
Appendix A

Introduction to Field Theory

This Appendix is intended for readers who may not be very familiar with the field theory
terminology. In particular, the basic notations which are used in this textbook are explained
in detail. The notation in physics is important since it is just like the language with which
all the communications become possible. Therefore, the notation must be defined well, but
readers should remember them all.

In quantum field theory, the basic concept is, for sure, based on quantum mechanics.
Therefore, we explain some of the important ingredients in quantum mechanics. The most
difficult part of quantum mechanics is the quantization itself, and the quantization procedure
which is often called thefirst quantizationis consistent with all the experiments even though
there is no fundamental principle that may lead to the concept of the quantization. Also, the
Schr̈odinger field is described in terms of the non-relativistic field theory, and apart from
the kinematics, the behavior of the Schrödinger field from the field theoretical point of view
should be similar to the relativistic field.

The relativistic quantum mechanics of fermions is described such that readers may un-
derstand and remember it all. Apart from the creation and annihilation of particles, the
Dirac theory can describe physics properly. Some properties of the hydrogen atom are
explained.

The relativistic boson fields are also discussed here. However, we present questions
rather than descriptions of the boson field properties since unfortunately these questions
are not answered well in this textbook. On the other hand, it is by now quite possible that
the Klein–Gordon equation may not be derived from the fundamental principle any more
[82, 62]. These conceptual problems are still not very well organized in this textbook.

Maxwell equation is reviewed here rather in detail from the point of view of the gauge
field theory. In this textbook, the Maxwell equation is considered to be most fundamental
for all.

Regularization and renormalization are briefly discussed in terms of physical observ-
ables. In addition, we describe the path integral formulation since it is an interesting tool.
However, it is not very useful for practical calculations, apart from the derivation of Feyn-
man diagrams. In this regard, the path integral formulation should be taken as an alternative
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192 Appendix A. Introduction to Field Theory

tool which is expressed in terms of many dimensional integrals rather than the differential
equations in order to obtain any physical observables.

In Appendix H, we present a new concept of the first quantization itself. Mathemati-
cally, there is nothing new in the new picture, but the understanding of quantum mechanics
may well have a conceptual change in future physics. At least, it should be easy to un-
derstand why one can replace the energy and momentum by the differential operators in
deriving the Schr̈odinger equation while there is a good reason to believe that the Klein–
Gordon equation for elementary fields cannot be derived from the fundamental principle.

Finally, we review briefly the renormalization scheme in QED. This is well explained
in the standard field theory textbooks, and there is no special need for the presentation of
the renormalization in QED. Here, we stress that the renormalization in QED itself is well
constructed since the Fock space of the unperturbed Hamiltonian is prepared in advance.

Notations in Field Theory
In field theory, one often employs special notations which are by now commonly used.
In this Appendix, we explain some of the notations which are particularly useful in field
theory.

A.1 Natural Units

In this text, we employ the natural units because of its simplicity

c = 1, h̄ = 1. (A.1.1)

If one wishes to get the right dimensions out, one should use

h̄c = 197.33 MeV · fm. (A.1.2)

For example, pion mass ismπ ' 140 MeV/c2. Its Compton wave length is

1
mπ

=
h̄c

mπc2
=

197 MeV · fm
140 MeV

' 1.4 fm.

The fine structure constantα is expressed by the coupling constante which is defined in
some different ways

α = e2 =
e2

h̄c
=

e2

4π
=

e2

4πh̄c
=

1
137.036

.

Some constants:
Electron mass:me = 0.511 MeV/c2

Muon mass:mµ = 105.66 MeV/c2
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Proton mass:Mp = 938.28 MeV/c2

Bohr radius: a0 =
1

mee2
= 0.529× 10−8 cm

Magnetic moments:




Electron: µe = 1.00115965219
eh̄

2mec

Theory: µe = 1.0011596524
eh̄

2mec

Muon : µµ = 1.001165920
eh̄

2mµc




.

A.2 Hermite Conjugate and Complex Conjugate

For a complex c-numberA
A = a + bi (a, b : real). (A.2.1)

its complex conjugateA∗ is defined as

A∗ = a− bi. (A.2.2)

Matrix A

If A is a matrix, one defines the hermite conjugateA†

(A†)ij = A∗ji. (A.2.3)

Differential Operator Â

If Â is a differential operator, then the hermite conjugate can be defined only when the
Hilbert space and its scalar product are defined. For example, supposeÂ is written as

Â = i
∂

∂x
. (A.2.4)

In this case, its hermite conjugatêA† becomes

Â† = −i

(
∂

∂x

)T

= i
∂

∂x
= Â (A.2.5)

which meansÂ is Hermitian. This can be easily seen in a concrete fashion since

〈ψ|Âψ〉 =

∞∫

−∞
ψ†(x)i

∂

∂x
ψ(x) dx = −i

∞∫

−∞

(
∂

∂x
ψ†(x)

)
ψ(x) dx = 〈Âψ|ψ〉, (A.2.6)

whereψ(±∞) = 0 is assumed. The complex conjugate ofÂ is simply

Â∗ = −i
∂

∂x
6= Â. (A.2.7)
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Field ψ

If the ψ(x) is a c-number field, then the hermite conjugateψ†(x) is just the same as the
complex conjugateψ∗(x). However, when the fieldψ(x) is quantized, then one should
always take the hermite conjugateψ†(x). When one takes the complex conjugate of the
field asψ∗(x), one may examine the time reversal invariance as discussed in Chapter 2.

A.3 Scalar and Vector Products (Three Dimensions) :

Scalar Product

For two vectors in three dimensions

r = (x, y, z) ≡ (x1, x2, x3), p = (px, py, pz) ≡ (p1, p2, p3) (A.3.1)

the scalar product is defined

r · p =
3∑

k=1

xkpk ≡ xkpk, (A.3.2)

where, in the last step, we omit the summation notation if the indexk is repeated twice.

Vector Product

The vector product is defined as

r × p ≡ (x2p3 − x3p2, x3p1 − x1p3, x1p2 − x2p1). (A.3.3)

This can be rewritten in terms of components,

(r × p)i = εijkxjpk, (A.3.4)

whereεijk denotes anti-symmetric symbol with

ε123 = ε231 = ε312 = 1, ε132 = ε213 = ε321 = −1, otherwise = 0.

A.4 Scalar Product (Four Dimensions)

For two vectors in four dimensions,

xµ ≡ (t, x, y, z) = (x0, r), pµ ≡ (E, px, py, pz) = (p0, p) (A.4.1)

the scalar product is defined

x · p ≡ Et− r · p = x0p0 − xkpk. (A.4.2)
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This can be also written as

xµpµ ≡ x0p
0 + x1p

1 + x2p
2 + x3p

3 = Et− r · p = x · p, (A.4.3)

wherexµ andpµ are defined as

xµ ≡ (x0,−r), pµ ≡ (p0,−p). (A.4.4)

Here, the repeated indices of the Greek letters mean the four dimensional summationµ =
0, 1, 2, 3. The repeated indices of the roman letters always denote the three dimensional
summation throughout the text.

A.4.1 Metric Tensor

It is sometimes convenient to introduce the metric tensorgµν which has the following prop-
erties

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (A.4.5)

In this case, the scalar product can be rewritten as

x · p = xµpνgµν = Et− r · p. (A.4.6)

A.5 Four Dimensional Derivatives∂µ

The derivative∂µ is introduced for convenience

∂µ ≡ ∂

∂xµ
=

(
∂

∂x0
,

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
=

(
∂

∂t
,

∂

∂x
,

∂

∂y
,

∂

∂z

)
=

(
∂

∂t
, ∇

)
, (A.5.1)

where the lower index has the positive space part. Therefore, the derivative∂µ becomes

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
=

(
∂

∂t
,−∇

)
. (A.5.2)

A.5.1 p̂µ and Differential Operator

Since the operator̂pµ becomes a differential operator as

p̂µ = (Ê, p̂) =
(

i
∂

∂t
, −i∇

)
= i∂µ

the negative sign, therefore, appears in the space part. For example, if one defines the
currentjµ in four dimension as

jµ = (ρ, j),

then the current conservation is written as

∂µjµ =
∂ρ

∂t
+ ∇ · j =

1
i

p̂µjµ = 0. (A.5.3)



196 Appendix A. Introduction to Field Theory

A.5.2 Laplacian and d’Alembertian Operators

The Laplacian and d’Alembertian operators,∆ and2 are defined as

∆ ≡ ∇ ·∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

2 ≡ ∂µ∂µ =
∂2

∂t2
−∆.

A.6 γ-Matrices

Here, we present explicit expressions of theγ-matrices in two and four dimensions. Before
presenting the representation of theγ-matrices, we first give the explicit representation of
Pauli matrices.

