 = 2im

∫
ψ̄γ5ψdx. (5.34)

Therefore, one obtains the fieldΦ(0) of the boson

Φ(0) =
2imπ

g
√

L

∫
ψ̄γ5ψdx. (5.35)

whereΦ(0) of the boson will be discussed in detail in the next section in connection to the
bosonization of the Schwinger model.

5.10 Bosons of Massive Thirring Model

The massive Thirring model has some bound states which are composed out of fermions
and antifermions. The number of the bound states has been debated since the semiclassical
calculation of the sine-Gordon model predicted that there should be many bound states in
the massive Thirring model [22]. On the other hand, the infinite momentum frame calcu-
lation and the Bogoliubov transformation method predict that there is only one bound state
[33, 11]. This is quite reasonable since the interaction of the massive Thirring model is in



32 Takehisa Fujita, Makoto Hiramoto and Hidenori Takahashi

fact theδ−function potential which can normally possess one bound state. In addition, the
Bethe ansatz calculations of the massive Thirring model also confirm that there is only one
bound state in the massive Thirring model [9, 15]. In particular, the Bethe ansatz equations
are analytically solved in the strong coupling limit where the semiclassical method predicts
many bound states [15]. The analytic solutions clearly show that there is only one bound
state even in the strong coupling limit in this field theory model.

5.11 Summary of Thirring Model

In this section, we have presented a symmetry broken vacuum of the Bethe ansatz solutions
in the Thirring model, and have shown that the true vacuum energy is indeed lower than
the symmetric vacuum energy. This is quite surprising since the symmetry preserving state
often gives the lowest energy state in quantum mechanics. However, in the field theory
model, there is also the case in which the symmetry is spontaneously broken in the vacuum
state, and this is indeed what is realized and observed in the Thirring model.

In this new vacuum state, the chiral symmetry is broken, and therefore the momen-
tum distribution of the negative energy state becomes similar to a massive fermion theory.
From the distribution of the vacuum momentum, we can deduce the effective fermion mass.
However, we should note that the fermion should be massless in reality, and we cannot ap-
proximate the system by the massive fermion field theory for a boson mass evaluation. Even
though some of the physical observables may be calculated by the approximate scheme with
the massive fermion theory, one should keep the massless fermion scheme in general.

We have also calculated the one particle-one hole excitation spectrum, and found that
the spectrum has a finite gap. From this gap energy, we can determine the effective fermion
mass, and confirm that the effective fermion mass from the gap energy agrees with the one
which is estimated from the vacuum momentum distribution.

Also, we have shown that the bosonization procedure of the massless Thirring model
has a serious defect since there is no corresponding zero mode of the boson field and that
the massless Thirring model therefore cannot be fully bosonized.

Since the massless Thirring model cannot be bosonized properly, there is no massless
excitation spectrum in the model, and this is consistent with the Bethe ansatz solutions that
the massless Thirring model has a finite gap and then the continuum spectrum starts right
above the gap.

Also, we should stress that the bosonization of the massless Thirring model has a sub-
tlety, and one must be very careful for treating it. If one makes a small approximation or
a subtle mistake in calculating the spectrum of the Hamiltonian, then one would easily ob-
tain unphysical massless excitations from the massless Thirring model. We believe that the
same care must be taken for theSU(N) Thirring model where some approximations like
the1/N expansion are made and the massless boson is predicted [23]. When we discuss
the largeN expansion, there are serious problems related to the1/N approximation. The
basic point is that they cannot take into account the subtlety of the dynamics. In particular,
if one makes first the largeN limit, then one loses some important interactions which con-
tribute to the boson mass. As Gross and Neveu pointed out in their paper [24], the massless
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boson does not exist if they were to calculate to the higher orders in1/N . The existence of
massless boson will give rise to infrared infinities arising from virtual states. This means
that the lowest order approximation in1/N is meaningless, and to investigate the infrared
stability of the theory one has to work to all orders in1/N . This infra-red problems become
particularly important when treating the bound state like boson mass.

It is clear by now that the present results are in contradiction with Coleman’s theorem
[8]. Here, we have presented counter examples against Coleman’s theorem, and the exact
solutions in two dimensional field theory should correspond to ”experimental facts”. There-
fore, one should figure out the mathematical reason why Coleman’s theorem is violated in
fermion field theory model. In addition to the massless Thirring model, QCD with mass-
less fermions in two dimensions spontaneously breaks the chiral symmetry with the axial
vector current conservation as we will see later. Therefore, the massless QCD2 is also in
contradiction with Coleman’s theorem, but there is no massless boson [4], and in this sense,
it does not violate the theorem that there should not exist any massless boson in two dimen-
sions. In reality, there is no example of fermion field theory models in which the symmetry
of the vacuum state isnot broken due to Coleman’s theorem. However, the basic and math-
ematical problem with Coleman’s theorem is still unsolved here. But we believe that the
basic problem of the symmetry breaking business in two dimensions must come from the
Goldstone theorem itself for the fermion field theory as discussed in sections 2 and 4.

6 Schwinger Boson in Two Dimensional QED

The best known model of the bosonization is the Schwinger model [25] which is the two
dimensional QED with massless fermions. In the Schwinger model, the coupling constant
has a mass dimension, and, due to this super-renormalizability, one can treat the model
quite easily in many respects. There is no infinity at the large momentum, and therefore one
does not need any cutoff momentum. In the Schwinger model, therefore, all the physical
observables are described in terms of the coupling constantg.

6.1 Schwinger Model

The Schwinger model is the two dimensional QED with massless fermions. This is exactly
solved, and this exact solution in field theory means that the Schwinger model can be rewrit-
ten into a new free field theory model. Indeed, the Schwinger model can be bosonized and
becomes a free massive boson field theory model. This is quite interesting, but we believe
that the Schwinger model is very special in that the interaction between fermions and an-
tifermions is attractive, but it is a confining potential. Therefore, there exists no free fermion
state, and that should be a strong reason why the Schwinger model becomes identical to the
free bosonic fields.

The Lagrangian density for the Schwinger model can be written as

L = ψ̄iγµDµψ − 1
4
FµνF

µν (6.1)
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where
Dµ = ∂µ + igAµ, Fµν = ∂µAν − ∂νAµ.

The equation of motion for the gauge field is

∂µFµν = gjν (6.2)

where the fermion currentjν is given as

jν =: ψ̄γνψ : (6.3)

where: : denotes a normal ordering. The Dirac equation becomes

γµ(−i∂µ + gAµ)ψ = 0. (6.4)

Now, we quantize the fermion field in a box with the lengthL

ψ(x) =
1√
L

∑
n

(
an

bn

)
ei 2π

L
nx. (6.5)

Here, we take the Coulomb gauge fixing

∂1A
1 = 0.

In this case, the Hamiltonian of the Schwinger model can be written as

H =
L

2
Ȧ1

2
+

∑
n

(
2π

L
n + gA1

)
a†nan+

∑
n

(
−2π

L
n− gA1

)
b†nbn+

g2L

8π2

∑

p6=0

1
p2

j̃0(p)j̃0(−p)

(6.6)
wherej̃0(p) denotes the momentum representation of the fermion currentj0(x).

The Schwinger model is solved by several methods. The bosonization is one of them
and we will discuss it below. Also, the Schwinger model has been solved by the Bogoli-
ubov transformation method. In principle, the Bogoliubov transformation method is an
approximate scheme for the four fermion interaction models. However, the correct mass
of the Schwinger boson is obtained by the Bogoliubov transformation method. Until now,
it is not clarified why the Bogoliubov transformation method can give an exact mass for
the Schwinger model. Further, the Bogoliubov transformation method reproduces the right
condensate value of the Schwinger model which is obtained analytically. This suggest that
the Bogoliubov vacuum state may well be a good vacuum state since the condensate value
should exhibit some information of the vacuum structure.

6.2 Bosonization of Schwinger Model

In the Schwinger model, the Coulomb gauge is taken, and in this case, the space part of the
vector potentialA1 depends on time and corresponds to the zero mode of the boson field
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[26]. Since the fermion currentjµ is defined in eq.(6.3), the momentum representationj̃µ

of the current can be written in terms ofρa(p) andρb(p)

j̃0(p) = ρa(p) + ρb(p) (6.7a)

j̃1(p) = ρa(p)− ρb(p) (6.7b)

whereρa(p) andρb(p) are defined as

ρa(p) =
∑

k

a†k+pak (6.8a)

ρb(p) =
∑

k

b†k+pbk. (6.8b)

Now, we can easily prove thatρa(p) andρb(p) satisfy the following commutation relations,

[ρa(p), ρa(q)]|phys〉 = −pδp,−q|phys〉 (6.9a)

[ρb(p), ρb(q)]|phys〉 = pδp,−q|phys〉. (6.9b)

These commutation relations can only be valid when these equations are always supposed
to operate on the physical states|phys〉. Here, the physical states mean that the negative
energy states must be completely occupied if the negative energy levels are sufficiently
deep. Further, in this physical state, there should be no particles in the positive energy
states if the particle energy is sufficiently high. Under these conditions, eqs.(6.9) hold true
as operator equations.

In this case,̃j0(p) andj̃1(p) are related to the boson field and its conjugate field as

j̃0(p) = ip

√
L

π
Φ(p) for p 6= 0 (6.10a)

j̃1(p) =

√
L

π
Π(p) for p 6= 0 (6.10b)

whereΦ(p) andΠ(p) denote the boson field and its conjugate field, respectively.L denotes
the box length.

It is very important to note thatΠ(0) andΦ(0) are not defined in eqs.(6.10). In the
Schwinger model, they are related to the chiral charge and its time derivative as

Π(0) =
π

g
√

L
Q5 (6.11a)

Φ(0) =
π

g
√

L
Q̇5 (6.11b)

whereQ̇5 is described by the vector fieldA1 due to the anomaly equation

Q̇5 =
Lg

π
Ȧ1. (6.12)
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Here, we briefly discuss how one obtains the chiral anomaly when one regularizes the
charge and the energy of the vacuum. The procedure to obtain eqs.(6.12) is shown in [46]
in a clear way.

First, we define the charges of the right and the left movers by

QL =
NL∑

n=−∞
eλ(n+LgA1

2π
) (6.13a)

QR =
∞∑

n=NR

eλ(−n−LgA1

2π
) (6.13b)

where the charges are regularized in terms of theζ function regularization. Here, it is
important to note that one should regularize the charge with the gauge invariant way since
the Hamiltonian has still the invariance of a large gauge transformationn → n + LgA1

2π . In
this case, the charge and the chiral charge of the vacuum state is defined as

Q = QR + QL (6.14a)

Q5 = QR −QL. (6.14b)

The regularized charge and chiral charge become

Q =
2
λ

+ NL + 1−NR + O(λ) (6.15a)

Q5 = 2NL + 1 +
LgA1

π
. (6.15b)

Since the charge of the vacuum must be zero, we setQ = 0 where we should neglect the
2
λ term. From eq.(6.15b), we obtain the anomaly equation of eq.(6.12) by making the time
derivative ofQ5. Namely, the chiral current is not conserved any more due to the anomaly.

Further, we should regularize the vacuum energy in the same way as the charge. De-
noting the left and right movers of the vacuum energy byEvac

L andEvac
R , we can calculate

them as

Evac
L =

2π

L

NL∑
n=−∞

(
n +

LgA1

2π

)
eλ(n+LgA1

2π
) (6.16a)

Evac
R =

2π

L

∞∑

n=NR

(
−n− LgA1

2π

)
eλ(−n−LgA1

2π
). (6.16b)

Making use of eqs.(6.13), we obtain

Evac
L =

π

L
Q2

L (6.17a)

Evac
R =

π

L
Q2

R. (6.17b)
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Therefore, the total vacuum energy can be written as

Evac =
π

2L
Q2

5. (6.18)

Thus, the vacuum energy part of the Hamiltonian eq.(6.6) can be written as

Hvac =
π2

2g2L
Q̇2

5 +
π

2L
Q2

5. (6.19)

If we identify the boson fieldΦ(0), Π(0) as

Φ(0) =
π

g
√

L
Q5 (6.20a)

Π(0) =
π

g
√

L
Q̇5 (6.20b)

then we can write the vacuum part of the Hamiltonian

Hvac =
1
2
Π†(0)Π(0) +

g2

2π
Φ†(0)Φ(0). (6.21)

Further, the positive energy part of the kinetic energy Hamiltonian can be rewritten in
terms of the kinetic energy of the boson Hamiltonian.

∑
p

2πp

L
a†pap −

∑
p

2πp

L
b†pbp =

1
2

∑

p6=0

{
Π†(p)Π(p) +

(
2πp

L

)2

Φ†(p)Φ(p)

}
. (6.22)

Here, we should note that the identification of the kinetic energies between the fermion
and boson fields can be considered as operator equations with the condition that all the
operations should be done onto physical states in fermion Fock space which are explained
above. In this case, eq.(6.22) holds true as operator equations under these conditions.

Together with the Coulomb interaction part, we can write down the Hamiltonian for the
Schwinger model as

H =
∑

p

{
1
2
Π†(p)Π(p) +

1
2

(
2πp

L

)2

Φ†(p)Φ(p) +
g2

2π
Φ†(p)Φ(p)

}
. (6.23)

This is just the free massive boson Hamiltonian.
It should be important to note that the Schwinger model has the right zero mode in the

Hamiltonian of the boson field. However, as we saw in section 5, there is no corresponding
zero mode in the massless Thirring model, and this leads to the finite gap of the spectrum
in the massless Thirring model, which is indeed consistent with the fact that there should
exist no physical massless boson in two dimensions.
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6.3 QED2 with Massive Fermions

It should be interesting to make some comments on the boson spectrum in QED2 with
massive fermions. The Lagrangian density is just the same as eq.(6.1) with the fermion
mass term

L = ψ̄(iγµDµ −m0)ψ − 1
4
FµνF

µν . (6.24)

At the massless limit, there is only one boson which is the Schwinger boson. For the finite
but small fermion massm0 region, the lowest boson mass can be written as [50]

M' g√
π

+ eγm0 (6.25)

whereγ denotes Euler’s constant.
As the mass increases, the number of the bosonic bound states increases [32]. When the

mass is much larger than the coupling constantg√
π

, then the system becomes just the same
as the nonrelativistic quantum mechanics. The particle and antiparticle are interacting with
each other through the linear rising potential. In this case, the vacuum state is just like the
perturbative vacuum, and there is no fermion condensate.
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Figure 3: The absolute values of the condensate for massive QED2 are plotted as the func-
tion of the fermion massm0 in the small mass regions. The solid line is calculated in [32]
while the crosses are evaluated in the present paper with the massless fermion basis.