A.6.1 Pauli Matrices

Pauli matrices are given as

σx = σ1 =
(

0 1
1 0

)
, σy = σ2 =

(
0 −i
i 0

)
, σz = σ3 =

(
1 0
0 −1

)
. (A.6.1)

Below we write some properties of the Pauli matrices.

Hermiticity

σ†1 = σ1, σ†2 = σ2, σ†3 = σ3.

Complex Conjugate

σ∗1 = σ1, σ∗2 = −σ2, σ∗3 = σ3.

Transposed

σT
1 = σ1, σT

2 = −σ2, σT
3 = σ3 (σT

k = σ∗k).

Useful Relations

σiσj = δij + iεijkσk, (A.6.2)

[σi, σj ] = 2iεijkσk. (A.6.3)
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A.6.2 Representation ofγ-matrices

(a) Two dimensional representations ofγ-matrices

Dirac : γ0 =
(

1 0
0 −1

)
, γ1 =

(
0 1
−1 0

)
, γ5 = γ0γ1 =

(
0 1
1 0

)
,

Chiral : γ0 =
(

0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
, γ5 = γ0γ1 =

(
1 0
0 −1

)
.

(b) Four dimensional representations of gamma matrices

Dirac : γ0 = β =
(
1 0
0 −1

)
, γ =

(
0 σ
−σ 0

)
,

γ5 = iγ0γ1γ2γ3 =
(
0 1
1 0

)
, α =

(
0 σ
σ 0

)
,

Chiral : γ0 = β =
(
0 1
1 0

)
, γ =

(
0 −σ
σ 0

)
,

γ5 = iγ0γ1γ2γ3 =
(
1 0
0 −1

)
, α =

(
σ 0
0 −σ

)
.

where 0 ≡
(

0 0
0 0

)
, 1 ≡

(
1 0
0 1

)
.

A.6.3 Useful Relations ofγ-Matrices

Here, we summarize some useful relations of theγ-matrices.

Anti-commutation relations

{γµ, γν} = 2gµν , {γ5, γν} = 0. (A.6.4)

Hermiticity

γ†µ = γ0γµγ0 (γ†0 = γ0, γ†k = −γk), γ†5 = γ5. (A.6.5)

Complex Conjugate

γ∗0 = γ0, γ∗1 = γ1, γ∗2 = −γ2, γ∗3 = γ3, γ∗5 = γ5. (A.6.6)

Transposed

γT
µ = γ0γ

∗
µγ0, γT

5 = γ5. (A.6.7)
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A.7 Transformation of State and Operator

When one transforms a quantum state|ψ〉 by a unitary transformationU which satisfies

U †U = 1

one writes the transformed state as

|ψ′〉 = U |ψ〉. (A.7.1)

The unitarity is important since the norm must be conserved, that is,

〈ψ′|ψ′〉 = 〈ψ|U †U |ψ〉 = 1.

In this case, an arbitrary operatorO is transformed as

O′ = UOU−1. (A.7.2)

This can be obtained since the expectation value of the operatorO must be the same be-
tween two systems, that is,

〈ψ|O|ψ〉 = 〈ψ′|O′|ψ′〉. (A.7.3)

Since
〈ψ′|O′|ψ′〉 = 〈ψ|U †O′U |ψ〉 = 〈ψ|O|ψ〉

one finds
U †O′U = O

which is just eq.(A.7.2).

A.8 Fermion Current

We summarize the fermion currents and their properties of the Lorentz transformation. We
also give their nonrelativistic expressions since the basic behaviors must be kept in the
nonrelativistic expressions. Here, the approximate expressions are obtained by making use
of the plane wave solutions for the Dirac wave function.

Fermioncurrents :




Scalar : ψ̄ψ ' 1

Pseudoscalar : ψ̄γ5ψ ' �·p
m

Vector : ψ̄γµψ '
(
1,

p

m

)

Axialvector : ψ̄γµγ5ψ '
(σ · p

m
,σ

)




. (A.8.1)
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Therefore, under the paritŷP and time reversal̂T transformation, the above currents behave
as

Parity P̂ :




ψ̄′ψ′ = ψ̄P̂−1P̂ψ = ψ̄ψ

ψ̄′γ5ψ
′ = ψ̄P̂−1γ5P̂ψ = −ψ̄γ5ψ

ψ̄′γkψ
′ = ψ̄P̂−1γkP̂ψ = −ψ̄γkψ

ψ̄′γkγ5ψ
′ = ψ̄P̂−1γkγ5P̂ψ = ψ̄γkγ5ψ




, (A.8.2)

Timereversal T̂ :




ψ̄′ψ′ = ψ̄T̂−1T̂ψ = ψ̄ψ

ψ̄′γ5ψ
′ = ψ̄T̂−1γ5T̂ψ = ψ̄γ5ψ

ψ̄′γkψ
′ = ψ̄T̂−1γkT̂ψ = −ψ̄γkψ

ψ̄′γkγ5ψ
′ = ψ̄T̂−1γkγ5T̂ψ = −ψ̄γkγ5ψ




. (A.8.3)

A.9 Trace in Physics

A.9.1 Definition

The trace ofN ×N matrixA is defined as

Tr{A} =
N∑

i=1

Aii. (A.9.1)

This is simply the summation of the diagonal elements of the matrixA. It is easy to prove

Tr{AB} = Tr{BA}. (A.9.2)

A.9.2 Trace in Quantum Mechanics

In quantum mechanics, the trace of the HamiltonianH becomes

Tr{H} = Tr{UHU−1} =
∑

n=1

En, (A.9.3)

whereU is a unitary operator that diagonalizes the Hamiltonian, andEn denotes the energy
eigenvalue of the Hamiltonian. Therefore, the trace of the Hamiltonian has the meaning of
the sum of all the eigenvalues of the Hamiltonian.

A.9.3 Trace inSU(N)

In the special unitary groupSU(N), one often describes the elementUa in terms of the
generatorT a as

Ua = eiT a
. (A.9.4)
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In this case, the generator must be hermitian and traceless since

detUa = exp
(
Tr {lnUa}) = exp

(
iTr {T a}) = 1 (A.9.5)

and thus
Tr {T a} = 0. (A.9.6)

The generators ofSU(N) group satisfy the following commutation relations

[T a, T b] = iCabcT c, (A.9.7)

whereCabc denotes a structure constant in the Lie algebra. The generators are normalized
in this textbook such that

Tr {T aT b} =
1
2

δab. (A.9.8)

A.9.4 Trace ofγ-Matrices and p/

The Trace of theγ-matrices is also important. First, we have

Tr {1} = 4, Tr {γµ} = 0, Tr {γ5} = 0. (A.9.9)

In field theory, one often defines a symbol ofp/ just for convenience

p/ ≡ pµγµ.

In this case, the following relation holds

p/q/ = pq − iσµνp
µqν . (A.9.10)

The following relations may also be useful

Tr {p/q/} = 4pq, (A.9.11)

Tr {γ5p/q/} = 0, (A.9.12)

Tr {p/1p/2p/3p/4} = 4
{

(p1p2)(p3p4)− (p1p3)(p2p4) + (p1p4)(p2p3)
}

, (A.9.13)

Tr {γ5p/1p/2p/3p/4} = 4iεαβγδ pα
1 pβ

2 pγ
3 pδ

4. (A.9.14)

Basic Equations and Principles

A.10 Lagrange Equation

In classical field theory, the equation of motion is most important, and it is derived from the
Lagrange equation. Therefore, we review briefly how we can obtain the equation of motion
from the Lagrangian density.
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A.10.1 Lagrange Equation in Classical Mechanics

Before going to the field theory treatment, we first discuss the Lagrange equation (Newton
equation) in classical mechanics. In order to obtain the Lagrange equation by the variational
principle in classical mechanics, one starts from the actionS as defined

S =
∫

L(q, q̇) dt, (A.10.1)

where the LagrangianL(q, q̇) depends on the general coordinateq and its velocityq̇. At the
time of deriving equation of motion by the variational principle,q andq̇ are independent as
the function oft. This is clear since, in the actionS, the functional dependence ofq(t) is
unknown and therefore one cannot make any derivative ofq(t) with respect to timet. Once
the equation of motion is established, then one can obtainq̇ by time differentiation ofq(t)
which is a solution of the equation of motion.

The Lagrange equation can be obtained by requiring that the actionS should be a min-
imum with respect to the variation ofq andq̇.