In this respect, the interesting region must be the one in which the fermion mass is much
smaller then the coupling constantg√

π
, but it is still finite. If the fermion mass is finite, then

there is no chiral symmetry in the Lagrangian density. This means that there cannot be any
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symmetry breaking phenomena in the massive fermion QED2. However, if one evaluates
the chiral condensates, then one finds a finite condensate value for the massive fermion case.
In other words, the fermion condensate value is a smooth function of the fermion massm0

[32] as we show in Fig. 3.
The chiral condensate value for the massive fermion QED2 can be written

〈Ω| 1
L

∫
ψ̄ψdx|Ω〉 ' g√

π

eγ

2π
+ O(m0) (6.26)

This strongly suggests that the chiral condensate value is not the consequence of the sym-
metry breaking, but it indicates the vacuum structure how many of the virtual particle pairs
can be found in the vacuum. Or in other words, the chiral condensate is related to the
change of the momentum distributions of the negative energy particles in comparison with
the symmetric distributions of the free particles in the vacuum state.

7 Bosons in Two Dimensional QCD

QCD in two dimensions presents a good example of the strong interaction models since
it can be solved to a good accuracy. The basic structure of QCD2 is similar to QED2 in
that both of the models are super-renormalizable. In addition, there is no transverse field,
and therefore it becomes identical to the four fermion interaction model in the field theory
where the interaction is described in terms of the fermion fields only.

The main difference between QCD2 and QED2 is of course due to the color degrees
of freedom. Concerning the symmetry breaking phenomena, there is no anomaly in QCD2

since there is no anomaly term which has a color singlet state in two dimensions. Therefore,
the axial vector current is conserved after the chiral symmetry is broken in contrast to QED2.
In this respect, it should be quite interesting to study whether the vacuum state of QCD2

breaks the chiral symmetry or not. Here, we show that the chiral symmetry is spontaneously
broken in QCD2, and the chiral condensate value is finite. However, there is no massless
boson and the boson spectrum is just similar to that of QED2.

The boson mass spectrum in QCD2 has been extensively studied by the light cone
method [34, 35, 36]. In particular, QCD2 with the1/Nc expansion proposed by ’t Hooft has
presented interesting results on the boson mass spectrum [37, 38, 39, 40, 41]. The boson
mass vanishes when the fermion mass becomes zero. However, this is not allowed since the
massless boson cannotphysicallyexist in two dimensional field theory [8, 43]. Unfortu-
nately, this problem of the puzzle has never been seriously considered until now, apart from
unrealistic physical pictures. People believe that the largeNc limit is special because one
takesNc infinity. But the infinity in physics means simply that theNc must be sufficiently
large, and, in fact, as we show below, physical observables atNc = 50 are just the same as
those ofNc = ∞.

Further, this boson spectrum of largeNc QCD2 was confirmed by the light cone calcu-
lations withSU(2) andSU(3) colors [35]. Indeed, the mass of the boson in the light cone
calculations is consistent with the ’t Hooft spectrum of the boson even though the latter
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is evaluated by the1/Nc approximation. However, the fact that the light cone calculation
predicts massless bosons is rather serious since the light cone calculation forSU(2) does
not seem to make any unrealistic approximations, apart from the trivial vacuum.

However, there is an interesting indication that the light cone vacuum is not trivial, and
indeed there is a finite condensate even for the largeNc QCD2 [28, 29, 30, 44]. What does
this mean ? This suggests that one has to consider the effect of the complicated vacuum
structure for the boson mass as long as one calculates the boson mass with Fock space
expansions. On the other hand, the calculation for the boson spectrum by ’t Hooft is based
on the trivial vacuum, but, instead he could sum up all of the intermediate fluctuations of the
fermion and antifermion pairs. This should be equivalent to considering the true vacuum
structure in the Fock space basis. That is, the same spectrum of bosons must be obtained
both by the Fock space expansion with the true vacuum and by the sum of all the Feynman
diagrams with the trivial vacuum if they are treated properly.

For this argument, people may claim that QED2 is exactly described by the naive light
cone calculation with the trivial vacuum, and therefore, QCD2 may well be treated just in
the same way as the QED2 case. However, one may well have some uneasy feeling for the
fact that the naive light cone calculation cannot reproduce the condensate value of QED2.

In this section, we show that the light cone calculation based on the Fock space expan-
sion with the trivial vacuum is not valid for QCD2. One has to consider properly the effect
of the complicated vacuum structure. Here, we present the calculation with the Bogoliubov
vacuum in the rest frame, and show that the present calculation reproduces the right con-
densate values. Indeed, we can compare the present results with the condensate value as
predicted by the1/Nc expansion[28, 29, 30, 44],

CNc = − Nc√
12

√
Ncg2

2π
. (7.1)

The present calculation of the condensate value for theSU(2) color isC2 = −0.495 g√
π

which should be compared with the−0.577 g√
π

from the 1/Nc expansion, andC3 =
−0.995 g√

π
for the SU(3) color compared with−1.06 g√

π
of the 1/Nc expansion. For

the larger value ofNc (up toNc = 50), we obtain the condensate values which perfectly
agree with the prediction ofCNc in eq.(7.1).

Further, we show that the boson masses for QCD2 with SU(2) andSU(3) colors are
finite even though the fermion mass is set to zero. In fact, the boson mass is found to be
M2 = 0.467 g√

π
for theSU(2), andM3 = 0.625 g√

π
for theSU(3) color for the massless

fermions. Further, the present calculations of the boson mass up toNc = 50 suggest
that the boson massMNc for SU(Nc) can be described for the largeNc by the following
phenomenological expression at the massless fermion limit,

MNc =
2
3

√
Ncg2

3π
. (7.2)

Also, we calculate the boson mass at the largeNc with the finite fermion mass. From
the present calculations, we can express the boson mass in terms of the phenomenological
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formula for the small fermion massm0 region,

MNc ≈
(

2
3

√
2
3

+
10
3

m0√
Nc

)√
Ncg2

2π
(7.3)

wherem0 is measured in units ofg√
π

.
The above expression (eq.(7.3)) can be compared with the calculation by Li et al. [38]

who employed the1/Nc expansion of ’t Hooft model in the rest frame [39]. It turns out
that their calculated boson mass for their smallest fermion mass case is consistent with the
above equation, though their calculated values are slightly smaller than the present results.

In addition, we examine the validity of the light cone calculation for QED2. It is shown
that the boson mass for the QED2 case happens to be not very sensitive to the condensate
value, and that the spectrum can be reproduced by the light cone calculations with the trivial
vacuum as well as with the condensate value only with positive momenta. Therefore, we
believe that the QED2 case is accidentally reproduced by the light cone calculation with the
trivial vacuum state even though we do not fully understand why this accidental agreement
occurs. On the other hand, the QCD2 case is quite different. The boson mass calculated
with the trivial vacuum is zero at the massless fermion limit. Further, the calculation in the
light cone with the condensate value only with the positive momenta are not stable against
the infra-red singularity of the light cone equations.

The present calculations are based on the Fock space expansion, and, in this calculation,
we only consider the fermion and anti-fermion (two fermion) space. For QED2, it is shown
that the fermion and anti-fermion space reproduces the right Schwinger boson [32]. That
is, the four fermion spaces do not alter the lowest boson energy in QED2. However, there
is no guarantee that there are finite effects on the lowest boson mass from the four fermion
spaces in QCD2. This point is not examined in this paper, and should be worked out in
future.