δS =
∫

δL(q, q̇) dt =
∫ (

∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt

=
∫ (

∂L

∂q
− d

dt

∂L

∂q̇

)
δq dt = 0, (A.10.2)

where the surface terms are assumed to vanish. Therefore, one obtains the Lagrange equa-
tion

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (A.10.3)

A.10.2 Hamiltonian in Classical Mechanics

The LagrangianL(q, q̇) must be invariant under the infinitesimal time displacementε of
q(t) as

q(t + ε) → q(t) + q̇ε, q̇(t + ε) → q̇(t) + q̈ε + q̇
dε

dt
. (A.10.4)

Therefore, one finds

δL(q, q̇) = L(q(t + ε), q̇(t + ε))− L(q, q̇) =
∂L

∂q
q̇ε +

∂L

∂q̇
q̈ε +

∂L

∂q̇
q̇
dε

dt
= 0. (A.10.5)

Neglecting the surface term, one obtains

δL(q, q̇) =
[
∂L

∂q
q̇ +

∂L

∂q̇
q̈ − d

dt

(
∂L

∂q̇
q̇

)]
ε =

[
d

dt

(
L− ∂L

∂q̇
q̇

)]
ε = 0. (A.10.6)

Thus, if one defines the HamiltonianH as

H ≡ ∂L

∂q̇
q̇ − L (A.10.7)

then it is a conserved quantity.
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A.10.3 Lagrange Equation for Fields

The Lagrange equation for fields can be obtained almost in the same way as the particle
case. For fields, we should start from the Lagrangian densityL and the action is written as

S =
∫
L

(
ψ, ψ̇,

∂ψ

∂xk

)
d3r dt, (A.10.8)

whereψ(x), ψ̇(x) and ∂ψ
∂xk

are independent functional variables.
The Lagrange equation can be obtained by requiring that the actionS should be a min-

imum with respect to the variation ofψ, ψ̇ and ∂ψ
∂xk

,

δS =
∫

δL
(

ψ, ψ̇,
∂ψ

∂xk

)
d3r dt =

∫ (
∂L
∂ψ

δψ +
∂L
∂ψ̇

δψ̇ +
∂L

∂( ∂ψ
∂xk

)
δ

(
∂ψ

∂xk

))
d3r dt

=
∫ (

∂L
∂ψ

− ∂

∂t

∂L
∂ψ̇

− ∂

∂xk

∂L
∂( ∂ψ

∂xk
)

)
δψ d3r dt = 0, (A.10.9)

where the surface terms are assumed to vanish. Therefore, one obtains

∂L
∂ψ

=
∂

∂t

∂L
∂ψ̇

+
∂

∂xk

∂L
∂( ∂ψ

∂xk
)
, (A.10.10)

which can be expressed in the relativistic covariant way as

∂L
∂ψ

= ∂µ

(
∂L

∂(∂µψ)

)
. (A.10.11)

This is the Lagrange equation for fieldψ, which should hold for any independent fieldψ.

A.11 Noether Current

If the Lagrangian density is invariant under the transformation of the field with a continuous
variable, then there is always a conserved current associated with this symmetry. This is
calledNoether currentand can be derived from the invariance of the Lagrangian density
and the Lagrange equation.

A.11.1 Global Gauge Symmetry

The Lagrangian density which is discussed in this textbook should have the following func-
tional dependence in general

L = iψ̄γµ∂µψ −mψ̄ψ + LI

[
ψ̄ψ, ψ̄γ5ψ, ψ̄γµψ

]
.
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This Lagrangian density is obviously invariant under the global gauge transformation

ψ′ = eiαψ, ψ′† = e−iαψ†, (A.11.1)

whereα ia a real constant. Therefore, the Noether current is conserved in this system.
To derive the Noether current conservation for the global gauge transformation, one can
consider the infinitesimal global transformation, that is,|α| ¿ 1. In this case, the transfor-
mation becomes

ψ′ = ψ + δψ, δψ = iαψ. (A.11.2a)

ψ′† = ψ† + δψ†, δψ† = −iαψ†. (A.11.2b)

Invariance of Lagrangian Density

Now, it is easy to find

δL = L(ψ′, ψ′†, ∂µψ′, ∂µψ′†)− L(ψ, ψ†, ∂µψ, ∂µψ†) = 0. (A.11.3a)

At the same time, one can easily evaluateδL

δL =
∂L
∂ψ

δψ +
∂L

∂(∂µψ)
δ (∂µψ) +

∂L
∂ψ†

δψ† +
∂L

∂(∂µψ†)
δ
(
∂µψ†

)

= iα

[(
∂µ

∂L
∂(∂µψ)

)
ψ +

∂L
∂(∂µψ)

∂µψ −
(

∂µ
∂L

∂(∂µψ†)

)
ψ† − ∂L

∂(∂µψ†)
∂µψ†

]

= iα∂µ

[
∂L

∂(∂µψ)
ψ − ∂L

∂(∂µψ†)
ψ†

]
= 0, (A.11.3b)

where the equation of motion forψ is employed.

Current Conservation

Therefore, if one defines the currentjµ as

jµ ≡ −i

[
∂L

∂(∂µψ)
ψ − ∂L

∂(∂µψ†)
ψ†

]
(A.11.4)

then one has
∂µjµ = 0. (A.11.5)

For Dirac fields with electromagnetic interactions or self-interactions, one can obtain as a
conserved current

jµ = ψ̄γµψ. (A.11.6)
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A.11.2 Chiral Symmetry

When the Lagrangian density is invariant under the chiral transformation,

ψ′ = eiαγ5ψ (A.11.7)

then there is another Noether current. Here,δψ as defined in eq.(A.11.2) becomes

δψ = iαγ5ψ. (A.11.8)

Therefore, a corresponding conserved current for massless Dirac fields with electromag-
netic interactions or self-interactions can be obtained

jµ
5 = −i

∂L
∂(∂µψ)

γ5ψ = ψ̄γµγ5ψ. (A.11.9)

In this case, we have
∂µjµ

5 = 0 (A.11.10)

which is the conservation of the axial vector current. The conservation of the axial vector
current is realized for field theory models with massless fermions.

A.12 Hamiltonian Density

The Hamiltonian densityH is constructed from the Lagrangian densityL. The field theory
models which we consider should possess the translational invariance. If the Lagrangian
density is invariant under the translationaµ, then there is a conserved quantity which is the
energy momentum tensorT µν . The Hamiltonian density is constructed from the energy
momentum tensor ofT 00.

A.12.1 Hamiltonian Density from Energy Momentum Tensor

Now, the Lagrangian density is given asL
(
ψi, ψ̇i,

∂ψi
∂xk

)
. If one considers the following

infinitesimal translationaµ of the fieldψi andψ†i

ψ′i = ψi + δψi, δψi = (∂νψi)aν ,

ψ†i
′
= ψ†i + δψ†i , δψ†i = (∂νψ

†
i )a

ν ,

then the Lagrangian density should be invariant

δL ≡ L(ψ′i, ∂µψ′i)− L(ψi, ∂µψi)

=
∑

i

[
∂L
∂ψi

δψi +
∂L

∂(∂µψi)
δ(∂µψi) +

∂L
∂ψ†i

δψ†i +
∂L

∂(∂µψ†i )
δ(∂µψ†i )

]
= 0. (A.12.1)
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Making use of the Lagrange equation, one obtains

δL =
∑

i

[
∂L
∂ψi

(∂νψi) +
∂L

∂(∂µψi)
(∂µ∂νψi)− ∂µ

(
∂L

∂(∂µψi)
∂νψi

)]
aν

+
∑

i

[
∂L
∂ψ†i

(∂νψ
†
i ) +

∂L
∂(∂µψ†i )

(∂µ∂νψ
†
i )− ∂µ

(
∂L

∂(∂µψ†i )
∂νψ

†
i

)]
aν

= ∂µ

[
Lgµν −

∑

i

(
∂L

∂(∂µψi)
∂νψi +

∂L
∂(∂µψ†i )

∂νψ†i

)]
aν = 0. (A.12.2)

Energy Momentum TensorT µν

Therefore, if one defines the energy momentum tensorT µν by

T µν ≡
∑

i

(
∂L

∂(∂µψi)
∂νψi +

∂L
∂(∂µψ†i )

∂νψ†i

)
− Lgµν (A.12.3)

thenT µν is a conserved quantity, that is

∂µT µν = 0.

This leads to the definition of the Hamltonian densityH in terms ofT 00

H ≡ T 00 =
∑

i

(
∂L

∂(∂0ψi)
∂0ψi +

∂L
∂(∂0ψ

†
i )

∂0ψ†i

)
− L. (A.12.4)

A.12.2 Hamiltonian Density from Conjugate Fields

When the Lagrangian density is given asL(ψi, ψ̇i,
∂ψi

∂xk
), one can define the conjugate fields

Πψi andΠ
ψ†i

as

Πψi ≡
∂L
∂ψ̇i

, Π
ψ†i
≡ ∂L

∂ψ̇†i
.

In this case, the Hamiltonian density can be written as being consistent with eq.(A.12.4)

H =
∑

i

(
Πψiψ̇i + Π

ψ†i
ψ̇†i

)
− L. (A.12.5)

It should be noted that this way of making the Hamiltonian density is indeed easier to
remember than the construction starting from the energy momentum tensor.



206 Appendix A. Introduction to Field Theory

Hamiltonian

The Hamiltonian is defined by integrating the Hamiltoian density over all space

H =
∫
H d3r =

∫ [∑

i

(Πψiψ̇i + Π
ψ†i

ψ̇†i )− L
]

d3r.

A.12.3 Hamiltonian Density for Free Dirac Fields

For a free Dirac field with its massm, the Lagrangian density becomes

L = ψ†i ψ̇i + ψ†i [iγ0γ ·∇−mγ0]ij ψj .

Therefore, the conjugate fieldsΠψi andΠ
ψ†i

are obtained

Πψi ≡
∂L
∂ψ̇i

= ψ†i , Π
ψ†i

= 0.

Thus, the Hamiltonian density becomes

H=
∑

i

(
Πψi

ψ̇i+Π
ψ†i

ψ̇†i
)
−L= ψ̄i [−iγk∂k+m]ij ψj = ψ̄ [−iγ ·∇+m] ψ. (A.12.6)

A.12.4 Hamiltonian for Free Dirac Fields

The HamiltonianH is obtained by integrating the Hamiltonian density over all space and
thus can be written as

H =
∫
H d3r =

∫
ψ̄ [−iγ ·∇ + m] ψ d3r. (A.12.7)

In classical field theory, this Hamiltonian is not an operator but is just the field energy itself.
However, this field energy cannot be evaluated unless one knows the shape of the field
ψ(x) itself. Therefore, one should determine the shape of the fieldψ(x) by the equation of
motion in the classical field theory.

A.12.5 Role of Hamiltonian

We should comment on the usefulness of the classical field Hamiltonian itself for field
theory models. In fact, the Hamiltonian alone is not useful. This is similar to the classical
mechanics case in which the Hamiltonian of a point particle itself does not tell a lot. Instead,
one has to derive the Hamilton equations in order to calculate some physical properties of
the system and the Hamilton equations are equivalent to the Lagrange equations in classical
mechanics.
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Classical Field Theory

In classical field theory, the situation is just the same as the classical mechanics case. If
one stays in the classical field theory, then one should derive the field equation from the
Hamiltonian by the functional variational principle as will be discussed in the next section.

Quantized Field Theory

The Hamiltonian of the field theory becomes important when the fields are quantized. In
this case, the Hamiltonian becomes an operator, and thus one has to solve the eigenvalue
problem for the quantized Hamiltonian̂H

Ĥ|Ψ〉 = E|Ψ〉, (A.12.8)

where|Ψ〉 is calledFock stateand should be written in terms of the creation and annihilation
operators of fermion and anti-fermion. The space spanned by the Fock states is calledFock
space.

In normal circumstances of the field theory models such as QED and QCD, it is prac-
tically impossible to find the eigenstate of the quantized Hamiltonian. The difficulty of the
quantized field theory comes mainly from two reasons. Firstly, one has to construct the
vacuum state which is composed of infinite many negative energy particles interacting with
each other. The vacuum state should be the eigenstate of the Hamiltonian

Ĥ|Ω〉 = EΩ|Ω〉,
whereEΩ denotes the energy of the vacuum and it is in general infinity with the negative
sign. The vacuum state|Ω〉 is composed of infinitely many negative energy particles

|Ω〉 =
∏
p,s

b†
(s)
p |0〉〉,

where|0〉〉 denotes the null vacuum state. In the realistic calculations, the number of the
negative energy particles must be set to a finite value, and this should be reasonable since
physical observables should not depend on the properties of the deep negative energy parti-
cles. However, it is most likely that the number of the negative energy particles should be,
at least, larger than a few thousand for two dimensional field theory models.

The second difficulty arises from the operators in the Hamiltonian which can change the
fermion and anti-fermion numbers and therefore can induce infinite series of the transitions
among the Fock states. Since the spectrum of bosons and baryons can be obtained by
operating the fermion and anti-fermion creation operators on the vacuum state, the Fock
space which is spanned by the creation and annihilation operators becomes infinite. In
the realistic calculations, the truncation of the Fock space becomes most important, even
though it is difficult to find any reasonable truncation scheme.

In this respect, the Thirring model is an exceptional case where the exact eigenstate of
the quantized Hamiltonian is found. This is, however, understandable since the Thirring
model Hamiltonian does not contain the operators which can change the fermion and anti-
fermion numbers.
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A.13 Variational Principle in Hamiltonian

When one has the Hamiltonian, then one can derive the equation of motion by requiring
that the Hamiltonian should be minimized with respect to the functional variation of the
stateψ(r).

A.13.1 Schr̈odinger Field

When one minimizes the Hamiltonian

H =
∫ [

− 1
2m

ψ†∇2ψ + ψ†Uψ

]
d3r (A.13.1)

with respect toψ(r), then one can obtain the static Schrödinger equation.

Functional Derivative

First, one defines the functional derivative for an arbitrary functionψi(r) by

δψi(r′)
δψj(r)

= δijδ(r − r′). (A.13.2)

This is the most important equation for the functional derivative, and once one accepts this
definition of the functional derivative, then one can evaluate the functional variation just in
the same way as normal derivative of the functionψi(r).

Functional Variation of Hamiltonian

For the condition onψ(r), one requires that it should be normalized according to
∫

ψ†(r)ψ(r) d3r = 1. (A.13.3)

In order to minimize the Hamiltonian with the above condition, one can make use of the
Lagrange multiplier and make a functional derivative of the following quantity with respect
to ψ†(r)

H[ψ] =
∫ [

− 1
2m

ψ†(r′)∇02ψ(r′) + ψ†(r′)Uψ(r′)
]

d3r′

−E

(∫
ψ†(r′)ψ(r′) d3r′ − 1

)
, (A.13.4)

whereE denotes a Lagrange multiplier and just a constant. In this case, one obtains

δH[ψ]
δψ†(r)

=
∫

δ(r − r′)
[
− 1

2m
∇02ψ(r′) + Uψ(r′)−Eψ(r′)

]
d3r′ = 0. (A.13.5)

Therefore, one finds

− 1
2m

∇2ψ(r) + Uψ(r) = Eψ(r) (A.13.6)

which is just the static Schrödinger equation.
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A.13.2 Dirac Field

The Dirac equation for free field can be obtained by the variational principle of the Hamil-
tonian eq.(A.12.7). Below, we derive the static Dirac equation in a concrete fashion by the
functional variation of the Hamiltonian.

Functional Variation of Hamiltonian

For the condition onψi(r), one requires that it should be normalized according to
∫

ψ†i (r)(γ0)ijψj(r) d3r = 1. (A.13.7)

Now, the Hamiltonian should be minimized with the condition of eq.(A.13.7)

H[ψi] =
∫

ψ†i (r)
[−i(γ0γ ·∇)ij + m(γ0)ij

]
ψj(r) d3r

−E

(∫
ψ†i (r)(γ0)ijψj(r) d3r − 1

)
, (A.13.8)

whereE is just a constant of the Lagrange multiplier. By minimizing the Hamiltonian with
respect toψ†i (r), one obtains

(−iγ ·∇ + m) ψ(r)− Eψ(r) = 0 (A.13.9)

which is just the static Dirac equation for free field.
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Non-relativistic Quantum Mechanics

The quantization has two kinds of the procedure, the first quantization and the second quan-
tization. By the first quantization, we mean that the coordinater and the momentump of a
point particle do not commute with each other. That is,

[xi, pj ] = ih̄δij .

In terms of this quantization procedure, we can obtain the Schrödinger equation by requiring
that the particle Hamiltonian should be an operator and therefore the stateψ should be
introduced.

There is another quantization procedure, the second quantization, which is the quantiza-
tion of fields. From the experimental observations of creations and annihilations of particle
pairs or photons, one needs to quantize fields. The field quantization is closely connected to
the relativistic field equations which inevitably includes anti-particle states (negative energy
states in fermion field case). In this respect, one does not have to quantize the Schrödinger
field in the non-relativistic quantum mechanics. Therefore, we discuss only the first quan-
tization procedure and problems related to the quantization.