Here, we examine the RPA calculations and show that the boson mass for QED2 with the
RPA equations deviates from the Schwinger boson. That means that the agreement achieved
by the Fock space expansion is destroyed by the RPA calculation. Further, we calculate the
boson mass for QCD2 with SU(2) and the largeNc limit. It turns out that the boson mass
vanishes when the fermion mass is equal to the critical value and that it becomes imaginary
when the fermion mass is smaller than the critical value. This is obviously unphysical at
the massless fermion limit, and is closely related to the fact that the RPA equations are not
Hermitian, and therefore we should examine its physical meaning in future.

From the present calculation, we learn that the chiral symmetry in massless QCD2 is
spontaneously broken without the anomaly term, in contrast to the Schwinger model. But
the boson mass is finite, and therefore there is no Goldstone boson in this field theory
model. Thus, the present result confirms that the Goldstone theorem [1, 2] does not hold for
the fermion field theory as discussed in section 2. This indicates that the anomaly term has
little to do with the chiral symmetry breaking. This is reasonable since the anomaly term
arises from the conflict between the gauge invariance and the chiral current conservation
when regularizing the vacuum, and this is essentially a kinematical effect. On the other
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hand, the symmetry breaking is closely related to the vacuum energy which of the vacuum
states should have the lowest energy, and therefore it is the consequence of the dynamical
effects in the vacuum.

7.1 Bogoliubov Transformation in QCD2

In this section, we discuss the Bogoliubov transformation in QCD2. The Lagrangian density
for QCD2 with SU(Nc) color is described as

L = ψ̄(iγµ∂µ − gγµAµ −m0)ψ − 1
4
F a

µνF
aµν , (7.4)

whereFµν is written as

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ], Aµ = Aa
µT a, T a =

τa

2
.

Here,m0 denotes the fermion mass, and at the massless limit, the Lagrangian density has a
chiral symmetry.

Now, we first fix the gauge by
Aa

1 = 0.

This gauge fixing has been employed by most of the calculations which have been done up
to now. This gauge is simple but cannot describe the zero mode even though the spectrum
is properly described by this gauge. In this gauge, the equation of motion forAa

0 becomes

∂2
1Aa

0 = −gja
0 , (7.5)

whereja
0 is the fermion current defined by

ja
0 = ψ†

τa

2
ψ.

The Hamiltonian can be written as

H =
∫

dx
[
−iψ̄γ1∂1ψ + m0ψ̄ψ +

g

2
ja
0Aa

0

]
. (7.6a)

Now, we quantize the Hamiltonian of QCD2 with SU(Nc) color, and it can be written as

H =
∑
n,α

pn

(
a†n,αan,α − b†n,αbn,α

)
+ m0

∑
n,α

(
a†n,αbn,α + b†n,αan,α

)

− g2

4NcL

∑

n,α,β

1
p2

n

(
j̃1,n,αα + j̃2,n,αα

) (
j̃1,−n,ββ + j̃2,−n,ββ

)

+
g2

4L

∑

n,α,β

1
p2

n

(
j̃1,n,αβ + j̃2,n,αβ

) (
j̃1,−n,βα + j̃2,−n,βα

)
, (7.6b)
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where
j̃1,n,αβ =

∑
m

a†m,αam+n,β (7.7a)

j̃2,n,αβ =
∑
m

b†m,αbm+n,β. (7.7b)

Now, we define new fermion operators by the Bogoliubov transformation,

an,α = cos θn,αcn,α + sin θn,αd†−n,α (7.8a)

bn,α = − sin θn,αcn,α + cos θn,αd†−n,α (7.8b)

whereθn,α denotes the Bogoliubov angle.
In this case, the Hamiltonian of QCD2 can be written as

H =
∑
n,α

En,α(c†n,αcn,α + d†−n,αd−n,α) + H ′ (7.9)

where

E2
n,α =



pn +

g2

4NcL

∑

m,β

(Nc cos 2θm,β − cos 2θm,α)
(pm − pn)2





2

+



m0 +

g2

4NcL

∑

m,β

(Nc sin 2θm,β − sin 2θm,α)
(pm − pn)2





2

. (7.10)

H ′ denotes the interaction Hamiltonian in terms of the new operators but is quite compli-
cated, and therefore it is not given here.

The energy of the single particle state [eq.(7.10)] does not have a proper energy and
momentum dispersion relation. This means that the quasi-particle states cannot be a phys-
ical state. However, this is quite reasonable since fermions in QCD2 are confined and they
can never be observed. Physical observables are bosonic states which are to be evaluated
below.

The conditions that the vacuum energy is minimized give the constraint equations which
can determine the Bogoliubov angles

tan 2θn,α =
m0 + g2

4NcL

∑
m,β

(Nc sin 2θm,β−sin 2θm,α)

(pm−pn)2

pn + g2

4NcL

∑
m,β

(Nc cos 2θm,β−cos 2θm,α)

(pm−pn)2

. (7.11)

The conditions of eq.(7.11) can be also derived from the requirement that the(cn,αdn,α +
h.c.) terms should vanish.

In this case, the condensate valueCNc is written as

CNc =
1
L

∑
n,α

sin 2θn,α. (7.12)
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Now, we can calculate the boson mass for theSU(Nc) color. First, we define the wave
function for the color singlet boson as

|ΨK〉 =
1√
Nc

∑
n,α

fnc†n,αd†K−n,α|0〉. (7.13)

In this case, the boson mass can be described as

M = 〈ΨK |H|ΨK〉
=

1
Nc

∑
n,α

(En,α + En−K,α) |fn|2

+
g2

2N2
c L

∑

l,m,α

flfm

(pl − pm)2
cos(θl,α − θm,α) cos(θl−K,α − θm−K,α)

− g2

2NcL

∑

l,m,α,β

flfm

(pl − pm)2
cos(θl,α − θm,β) cos(θl−K,α − θm−K,β)

+
g2

2N2
c L

∑

l,m,α,β

flfm

K2
sin(θl−K,α − θl,α) sin(θm,β − θm−K,β)

− g2

2NcL

∑

l,m,α

flfm

K2
sin(θl−K,α − θl,α) sin(θm,α − θm−K,α). (7.14)

This equation can be easily diagonalized together with the Bogoliubov angles, and we ob-
tain the boson mass. Here, we note that the treatment of the last two terms should be
carefully estimated since the apparent divergence atK = 0 is well defined and finite.

7.2 Condensate and Boson Mass inSU(2) and SU(3)

Here, we present the calculated results of the condensate values and the boson mass in
QCD2 with the SU(2) andSU(3) colors. Table 3 shows the condensate and the boson
mass for the two different vacuum states, one with the trivial vacuum and the other with
the Bogoliubov vacuum. As can be seen, the condensate values for theSU(2) andSU(3)
are already close to the predictions by the1/Nc expansion of eq.(7.1) [28, 29, 44]. The
boson masses for theSU(2) andSU(3) are, for the first time, obtained as the finite value.
Unfortunately, we cannot compare our results with any other predictions. But compared
with the Schwinger boson, the boson masses for theSU(2) andSU(3) are in the same
order of magnitude.

In Fig. 4, we present the fermion mass dependence of the condensate values for the
SU(2) andSU(3) cases. As can be seen, the condensate becomes a finite value at the
massless limit. It decreases as the function of the fermion massm0. This tendency is just
the same as the condensate of QED2 [32, 52].
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Also, in Fig. 5, we show the calculated results of the boson mass as the function of the
m0 for SU(2) andSU(3). At the massless limit, the boson mass becomes a finite value,
and them0 dependence is linear. This is exactly the same as the QED2 case [32, 45].
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Figure 4: The absolute values of the condensate forSU(2) andSU(3) colors are plotted as
the function of the fermion massm0 in the very small mass regions. The solid and dashed
lines are shown to guide the eyes.

The present calculations show that both of the values (condensate and boson mass) are
a smooth function of the fermion massm0. This means that the vacuum structure has no
singularity at the massless limit. This must be due to the fact that the coupling constant
g has the mass dimension and therefore, physical quantities are expressed by the coupling
constantg even at the massless limit of the fermion. This is in contrast to the Thirring
model where the massless limit is a singular point. In the Thirring model, the coupling
constant has no dimension, and therefore, at the massless limit, physical quantities must be
described by the cutoffΛ.

Table 3: We show the condensate valueCNc and the boson massM of SU(2) andSU(3)
QCD2 in rest frame in units ofg/

√
π with m0 = 0

SU(2) Trivial Bogoliubov 1/Nc

C2 0 −0.495 −0.577
M −∞ 0.467 0

SU(3) Trivial Bogoliubov 1/Nc

C3 0 −0.995 −1.06
M −∞ 0.625 0

In Table 3, we show the condensate values and the boson mass of QCD2 in the rest
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Figure 5: The boson masses forSU(2) andSU(3) colors are plotted as the function of the
fermion massm0 in the very small mass regions. The solid lines are shown to guide the
eyes.

frame. Here, the minus infinity of the boson mass in the trivial vacuum is due to the mass
singularityln(m0) as explained in ref. [32]

7.3 Condensate and Boson Mass inSU(Nc)

Here, we carry out the calculations of the condensate and the boson mass for the largeNc

values ofSU(Nc) up to Nc = 50. In Fig. 6, we show the calculated condensate values
(denoted by crosses) as the function of theNc together with the prediction of the1/Nc

expansion as given in eq.(7.1). As can be seen, the calculated condensate values agree very
well with the prediction of the1/Nc expansion if theNc is larger than 10. Further, the
calculated boson masses (denoted by crosses) are shown in Fig. 7 as the function ofNc.
It is found that they can be described by the following formula [eq.(7.2)] for the largeNc

values,

MNc =
2
3

√
Ncg2

3π
. (7.2)

Indeed, the calculated boson masses forNc larger thanNc = 10 perfectly agree with the
predicted value of eq.(7.2).

The present calculations show that the second excited state forSU(Nc) colors is higher
than the twice of the boson mass at the massless fermions. Therefore, there is only one
bound state in QCD2 with the SU(Nc). This indicates that eq.(7.2) must be the full bo-
son spectrum for QCD2 with massless fermions. This indicates that QCD2 with massless
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Figure 6: The absolute values of the condensate forSU(Nc) colors are plotted as the func-
tion of Nc. The crosses are the calculated values while the solid line is the prediction of
eq.(7.1).

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50

Nc

ΜN

Eq. (1.2)

Figure 7: The boson masses forSU(Nc) colors with the massless fermion are plotted as the
function ofNc. The crosses are the calculated values while the solid line is the prediction
of eq.(7.2).
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fermions may well be bosonized like the Schwinger model since the two bosons cannot
make any bound states.

Now, we present the calculations of the boson mass for the finite fermion massm0

cases. Here, we limit ourselves to them0 (in units of g√
π

) which is smaller than unity. In
Fig. 8, we show the calculated values of the boson mass as the function ofm0√

Nc
for several

cases of the fermion massm0 and the colorNc. The present calculation is carried out up to
theNc = 50 case which is sufficiently large enough for the largeNc limit of the ’t Hooft
model. The solid line in Fig. 8 is obtained as the following phenomenological formula of
the fit to the numerical data

MNc ≈
(

2
3

√
2
3

+
10
3

m0√
Nc

)√
Ncg2

2π
. (7.3)
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Figure 8: The boson masses in units of
√

Ncg2

2π for SU(Nc) colors with the massive fermion

are plotted as the function ofm0/
√

Nc. The crosses, circles and squares are the calculated
values while the solid line is the prediction of eq.(7.3).

Now, we want to compare the present results with the old calculations by Li et al.
[37, 38] who obtained the boson mass by solving the ’t Hooft equations for QCD2 with the
largeNc limit in the rest frame. Li et al. obtained the boson mass for their smallest fermion

mass ofm0 = 0.18
√

Nc
2

M∞ = 0.88

√
Ncg2

2π
. (7.15)

There are also a few more points of their calculations with larger fermion mass cases. In
Fig. 8, we plot the boson masses calculated by Li et al. by the white circles which should
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be compared with the solid line. As can be seen, the boson mass obtained by Li et al. is
close to the present calculation. It should be noted that their calculations were carried out
with rather small number of the basis functions in the numerical evaluation, and therefore,
the accuracy of their calculations may not be very high, in particular, for the small fermion
mass regions.

Unfortunately, however, Li et al. made a wrong conclusion on the massless fermion

limit since their calculated point ofm0 = 0.18
√

Nc
2 was the smallest fermion mass. Obvi-

ously, this value of the fermion mass was by far too large to draw any conclusions on the
massless fermion limit.

7.4 QCD2 in Light Cone

Here，we evaluate the boson mass in the light cone. For this, we follow the prescription
in terms of the infinite momentum frame [33, 45] since this has a good connection to the
rest frame calculation. In this frame, we can calculate the boson mass with and without
the condensate in the light cone. But in evaluating the condensate, we only consider the
positive momenta. The equation for the boson mass square for theSU(2) case becomes

M2 = m2
0

∫
dxf(x)2

(
1
x

+
1

1− x

)

+
3g2

16π

∫
dxdy

f(x)2

(x− y)2
(
cos 2θy,1 + cos 2θ1−y,1 + cos 2θy,2 + cos 2θ1−y,2

)

− g2

4π

∫
dxdy

f(x)f(y)
(x− y)2

[
1
2

cos(θx,1 − θy,1) cos(θx−1,1 − θy−1,1)

+
1
2

cos(θx,2 − θy,2) cos(θx−1,2 − θy−1,2)

+ cos(θx,1 − θy,2) cos(θx−1,1 − θy−1,2)

+ cos(θx,2 − θy,1) cos(θx−1,2 − θy−1,1)
]

− g2

8π

∫
dxdyf(x)f(y)

[
sin(θx,1 − θx−1,1) sin(θy−1,1 − θy,1)

+ sin(θx,2 − θx−1,2) sin(θy−1,2 − θy,2)
− sin(θx,1 − θx−1,1) sin(θy−1,2 − θy,2)

− sin(θx,2 − θx−1,2) sin(θy−1,1 − θy,1)
]

(7.16)

Here, all of the momenta are positive. This can be easily evaluated, and we obtain the
condensate values and the boson mass as given in Table 4. We note here that both of
the values become smaller as the function of the fermion mass, and finally they vanish to
zero. This is exactly what is observed in the light cone calculations. Since the light cone
calculations cannot reproduce the condensate values which are finite as predicted in ref.
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Table 4: We show the condensate valueCNc and the boson massM of SU(2) QCD2in
infinite momentum frame in units ofg/

√
π with m0 = 0. Here,∗∗ indicates that there is

no stable solution.