B.1 Procedure of First Quantization

In the standard procedure of the first quantization, the energyE and momentump are
regarded as operators, and the simplest expressions ofÊ andp̂ are given as

Ê → i
∂

∂t
, p̂ → −i∇. (B.1.1)

For a free point particle with its massm, the dispersion relation can be written as

E =
p2

2m
. (B.1.2)

If one employs the quantization procedure of eq.(B.1.1), then one should prepare some
state which receives the operation of eq.(B.1.1). This state is called wave function and is

211
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often denoted asψ(r, t). In this case, eq.(B.1.2) becomes

i
∂

∂t
ψ(r, t) = − 1

2m
∇2ψ(r, t) (B.1.3)

which is the Schr̈odinger equation.

New Picture of First Quantization

At a glance, one may feel that the procedure of eqs.(B.1.1) and (B.1.2) are more fundamen-
tal than eq.(B.1.3) itself. However, this is not so trivial. If one looks into the Maxwell equa-
tion, then one realizes that the Maxwell equation is already a quantized equation for classi-
cal electromagnetic fields. In this respect, the Maxwell equation does not have any corre-
sponding classical equation of motions like the Newton equation. In this sense, eq.(B.1.3)
can be regarded as a fundamental equation for quantum mechanics as well, even though one
can derive eq.(B.1.3) from eqs.(B.1.1) and (B.1.2).

In fact, in Appendix H, we treat the derivation of the Dirac equation from the Maxwell
equation and the local gauge invariance, and there we see that the first quantization of
eq.(B.1.1) is not needed and therefore it is not the fundamental principle any more. Instead,
the Schr̈odinger equation is obtained from the non-relativistic reduction of the Dirac equa-
tion. In this respect, the derivation of the Schrödinger equation does not involve the first
quantization.

B.2 Mystery of Quantization or Hermiticity Problem?

Here, we present a problem related to the quantization in box with the periodic bound-
ary conditions. We restrict ourselves to the one dimensional case, but the result is easily
generalized to three dimensions.

B.2.1 Free Particle in Box

By denoting the wave function as

ψ(x) = e−iEtu(x)

the static Schr̈odinger equation without interactions is written

− 1
2m

∂2u(x)
∂x2

= Eu(x). (B.2.1)

The solution can be obtained as

u(x) =
{

1√
L

eikx,
1√
L

e−ikx

}
, with E =

k2

2m
, (B.2.2)
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where one puts the particle into a box with its lengthL. Now, one requires that the wave
functionu(x) should satisfy the periodic boundary conditions and should be the eigenstate
of the momentum. In this case, one has

p̂uk(x) = kuk(x), k =
2πn

L
, n = 0,±1, . . . .

Therefore, one can write the eigenstate wave function as

un(x) =
1√
L

ei 2πn
L

x, n = 0,±1, . . . .

B.2.2 Hermiticity Problem

Now, the quantization relation is written

p̂x− xp̂ = −i (B.2.3)

and one takes the expectation value of the quantization relation with the wave function
un(x) and obtains

〈un|p̂x− xp̂|um〉 = −iδnm. (B.2.4)

If one makes use of the hermiticity of̂p, then one obtains

(n−m)
2π

L
〈un|x|um〉 = −iδnm. (B.2.5)

However, the above equation does not hold forn = m since the left hand side is zero while
the right hand side is−i.

What is wrong with the calculation? The answer is simple, and one should not make
use of the hermiticity of the momentum̂p because the surface term at the boundary does
not vanish for the periodic boundary condition. In fact, in the above evaluation, the surface
term just gives the missing constant of−i for n = m. In other words, one can easily show
the following equation

〈un|p̂x|un〉 = −i + 〈p̂un|x|un〉. (B.2.6)

It should be noted that the hermiticity of the momentum in the following sense is valid

〈un|p̂|um〉 = 〈p̂un|um〉. (B.2.7)

From this exercise, one learns that the quantization condition of eq.(B.2.3) should be all
right, but the hermiticity of the momentum operator cannot necessarily be justified as long
as one employs the periodic boundary conditions for the wave functions. Also, the periodic
boundary conditions must be physically acceptable. Therefore, one should be careful for
treating the momentum operator and it should be operated always on the right hand side as
it is originally meant. In this case, one does not make any mistakes.

This argument must be valid even for a very largeL as long as one keeps the periodic
boundary conditions. This may look slightly odd, but the free particle should be present
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anywhere in the physical space, and therefore one should give up the vanishing of the
surface term in the plane wave case. The criteria of right physics must be given from
the observation that physical observables should not depend onL. In other words, one
should take the value ofL much larger than any other scales in the model, and this is called
thermodynamic limit. In order to obtain any physical observables, one should always take
the thermodynamic limit.

B.3 Schr̈odinger Fields

The Schr̈odinger equation with a potentialU(r) is written as

i
∂ψ(r, t)

∂t
=

(
− 1

2m
∇2 + U(r)

)
ψ(r, t). (B.3.1)

From this equation, one can derive the vector current conservation

∂ρ

∂t
+ ∇ · j = 0, (B.3.2)

whereρ andj are defined as

ρ = ψ†ψ, j = − i

2m

(
ψ†∇ψ − (∇ψ†)ψ

)
. (B.3.3)

B.3.1 Currents of Bound State

Now, it is interesting to observe how the currents from this Schrödinger field behave in
the realistic physical situations. Since the time dependence of the Schrödinger fieldψ is
factorized as

ψ(r, t) = e−iEtu(r)

the basic properties of the field are represented by the fieldu(r). When the fieldu(r)
represents a bound state, thenu(r) becomes a real field. In this case, the current densityj
vanishes to zero,

j = − i

2m

(
u(r)∇u(r)− (∇u(r))u(r)

)
= 0. (B.3.4)

On the other hand, the probability density ofρ ≡ |u(r)|2 is always time-independent, and
since the bound state wave function is confined within a limited area of space, theρ is also
limited within some area of space.

B.3.2 Free Fields (Static)

When there is no potential, that is
U(r) = 0
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then the field can be described as a free particle solution. This solution is obtained when
the theory is put into a box with its volumeV ,

ψ(r, t) =
1√
V

e−iEteik·r,
1√
V

e−iEte−ik·r, (B.3.5)

whereE is the energy of the particle andk denotes a quantum number which should cor-
respond to the momentum of a particle. In this case, the probability density is finite and
constant

ρ =
1
V

(B.3.6)

while the currentj is also a constant and can be written as

j =
k

m
(B.3.7)

which just corresponds to the velocity of a particle.

Real Field Condition

It is important to note that the Schrödinger fieldψ should be a complex function. If one
imposes the condition that the field should be real,

ψ(r, t) = ψ†(r, t)

then one obtains from the Schrödinger equation eq.(B.1.3)

∂ψ(r, t)
∂t

= 0.

Therefore, the Schrödinger fieldψ should be time independent. In this case, one sees im-
mediately that the energyE must be zero since

(
− 1

2m
∇2 + U(r)

)
ψ(r, t) = 0.

Therefore, the real field condition ofψ is too strong and it should not be imposed before
solving the Schr̈odinger equation. This concept should always hold in the Schrödinger field,
and therefore it is most likely true that the same concept should hold for relativistic boson
fields as well. However, this statement may not be justified if the Klein–Gordon field should
not have any correspondence with the Schrödinger field in the non-relativistic limit.

B.3.3 Degree of Freedom of Schr̈odinger Field

The Schr̈odinger field is a complex field. However, the Schrödinger fieldψ itself should
correspond to one particle. It is clear that one cannot make the following separation of the
field into real and imaginary parts

ψ(r, t) = ρ(r, t)eiξ(r,t) (B.3.8)
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and claim thatρ(r, t) andξ(r, t) describe two independent fields (particles). Whenψ is a
complex field, it has right properties as a field, and the current density of theψ field has a
finite value.

B.4 Hydrogen-like Atoms

When the potentialU(r) is a Coulomb type,

U(r) = −Ze2

r
(B.4.1)

then the Schr̈odinger equation can be solved exactly and the Schrödinger fieldψ together
with the energy eigenvalueE can be obtained as

ψ(r) = Rn`(r)Y`m(θ, ϕ), (B.4.2)

En = −mZ2e4

2n2
= − m

2n2

(
Z

137

)2

, (B.4.3)

whereRn`(r) andY`m denote the radial wave function and the spherical harmonics, re-
spectively. The principal quantum numbern runs asn = 1, 2, . . . ,∞, and ` runs as
` = 0, 1, 2, . . . ,∞, satisfying the condition

` ≤ n− 1. (B.4.4)

It should be worth writing the explicit shape of the wave functions for a few lowest states
of 1s, 2p and2s with the Bohr radiusa0 = 1

me2 .