SU(2) Trivial Bogoliubov (p > 0) 1/Nc

C2 0 ∗∗ −0.577
M 0 ∗∗ 0

[30], the light cone calculations must have some problems. In Table 4, we also show the
calculations of the infinite momentum frame with the positive momenta only. However,
the numerical calculations are not stable against the infra-red singularity of the light cone.
At the present stage, we do not know how to evaluate them properly, and we do not fully
understand what is wrong with the light cone.

7.5 Examination of ’t Hooft Model

Here, we discuss the boson mass of QCD2 with SU(Nc) color in the largeNc limit. This
model is solved by ’t Hooft who sums up all of the Feynman diagrams in the1/Nc expansion
and obtains the equations for the boson mass. In principle, the ’t Hooft equations must
be exact up to the order of1/Nc. Therefore, one does not have to consider the effect of
the vacuum since the ’t Hooft equations take into account all of the fluctuations of the
intermediate fermion and antifermion pairs. Therefore, it is expected that the right boson
mass can be obtained from the equations at the order of1/Nc.

The present calculations of the boson mass with theSU(Nc) colors show that the boson

mass can be well described byMNc = 2
3

√
Ncg2

3π as the function ofNc for the large values of

Nc. In the ’t Hooft model, the boson mass should be proportional to
√

Ncg2

2π , and therefore,
the present expression of the boson mass is consistent with the ’t Hooft evaluation as far as
the expansion parameter is concerned. Therefore, the boson mass calculation by the planar
diagram evaluations of ’t Hooft must be reasonable.

Therefore, the boson mass prediction of ’t Hooft should be reexamined from the point
of view of the light cone procedure. It seems that the ’t Hooft equations in the light cone
have lost one important information which is expressed in terms of theθp variables both
in the paper by Bars and Green [39] and also in the present paper. Since the variablesθp

are closely related to the condensate values, the equations without theθp variables should
correspond to the trivial vacuum in our point of view. Therefore, if one can recover this
constraint in the ’t Hooft equations in the light cone, then one may obtain the right boson
mass from the ’t Hooft model.
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7.6 RPA Calculations in QED2 and QCD2

Up to this point, we have presented the calculated results of the Fock space expansion
with the Bogoliubov vacuum state for QED2 and QCD2. The lowest boson mass which
is calculated by the Fock space expansion must be exact for the fermion and anti-fermion
states if the vacuum is exact. From the present result for the condensate values of QED2

and QCD2, it indicates that the Bogoliubov vacuum state should be very good or may well
be exact.

On the other hand, there are boson mass calculations by employing the Random Phase
Approximation (RPA) method, and some people believe that the RPA calculation should be
better than the Fock space expansion.

Therefore, in this section, we present our calculated results of the RPA equations for
QED2 and QCD2 since there are no careful calculations in the very small fermion mass
regions. First, we show that the RPA calculation for QED2 with the Bogoliubov vacuum
state predicts the boson mass which is smaller than the Schwinger boson at the massless
fermion limit. This means that the agreement achieved by the Fock space expansion is
destroyed by the RPA calculation since it gives a fictitious attraction.

Further, the RPA calculation for QCD2 with the Bogoliubov vacuum state produces
an imaginary boson mass at the massless fermion limit. This is quite interesting, and it
strongly suggests that the RPA equation cannot be reliable for fully relativistic cases since
the eigenvalue equation of the RPA is not Hermitian, which is, in fact, a well known fact.

Here, we briefly discuss the results of the RPA calculations, but the detailed discussion
of the basic physical reason of the RPA problems will be given elsewhere.

The RPA equations are based on the expectation that the backward moving effects of
the fermion and anti-fermion may be included if one considers the following operator which
contains thed−mcm term in addition to the fermion and anti-fermion creation term,

Q† =
∑

n

(Xnc†nd†−n + Ynd−ncn). (7.17)

The RPA equations can be obtained by the following double commutations,

〈0|[δQ, [H, Q†]]|0〉 = ω〈0|[δQ,Q†]|0〉 (7.18)

whereδQ denotesδQ = d−ncn andc†nd†−n.
Here, the vacuum|0〉 is assumed to satisfy the following condition,

Q|0〉 = 0. (7.19)

However, if the vacuum is constructed properly in the field theory model, it is impossible to
find a vacuum that satisfies the condition of eq.(6.3). This fact leads to the RPA equations
which are not Hermitian.
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For QED2, the RPA equations forXn andYn become

MXn = 2EnXn − g2

L

∑
m

Xm
cos2(θn − θm)
(pn − pm)2

− lim
ε→0

g2

L

∑
m

Xm
sin(θn−ε − θn) sin(θm − θm−ε)

ε2
− g2

L

∑
m

Ym
sin2(θn − θm)
(pn − pm)2

− lim
ε→0

g2

L

∑
m

Ym
sin(θn−ε − θn) sin(θm − θm−ε)

ε2
(7.20a)

−MYn = 2EnYn − g2

L

∑
m

Ym
cos2(θn − θm)
(pn − pm)2

− lim
ε→0

g2

L

∑
m

Ym
sin(θn−ε − θn) sin(θm − θm−ε)

ε2
− g2

L

∑
m

Xm
sin2(θn − θm)
(pn − pm)2

− lim
ε→0

g2

L

∑
m

Xm
sin(θn−ε − θn) sin(θm − θm−ε)

ε2
(7.20b)

For QCD2, one can easily derive the RPA equations, and at the largeNc limit, they agree
with the RPA equations which are obtained by Li et.al [30, 38].

It is important to note that the RPA equations are not Hermitian, and therefore there is
no guarantee that the energy eigenvalues are real. In fact, as we see below, the boson mass
for QCD2 becomes imaginary at the very small fermion mass.

Table 5: The masses for QED2 and QCD2 with SU(2) are measured byg√
π

. The masses

for largeNc QCD2 are measured by
√

Ncg2

2π . 0.104i indicates an imaginary eigenvalue.

QED2 QCD2 SU(2) LargeNc QCD2

m0 = 0 m0 = 0.1 m0 = 0 m0 = 0.1 m0 = 0 m0 = 0.1

Fock Space 1.000 1.180 0.467 0.709 0.543 0.783

RPA 0.989 1.172 0.104i 0.576 0.120i 0.614

In Table 5, we show the calculated values of the boson mass by the RPA equations for
QED2 and QCD2 with the Bogoliubov vacuum state. It should be noted that the boson mass
for m0 = 0 case with the Fock space in the largeNc limit is obtained from the ’t Hooft
equation. This equation is exactly the same as eq.(7.14) if we take the largeNc limit. We
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note here that the boson mass (0.543
√

Ncg2

2π ) at the largeNc limit with the Fock space
expansion just agrees with the value of eq.(7.2).

The behavior of the boson mass of the RPA calculation for QCD2 is not normal, contrary
to the expectation. First, it is not linear as the function ofm0, but nonlinear in the small
mass region. Further, the boson mass square becomes zero when them0 becomes a critical
value, and it becomes negative when them0 is smaller than the critical value. In this case,
the boson mass is imaginary, and thus this is physically not acceptable. This catastrophe is
found to occur for theSU(2) as well as for the largeNc limit, as shown in Table 5.

At this point, we should comment on the belief that the RPA calculation should pro-
duce the massless boson at the massless fermion limit in QCD2. However, if there were
physically a massless boson in two dimensions, this would be quite serious since a physical
massless boson cannot propagate in two dimensions since it has an infra-red singularity in
its propagator. But there is no way to remedy this infra-red catastrophe, and that is related
to the theorem of Mermin, Wagner and Coleman [8, 43]. There are some arguments that the
largeNc limit is special because one takes theNc infinity. However, ”infinity” in physics
means simply that theNc must be sufficiently large, and in fact, as shown above, physical
observables atNc = 50 are just the same as those ofNc = ∞. Therefore, it is rigorous that
there should not exist any physical massless boson in two dimensions, even though one can
write down the free massless boson Lagrangian density and study its mathematical struc-
ture. Thus, if one finds a massless boson constructed from the fermion and antifermion in
two dimensions, then there must be something wrong in the calculations, and this is exactly
what we see in the RPA calculations in QCD2.

In this respect, the boson mass calculated only by the Fock space expansion with the
Bogoliubov vacuum can be reasonable from this point of view since there are some serious
problems in the light cone as well as in the RPA calculations at the massless fermion limit.

7.7 Spontaneous Chiral Symmetry Breaking in QCD2

The Lagrangian density of QCD2 has a chiral symmetry when the fermion massm0 is set
to zero. In this case, there should be no condensate for the vacuum state if the symmetry
is preserved in the vacuum state. However, as we saw above, the physical vacuum state in
QCD2 has a finite condensate value, and thus the chiral symmetry is broken. In contrast
to the Schwinger model, there is no anomaly in QCD2, and therefore the chiral current is
conserved. Thus, this symmetry breaking is spontaneous.

However, there appears no massless boson. Even though no appearance of the Gold-
stone boson is very reasonable in two dimension, this means that the Goldstone theorem
does not hold for the fermion field theory. This is just what is proved in section 2 and 4,
and the calculations of QCD2 confirm its claim.

Further, it seems that the chiral anomaly does not play an important role in the symmetry
breaking business though it has been believed that the Schwinger model breaks the chiral
symmetry due to the anomaly. However, the massless limit in QED2 is not singular [32].
The condensate value and the boson mass are smooth as the function of the fermion mass
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m0. This means that the vacuum structure is smoothly connected from the massive case to
the massless one.

This is just in contrast to the Thirring model [5, 33, 11] where the massless limit is a
singular point as we saw in section 4. The structure of the vacuum is completely different
from the massive case to the massless one in the Thirring model. Further, the condensate
value and the boson mass in the Thirring model are not smooth function of the fermion
massm0. For the massive Thirring model, there is no condensate, and the boson mass is
proportional to the fermion massm0 [9, 33, 11, 45]. Indeed, in the massive Thirring model,
the induced mass term arising from the Bogoliubov transformation is completely absorbed
into the mass renormalization term, and the vacuum stays as it is before the Bogoliubov
transformation. But, for the massless Thirring model, the condensate is finite, and the
condensate value and the boson mass are both proportional to the cutoffΛ by which all of
the physical observables are measured.

On the other hand, QED2 and QCD2 are very different in that the coupling constant
of the models have the mass scale dimensions, and all of the physical quantities are de-
scribed by the coupling constantg even at the massless limit. The super-renormalizability
for QED2 and QCD2 must be quite important in this respect, while the Thirring model has
no dimensional quantity, and this makes the vacuum structure very complicated when the
fermion mass is zero.

In Table 6, we summarize the physical quantities of the chiral symmetry breaking for
QED2, QCD2 and Thirring models. All the condensates and the masses are measured in
units of g√

π
for QED2 and QCD2. TheΛ andg0 in the Thirring model denote the cutoff

parameter and the coupling constant, respectively. Also, the value ofα(g0) can be obtained
by solving the equation for bosons in the Thirring model [5, 11].

For QED2, there is an anomaly, and therefore, the chiral current is not conserved while,
for QCD2 and the Thirring model, the chiral current is conserved. From Table 6, one sees
that the symmetry breaking mechanism is just the same for QED2 and QCD2. However,
the Thirring model has a singularity at the massless fermion limit, and this gives rise to
somewhat different behaviors from the gauge theory.

8 Conclusions

The symmetry and its breaking in field theory were considered to be understood and set-
tled down long time ago in terms of the Nambu-Goldstone theorem. In any of the field
theory textbooks, the spontaneous symmetry breaking phenomena are well explained and
described, and, therefore, it would have appeared somewhat odd to most of the readers to
raise questions on the Goldstone boson after the spontaneous symmetry breaking.

In this chapter, however, we have reviewed the recent progress in the spontaneous sym-
metry breaking and the appearance and non-appearance of a massless boson after the spon-
taneous symmetry breaking. Indeed, we have shown that the Nambu-Goldstone theorem
for the fermion field theory is wrong. At the same time, we have presented examples of
the symmetry breaking phenomena in concrete fermion field theory models which clearly
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Table 6: We summarize the physical quantities of the chiral symmetry breaking for QED2,
QCD2 and Thirring models.

Condensate Boson Mass Anomaly

m0 = 0 m0 6= 0 m0 = 0 m0 6= 0

QED2 −0.283 −0.283 + O(m0) 1 1 + O(m0) yes

QCD2 − Nc√
12

q
Nc
2

− Nc√
12

q
Nc
2

+ O(m0)
2
3

q
Nc
3

�
2
3

q
2
3

+ 10
3

m0√
Nc

�q
Nc
2

no

Thirring Λ

g0 sinh
�

π
g0

� 0 α(g0)Λ

sinh
�

π
g0

� α(g0)m0 no

exhibit the essence of the spontaneous symmetry breaking and the non-appearance of the
massless boson associated with the symmetry breaking.

The most important of the new aspects in the spontaneous symmetry breaking is to
realize the change of the vacuum state after the symmetry breaking. This is of course quite
well known since Nambu and Jona-Lasinio showed that the new vacuum is the one that
breaks the chiral symmetry and its energy is lower than that of the symmetry preserving
vacuum state (perturbative vacuum). In this case, however, one should be very careful for
carrying out any field theory calculations since any physical estimations should be based on
the physical vacuum state in quantum field theory. Here, it is for sure that one should start
from the formalism that is based on the symmetry broken vacuum state since this is indeed
a physical vacuum state.

However, almost all of the calculations which were carried out for the NJL model are
based on the perturbative vacuum state, and therefore the calculated results were not physi-
cal observables. This is rather a serious mistake, and in fact, people found a massless boson
in the NJL model without noticing that their calculated boson is an unphysical particle. If
one calculates the boson mass by the formulation which is based on the true vacuum ( sym-
metry broken vacuum ), then one finds that there is no massless boson. In fact, one obtains
a massive boson if one carries out the calculation in terms of the Bogoliubov transforma-
tion method. In addition, we show that the Goldstone theorem cannot be applied to the
fermion field theory models. This is obvious once we realize that the Goldstone theorem
can only give the information on the dispersion relation of the energy and momentum for
boson fields, and therefore it cannot tell us anything of the existence of the boson which
should be constructed by fermions and antifermions. In fact, the Goldstone theorem had
to assume the existence of the massless boson which is the one that should be obtained as
the result of the proof. This is of course no proof at all for the fermion field theory models.
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Further, one notices that the commutation relation of the conserved charge and the boson
field is obtained independently from the interaction Hamiltonian of the field theory model,
and this is the basic ingredient of the proof of the Goldstone theorem. Therefore, it is clear
that the commutation relation cannot give any information of the existence of the boson in
the fermion field theory model.