1s−statee : R1s(r) =
(

Z

a0

) 3
2

2e
−Zr

a0 , Y00(θ, ϕ) =
1√
4π

,

2p−state : R2p(r) =
(

Z

2a0

) 3
2 Zr√

3 a0

e
− Zr

2a0 ,





Y11(θ, ϕ) = −
√

3
8π

sin θeiϕ

Y10(θ, ϕ) =

√
3
4π

cos θ

Y1−1(θ, ϕ) =

√
3
8π

sin θe−iϕ

,

2s−state : R2s(r) =
1

2
√

2

(
Z

a0

) 3
2
(

2− Zr

a0

)
e
− Zr

2a0 , Y00(θ, ϕ) =
1√
4π

.
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B.5 Harmonic Oscillator Potential

The harmonic oscillator potentialU(x)

U(x) =
1
2

mω2x2

is a very special potential which is often used in quantum mechanics exercise problems
since the Schr̈odinger equation with the harmonic oscillator potential can be solved exactly.
However, the harmonic oscillator potential is not realistic since it does not have a free field-
like solution. The Schr̈odinger field in the harmonic oscillator potential is always confined
and there is no scattering state solution.

Nevertheless, it should be worth writing solutions of the Schrödinger fieldψ with its
massm in the one dimensional harmonic oscillator potential. The Schrödinger equation
can be written as (

− 1
2m

∂2

∂x2
+

1
2

mω2x2

)
ψ(x) = Eψ(x). (B.5.1)

In this case, the solution of the Schrödinger fieldψ together with the energy eigenvalueE
can be obtained as

ψn(x) =
(

α2

4nπ(n!)2

) 1
4

Hn(αx)e−
1
2
α2x2

, (B.5.2a)

En = ω

(
n +

1
2

)
, n = 0, 1, 2, . . . , (B.5.2b)

whereα is given as

α =
√

mω . (B.5.3)

Hn(ξ) denotes the hermite polynomial and is given as

Hn(ξ) = (−)neξ2 dn

dξn
e−ξ2

sinceHn(ξ) can be expressed in terms of the generating function as

e−x2+2ξx = e−(x−ξ)2+ξ2
=

∞∑

n=0

1
n!

Hn(ξ)xn.

Some of them are given below

H0(ξ) = 1, H1(ξ) = 2ξ, H2(ξ) = 4ξ2 − 2, (B.5.4a)

H3(ξ) = 8ξ3 − 12ξ, H4(ξ) = 16ξ4 − 48ξ2 + 12. (B.5.4b)
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B.5.1 Creation and Annihilation Operators

The Hamiltonian of the one dimensional harmonic oscillator potential

Ĥ =
p̂2

2m
+

1
2

mω2x2 (B.5.5)

can be rewritten in terms of creationa† and annihilationa operators

a† =
√

mω

2
x− i√

2mω
p̂, a =

√
mω

2
x +

i√
2mω

p̂ (B.5.6)

as

Ĥ = ω

(
a†a +

1
2

)
. (B.5.7)

a† anda satisfies the following commutation relation

[a, a†] = 1 (B.5.8)

because of the definition ofa† anda in eq.(B.5.6).

Number Operator N̂

By introducing the number operator̂N as

N̂ = a†a (B.5.9)

one finds
[N̂ , a] = −a, [N̂ , a†] = a†. (B.5.10)

With the eigenstate|φn〉 of the number operator̂N and its eigenvaluen

N̂ |φn〉 = n|φn〉 (B.5.11)

one can easily prove the following equations

a†|φn〉 =
√

n + 1 |φn+1〉, a|φn〉 =
√

n |φn−1〉. (B.5.12)

This indicates thata† operator increases the quantum numbern by one unit whilea de-
creases it in the same way. Therefore,a† anda are calledcreationandannihilation op-
erators, respectively. In addition, one can evaluate the expectation value of the number
operatorN̂ with the state|φn〉 as

n = 〈φn|a†a|φn〉 = ‖aφn‖2 ≥ 0

which shows that then must be a non-negative value. Therefore, one finds from eq.(B.5.12)

a|φ0〉 = 0. (B.5.13)
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Therefore, one sees that the smallest value ofn is n = 0. This leads to the constraint for
n as

n = 0, 1, 2, . . . . (B.5.14)

Operating the Hamiltonian̂H on |φn〉, one finds

Ĥ|φn〉 = ω

(
N̂ +

1
2

)
|φn〉 = ω

(
n +

1
2

)
|φn〉 = En|φn〉. (B.5.15)

Thus, the energyEn can be written as

En = ω

(
n +

1
2

)
, n = 0, 1, 2, . . .

which agrees with the result given in eq.(B.5.2). The state|φn〉 can be easily constructed
by operatinga† operator onto the|φ0〉

|φn〉 =
1√
n!

(
a†

)n
|φ0〉. (B.5.16)

It should be noted that the state|φn〉 is specified by the quantum numbern. If one wishes
to obtain an explicit expression of the wave function, then one should project the state|φn〉
onto the|x〉 or |p〉 representation as given below.

Explicit Wave Function in x-representation

The wave functionψn(x) ≡ 〈x|φn〉 in thex-representation can be obtained in the following
way. First, one solves the differential equation from eq.(B.5.13)

〈x|a|x〉〈x|φ0〉 =
(√

mω

2
x +

1√
2mω

∂

∂x

)
ψ0(x) = 0 (B.5.17)

which leads to the ground state wave function

ψ0(x) =
(

α2

π

) 1
4

e−
1
2
α2x2

, with α =
√

mω. (B.5.18)

From eq.(B.5.16), one obtains the wave function for an arbitrary stateψn(x)

ψn(x) =
1√
n!
〈x|

(
a†

)n
|x〉〈x|φ0〉

=
1√
n!

(
α2

π

) 1
4
(√

mω

2
x− 1√

2mω

∂

∂x

)n

e−
1
2

α2x2

which can be shown to be just identical to eq.(B.5.2a).
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Relativistic Quantum Mechanics of
Bosons

When a particle motion becomes comparable to the velocity of light, then one has to con-
sider the relativistic effects. The dispersion relation between the energy and momentum of
the particle with its massm becomes

E =
√

p2 + m2 . (C.0.1)

If one employs the quantization procedure of eq.(B.1.1),

Ê → i
∂

∂t
, p̂ → −i∇

then one obtains the following equation from eq.(C.0.1)

i
∂

∂t
φ =

√
−∇2 + m2 φ. (C.0.2)

However, it is easy to realize that the differential operator in square root cannot be defined
well.

C.1 Klein–Gordon Equation

Therefore, it is essential to rewrite eq.(C.0.1) for the quantization procedure

E2 = p2 + m2. (C.1.1)

From this dispersion relation, one obtains

(
∂2

∂t2
−∇2 + m2

)
φ = 0 (C.1.2)
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which is the Klein–Gordon equation. Eq.(C.1.2) can describe bosons which must be a
spinless particle. This is clear since the fieldφ has only one component, and therefore it
should correspond to one component particle which is the spin zero state.

It should be interesting to compare eq.(C.1.2) with the equation for the electromagnetic
field eq.(E.5.1) which is the resulting equation from the Maxwell equation. One sees that
the Maxwell equation has just the same structure as the Klein–Gordon equation. In this
respect, the Maxwell equation does correspond already to the relativistic quantum mechan-
ics. Indeed, in Appendix H, we will see that the Dirac equation can be obtained from the
assumption that the Maxwell equation and the local gauge invariance are the most funda-
mental principles. In this case, one sees that the Klein–Gordon equation cannot be derived
from the new principle which shows that the first quantization procedure is not the funda-
mental principle but is only the result of the Dirac equation as a consequence. Therefore, if
one employs this standpoint, then it may well be difficult to justify that the Klein–Gordon
equation can be derived as the fundamental equation.

C.2 Scalar Field

Here, we examine whether a real scalar field with a finite mass can exist as a physical
observable or not in the Klein–Gordon equation. Normally, one finds that pion with the
positive charge is an anti-particle of pion with the negative charge. This can be easily
understood if we look into the structure of the pion in terms of quarks.π± are indeed anti-
particle to each other by changing quarks into anti-quarks. Since pion is not an elementary
particle, their dynamics must be governed by the complicated quark dynamics. Under some
drastic approximations, the motion of pion may be governed by the Klein–Gordon like
equation.