From these considerations, we can summarize the spontaneous symmetry breaking
business in fermion field theory. The chiral symmetry of the fermion field theory mod-
els is spontaneously broken, and the chiral symmetry broken vacuum is indeed the physical
state of the field theory model. This is all that happens in the chiral symmetry breaking.
Even though Nambu and Jona-Lasinio claimed that the original massless fermion should
become massive in the NJL model, the massless fermion should stay as it is. Under the Bo-
goliubov transformation method, it looks that the fermion should acquire the induced mass.
But we believe that the fermion cannot change its structure by the spontaneous symmetry
breaking phenomena and the massless fermions are still massless. The symmetry breaking
is a property of the vacuum state, and the vacuum energy becomes lower than that of the
symmetry preserving vacuum state. This energy change is entirely due to the change of the
momentum distribution in the negative energy particles and it has nothing to do with the
mass of the fermions in the vacuum state. Further, the renormalization procedure cannot
give a finite mass to the massless fermions since the concept of the renormalization is just
the change of the mass parameter from the infinite number to the finite observable.

In the massless Thirring model, the spectrum with the symmetry preserving vacuum,
though it is unphysical, has a gapless spectrum while the physical vacuum which breaks
the chiral symmetry has the excitation spectrum with a finite gap. The gap in the excitation
spectrum is due to the change in the vacuum structure. Even though this gap can be naturally
explained by the massive fermions, it does not mean that the fermion becomes massive. In
fact, the Bethe ansatz solutions clearly show that the fermion stays massless even though
the momentum distribution of the vacuum state is approximated by the dispersion of the
free fermions to a good accuracy.

If one employs the Bogoliubov transformation method in evaluating the boson in the
massless Thirring model, then one finds a massive boson. However, the Bethe ansatz cal-
culations show that there is no bosonic state in the massless Thirring model. Therefore,
the massive boson which is predicted by the Bogoliubov transformation method in the NJL
model should not exist in reality. This is not yet proved, but we believe that the claim
must be quite reasonable since the Bogoliubov transformation method obviously overes-
timates the attraction between fermions and antifermions, and therefore they predict the
bound state. In addition, the bound states are more difficult to make in four dimensions
than in two dimensions, and this suggests that there should not be any bound states in the
NJL model.

The nonexistence of bosons in the NJL and massless Thirring model should be closely
related to the observation that the massless fermions and antifermions cannot make any
bound states if the interactions are of theδ−function type. This is in contrast to the gauge
field theory models in two dimensions. For QED2 and QCD2, the massless fermions and an-
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tifermions make the bound states since they are confined. In other words, massless fermions
can be either completely confined or cannot make any bound states since they do not have
any rest systems.

The physical connection between the chiral symmetry breaking and the chiral conden-
sate is not clarified in this chapter. For the Thirring model, this is relatively simpler. The
massive Thirring model has no chiral symmetry and there is no condensate. The vacuum
state of the massive Thirring model is trivial. This can be seen at least from the Bogoliubov
vacuum. Therefore, the massless limit is a singular point and the massless Thirring model
has a chiral symmetry and its broken vacuum. In this chiral symmetry broken vacuum, the
chiral condensate is finite. However, the chiral condensate value of the gauge field theory
is finite even at the massive fermion case where there is no chiral symmetry. This suggests
that the chiral symmetry and the chiral condensate is not strongly connected in the gauge
field theory models.

In this chapter, we have not included the recent results on the HeisenbergXXZ model.
Therefore, we wish to make some comments on the relation between the massless Thirring
model and the HeisenbergXXZ model. It is believed that the two models are equivalent
to each other since if one takes the massless limit in the HeisenbergXY Z and massive
Thirring models, then they can be reduced to the HeisenbergXXZ model and the massless
Thirring model, respectively. This belief is due to the fact that the equivalence between
the HeisenbergXY Z and massive Thirring models is well established [51], and there is no
problem over there.

However, as we saw, the spectrum of the Thirring model gives a finite gap while the
HeisenbergXXZ model predicts always gapless spectrum. This means that, even though
the two models are mathematically shown to be equivalent to each other, they are physically
very different [48].

What should be the main reason for the difference ? If one makes the field theory
into the lattice, then the lattice field theory loses some important continuous symmetry like
Lorentz invariance or chiral symmetry. If the lost symmetry plays some important role
for the spectrum of the model, then the lattice field theory becomes completely a different
model from the continuous field theory model [49]. In general, the way of cutting the
continuous space into a discrete one is not unique, and equal cutting of the space which is
generally used in physics may not be sufficient for some of the field theory models. For
example, if the interaction of the model is centered on the very small region of the space,
then it is clear that the equal cutting of the space must be a very bad approximation.

The non-equivalence between the HeisenbergXXZ and massless Thirring models is
the only example which shows a mismatch between the mathematical and physical corre-
spondence. In this respect, we have discussed only a specific model in two dimensions, and
it is quite different from four dimensional field theory models. However, the result certainly
raises a warning on the lattice version of the field theory since clearly there are important
continuous symmetries in any of the field theory models in four dimensions, and if these
symmetries may be lost in the lattice version, then it is quite probable that the lattice cal-
culations may not be able to reproduce a physically important spectrum of the continuous
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field theory models.
Finally, we should like to discuss the symmetry breaking in four dimensional QCD.

Since the real nature should be described by QCD in four dimensions, it is of course most
important to understand what is the status of the symmetry breaking in QCD. First, let us
assume that quarks are massless. In this case, there is the chiral symmetry, and we believe
that the chiral symmetry should be broken in the vacuum. In other words, the energy of the
symmetry broken vacuum state should be lower than the perturbative vacuum state which
preserves the chiral symmetry. Since there is no scale in the four dimensional QCD, all the
observables must be measured in terms of the cutoff momentumΛ. The vacuum structure
is completely different from the perturbative one. However, we cannot say anything further
than this. In a sense, the symmetry breaking phenomena in four dimensional QCD must be
more similar to the massless Thirring model than QCD in two dimensions. But the dynam-
ics is so complicated that we cannot build any realistic picture of the vacuum structure of
the four dimensional QCD unless we solve the dynamics in a nonperturbative fashion.

Now, in the realistic QCD in four dimensions, quarks have their own mass. In this
case, there is no chiral symmetry, and therefore it does not make sense to argue the chiral
symmetry breaking of the vacuum state. In this sense, QCD in four dimensions must have a
singularity at the massless fermion limit, and the structure of the vacuum states between the
massive fermion QCD and massless fermion QCD should be completely different from each
other. In this respect, there is some similarity between QCD in four dimensions and Thirring
model as far as the chiral symmetry breaking and its vacuum structure are concerned. But
the structure of QCD in four dimensions must be much more complicated due to the gauge
degree of freedom.

In this sense, we have no idea about the structure of the vacuum in four dimensional
QCD. We believe that the QCD vacuum must be quite complicated, but that is not related
to the chiral symmetry breaking. All of the baryon and boson masses are measured in terms
of the mass of the quarks. In this sense, the mass of pion (around 140 MeV) is quite large
compared to the mass ofu or d quarks (around 10 MeV) even though pion is lighter than
other mesons by a factor of four or five.
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