C.2.1 Physical Scalar Field

It looks that eq.(C.1.2) contains the negative energy state. However, one sees that eq.(C.1.2)
is only one component equation and, therefore the eigenvalue ofE2 can be obtained as
a physical observable. There is no information from the Klein–Gordon equation for the
energyE itself, but onlyE2 as we see it below,

(−∇2 + m2
)
φ = E2φ. (C.2.1)

Therefore, if one obtains the eigenvalue ofE2 as

E2 = α, α > 0

then one cannot say which one ofE =
√

α or E = −√α should be taken. Both solutions
can be all right, but one should take only one of the solutions. Here, we take a positive
value ofE. In this case, the solution of eq.(C.2.1) should be described just in the same way
as the Schr̈odinger field

φk(x) = A(t)eik·r (C.2.2)
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which should be an eigenfunction of the momentum operatorp̂ = −i∇. The coefficient
A(t) can be determined by putting eq.(C.2.2) into eq.(C.1.1). One can easily find thatA(t)
should be written as

A(t) =
1√
V ωk

ake
−iωkt, (C.2.3)

whereak is a constant, andωk is given as

ωk =
√

k2 + m2 . (C.2.4)

The shape ofA(t) in eq.(C.2.3) can be also determined from the Lorentz invariance. Now,
one sees that eq.(C.2.2) has a right non-relativistic limit. This is indeed a physical scalar
field solution of the Klein–Gordon equation.

C.2.2 Current Density

Now, we discuss the current density of the Klein–Gordon field which is defined as

ρ(x) = i

(
φ†(x)

∂φ(x)
∂t

− ∂φ†(x)
∂t

φ(x)
)

, (C.2.5a)

j(x) = −i
(
φ†(x)(∇φ(x))− (∇φ†(x))φ(x)

)
. (C.2.5b)

It should be noted that the current density must be hermitian and therefore the shape of
eqs.(C.2.5) is uniquely determined. One cannot change the order between

∂φ†(x)
∂t

and φ(x)

in the second term of eq.(C.2.5a).

Classical Real Scalar Field

Now, we come to an important observation that a real scalar field should have a serious
problem. The real scalar fieldφ(x) can be written as

φ(x) =
∑

k

1√
2V ωk

[
ake

−iωkt+ik·r + a∗ke
iωkt−ik·r

]
, (C.2.6)

whereV denotes the box. We assume that theφ(x) is still a classical field, that is,a∗k and
ak are not operators, but just the c-number.

In this case, it is easy to prove that the current density of(ρ(x), j(x)) which is con-
structed from the real scalar fieldφ(x) vanishes to zero

ρ(x) = 0, j(x) = 0.
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This means that the real scalar field cannot propagate classically. This is clear since a real
wave function even in the Schrödinger equation cannot propagate. That is, this real state
should have the energyE = 0.

The basic problem is that one cannot impose the condition that the scalar field should
be a real, and this is too strong as a physical condition. Within the classical field theory,
the scalar Klein–Gordon field should be reduced to the Schrödinger field when it moves
much more slowly than the velocity of light. Therefore, it is quite difficult to make any
physical pictures of the real scalar Klein–Gordon field since it is not compatible with the
Schr̈odinger field in the non-relativistic limit.

Quantized Real Scalar Field

Now, we come to the current density when the field is quantized. Below it is shown that
the current density of the real scalar field has some problem even if quantized, contrary to a
common belief [99].

When one quantizes the boson field ofφ, thena†k andak become creation and annihila-
tion operators

φ̂(x) =
∑

k

1√
2V ωk

[
ake

−iωkt+ik·r + a†ke
iωkt−ik·r

]
. (C.2.7)

In this case, the current density of eq.(C.2.4) becomes

ρ̂ = i
(
φ̂(x)Π̂(x)− Π̂(x)φ̂(x)

)
= i

[
φ̂(x), Π̂(x)

]
, (C.2.8)

whereΠ̂(x) is a conjugate field of̂φ(x), that is,Π(x) = φ̇(x). However, the quantization
condition of the boson fields with eq.(C.2.7) becomes

[
φ̂(r), Π̂(r′)

]
t=t′ = iδ(r − r′). (C.2.9)

Therefore, eq.(C.2.8) becomes

ρ̂ = i
[
φ̂(x), Π̂(x)

]
= −δ(0) (C.2.10)

which is infinity. Thus, the current density of the quantized real boson field is divergent
after the quantization! Therefore, it is by now obvious that the current density of the real
scalar field has an improper physical meaning. This should be related to the fact that the
quantized fieldφ is assumed to be a real field which must be a wrong condition in nature.

Physical Scalar Field

The physical scalar fieldφ(x) can be written as in eqs.(C.2.2) and (C.2.3)

φ(x) =
∑

k

1√
V ωk

ake
ik·r−iωkt.
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In this case, we can calculate the current density for the scalar field with the fixed momen-
tum ofk and obtain

ρ =
|ak|2
V

which is positive definite and finite. Therefore, the physical scalar field does not have any
basic problems.

C.2.3 Complex Scalar Field

Since a real scalar field has a difficulty not only in the classical case but also in the quantized
case, it should be worth considering a complex scalar field. In this case, the complex scalar
field can be written as

φ̂(x) =
∑

k

1√
2V ωk

[
ake

−iωkt+ik·r + b†ke
iωkt−ik·r

]
. (C.2.11)

In this case, the current density is well defined and has no singularity when quantized. It
is commonly believed that the complex scalar field should describe charged bosons, one
which has a positive charge and the other which has a negative charge. However, a question
may arise as to where this degree of freedom comes from? By now, one realizes that there
is no negative energy solution in the Klein–Gordon equation. If one took into account the
negative energy solution, then one should have had field equations of two components. On
the other hand, eq.(C.2.11) assumes a scalar field with two components, and not the result
of the field equations. It is therefore most important to seek for the two component Klein–
Gordon like equation which should be somewhat similar to the Dirac equation.

Boson Number

Since the vector current of the boson field is conserved, one can define the boson num-
berNB

NB =
∫

ρ(x) d3r (C.2.12)

which is a conserved quantity. In the Schrödinger field, theNB is positive definite, but in
the Klein–Gordon field of eq.(C.2.11), theNB is not necessarily positive definite due to the
negative energy solutions of the Klein–Gordon equation.

Charge vs. Boson Number

One cannot interpret the boson number as the charge. This is clear since the charge is
associated with the coupling constantg of the gauge field, and the negative charge of the
positron in QED is associated with the quantum number of the negative energy degree of
freedom. Therefore, unless the Klein–Gordon field could take into account the negative
energy degree of freedom in a proper manner, there is no way to interpret the negative value
of the boson numberNB in terms of proper physics terminology. This cannot be remedied
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even if one quantizes the boson field. The quantum number has nothing to do with the field
quantization, but it is determined from the equation of motion as well as the symmetry of
the Lagrangian density.

C.2.4 Composite Bosons

Pions andρ-mesons are composed of quark and anti-quark fields. Suppressing the isospin
variables, we can describe the boson fields in terms of the Dirac fieldψq(x)χ 1

2

only with

the large components, for simplicity

Ψ(B) = ψq(x1)ψq̄(x2)
(
χ

(1)
1
2

⊗ χ
(2)
1
2

)
= Φ(Rel)(x)Φ(CM)(X)ξs,sz , (C.2.13)

wherex = x1 − x2, X = 1
2 . Here,ψq̄(x)χ 1

2

denotes the anti-particle field andξs,sz is the

spin wave function of the boson.Φ(Rel)(x) denotes the internal structure of the boson and
Φ(CM)(X) corresponds to the boson field. Now, it is clear that the boson fieldΦ(CM)(X)
is a complex field.

Neutral scalar field

In the field theory textbooks, the real scalar field is interpreted as a boson with zero charge.
But this is not the right interpretation. The charge is a property of the field in units of the
coupling constant. The positive and negative charges are connected to the flavor of the
scalar fields. For example, a chargeless Schrödinger field, of course, has a finite current
density ofρ(r). The chargeQ of the Schr̈odinger field is given asQ = e0

∫
ρ(r) d3r and

for the chargeless field, we simply havee0 = 0, which means that it does not interact with
the electromagnetic field due to the absence of the coupling constant.

Schwinger Boson

There is a good example of the physical composite boson which is described in terms of
the fermion and anti-fermion operators, and it is a boson in the Schwinger model. The
Hamiltonian of the Schwinger model can be bosonized, and it is given in eq.(5.74)

H =
1
2

∑
p

{
Π̃†(p)Π̃(p) + p2Φ̃†(p)Φ̃(p) +M2Φ̃†(p)Φ̃(p)

}
. (5.74)

The boson fields̃Φ(p) and its conjugate field̃Π(p) satisfy the bosonic commutation relation

[
Φ̃(p), Π̃†(p′)

]
= iδp,p′ .

One can see that the boson fieldΦ̃(p) in the Schwinger model is indeed a complex field.
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C.2.5 Gauge Field

The electromagnetic fieldAµ is a real vector field which is required from the Maxwell
equation, and therefore it has zero current density. However, the gauge field itself is gauge
dependent and therefore it is not directly a physical observable. In this case, the energy flow
in terms of the Poynting vector becomes a physical quantity. After the gauge fixing and the
field quantization, the vector field̂A(x) can be written as

Â(x) =
∑

k

2∑

λ=1

1√
2V ωk

ε(k, λ)
[
ck,λe−ikx + c†k,λeikx

]
, (C.2.14)

whereωk = |k|. Here,ε(k, λ) denotes the polarization vector. In this case, one-photon
state with(k, λ) becomes

Ak,λ(x) = 〈k, λ|Â(x)|0〉 =
1√

2V ωk
ε(k, λ)e−ik·r+iωkt (C.2.15)

which is the eigenstate of the momentum operatorp̂ = −i∇. In this respect, the gauge
field Aµ is completely different from the Klein–Gordon scalar field. Naturally, the gauge
field does not have any corresponding non-relativistic field.

C.3 Degree of Freedom of Boson Fields

The Klein–Gordon equations are obtained by just replacing the momentum and energy by
the differential operators. Now, we should examine the number of the degrees of freedom.
If the positive and negative energy states should be taken into account, there should be
two degrees of freedom. Therefore, the states should be described by a spinor with two
components. However, the Klein–Gordon equation has only one component for a real scalar
field. This should not be sufficient for describing the boson state if it should contain the
negative energy state.

Below we discuss the Klein–Gordon equation with a spinor of two components and
present some attempt to obtain a Hamiltonian in the two by two matrix form. One example
of the Hamiltonian for a free boson is given in the textbook by Gross [63]

H =




m +
p2

2m

p2

2m

− p2

2m
−

(
m +

p2

2m

)


 . (C.3.1)

In this case, the wave equation becomes

i
∂φ

∂t
=




m +
p2

2m

p2

2m

− p2

2m
−

(
m +

p2

2m

)


φ. (C.3.2)
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If one writesφ as

φ± =
(

ξ1

ξ2

)
eik·r±iEt

then one has for the energy eigenvalue asE2 = m2 +k2 which is a right dispersion relation
for a boson. However, one notices that the Hamiltonian is not hermite, and in principle this
should give rise to some problems when one wishes to extend it to interacting systems.

There are other attempts to write Klein–Gordon equation in the spinor form with two
components. However, one can easily prove that, if one hasE, p, andm with which one
wishes to make a Lorentz scalar as

H = Eβ0 + p ·α + mβ1 (C.3.3)

then one needs to have 5 independent elements of the hermite matrices. If the hermite
matrices are2× 2, then there are only 4 independent components which in fact correspond
to the Pauli matrices. Thus, the two dimensional representation of 5 independent hermite
matrices are not possible, and this strongly suggests that the Klein–Gordon equation cannot
be rewritten in a physically plausible form.



Appendix D

Relativistic Quantum Mechanics of
Fermions

Electron has a spin and its magnitude is1/2. The relativistic equation of eq.(C.1.2) has
only one component of the fieldφ, and therefore it cannot describe the spin one half particle
such as electron. Therefore, one has to consider some other equations for electron, and this
equation is discovered by Dirac as we describe below.

D.1 Derivation of Dirac Equation

The procedure of obtaining Dirac equation is rather simple. One starts from eq.(C.1.1) and
tries to factorize it into a linear equation forE andp. This can be realized as

E2 − p2 −m2 = (E − p ·α−mβ)(E + p ·α + mβ) = 0, (D.1.1)

whereα andβ are four by four matrices, and they satisfy the following anti-commutation
relations

{αi, αj} = 2δij , {αi, β} = 0, β2 = 1,

wherei andj run i, j = x, y, z. Some of the representations are given in Appendix A.6.
The relativistic quantum mechanical equation for a free electron discovered by Dirac is
given as (

i
∂

∂t
+ i∇ ·α−mβ

)
ψ = 0, (D.1.2)

whereψ denotes the wave function and should have four components sinceα andβ are
four by four matrices,

ψ =




ψ1

ψ2

ψ3

ψ4


 . (D.1.3)
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In the four components of the wave function, two of them correspond to the spin degrees
of freedom and the other two components represent the positive and negative energy states.
The static Dirac equation becomes

(−i∇ ·α + mβ) ψ = Eψ. (D.1.4)

If the energy eigenvalue contains the negative energy states, which is indeed the case, then
the negative energy states must be physical, in contrast to the boson case. For fermions, the
negative energy states play a very important role in quantum field theory.

D.2 Negative Energy States

The negative energy states in the Dirac equation are essential for describing the vacuum of
quantum field theory, and Dirac interpreted that the vacuum of quantum field theory must
be occupied completely by the negative energy states. Because of the Pauli principle, the
vacuum is stable as long as the states are full. If one creates a hole in the vacuum, then this
corresponds to a new particle with the same mass of the particle which one considers. This
can be easily seen since, from the vacuum energy

Ev = −
∑

n

√
p2

n + m2

one extracts the staten0 which is one hole state

E1hole
v = −

∑

n 6=n0

√
p2

n + m2 .

Therefore one obtains a hole state energy

Eh ≡ E1hole
v −Ev =

√
p2

n0
+ m2 (D.2.1)

which means that the hole state has the same mass as the original fermion. Further, if the
fermion has a chargee, then the hole state must have an opposite charge which can be seen
in the same way as the energy case.

hole chargeeh ≡

 ∑

n 6=n0

e−
∑
n

e


 = −e. (D.2.2)

D.3 Hydrogen Atom

The Dirac equation is most successful for describing the spectrum of hydrogen atom. One
writes the Dirac equation for the hydrogen-like atoms as

(
−i∇ ·α + mβ − Ze2

r

)
ψ = Eψ, (D.3.1)
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whereZ denotes the charge of nucleus. Before presenting the solution of the above equa-
tion, we should make some comments on this equation. It is of course clear that there
is no system which is composed of one electron, except a free electron state. Therefore,
even though eq.(D.3.1) shows a simple one body problem for an electron with the potential
which is measured from the coordinate center, the realistic problem must be at least two
body problem, a system composed of electron and proton. In addition, there must be some
contributions from photons and virtual pairs of electron and positron in the intermediate
states. If one wishes to discuss the problem of hydrogen atom in the field theoretical treat-
ment, it becomes extremely difficult. This is clear since, in this case, one has to evaluate
the system as a many body problem. Even a reliable treatment of the center of mass effects
is a non-trivial issue if one starts from the Dirac equation.

D.3.1 Conserved Quantities

The Dirac Hamiltonian for electron in hydrogen atom is written as

H = −i∇ ·α + mβ − Ze2

r
. (D.3.2)

Now, one defines the total angular momentumJ and an operatorK by

J = L +
1
2

Σ, (D.3.3a)

K = β(Σ ·L + 1), (D.3.3b)

whereΣ is extended to4× 4 matrix ofσ and is defined as

Σ =
(

σ 0
0 σ

)
.

In this case, it is easy to prove thatJ andK commute with the HamiltonianH

[H, J ] = 0, [H, K] = 0. (D.3.4)

Therefore, the energy eigenvalues can be specified by the eigenvalues ofJ2 andK

J2ψκ
j,jm

= j(j + 1)ψκ
j,jm

, (D.3.5a)

Kψκ
j,jm

= κψκ
j,jm

, (D.3.5b)

whereκ takes values according to

κ = ∓
(

j +
1
2

)
for j = `± 1

2
. (D.3.6)
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D.3.2 Energy Spectrum

In this case, the energy eigenvalue of the Dirac Hamiltonian in hydrogen atom is given as

En,j = m


1− (Zα)2

n2 + 2
(
n− (j + 1

2)
) [√

(j + 1
2)2 − (Zα)2 − (j + 1

2)
]




1
2

, (D.3.7)

whereα denotes the fine structure constant and is given as

α =
1

137
.

The quantum numbern runs asn = 1, 2, . . . . The energyEn,j can be expanded to orderα4

En,j −m = −m(Zα)2

2n2
− m(Zα)4

2n4

(
n

j + 1
2

− 3
4

)
+O (

(Zα)6
)
. (D.3.8)

The first term in the energy eigenvalue is the familiar energy spectrum of the hydrogen atom
in the non-relativistic quantum mechanics.

D.3.3 Ground State Wave Function (1s 1
2
− state)

It may be worth to write the Dirac wave function of the lowest state in a hydrogen-like
atom. We denote the ground state wave function by

ψ
(−1)
1
2
,ms

(r) for 1s 1
2
−state

sinceκ = −1 ands = 1
2 . The energy eigenvalueE1s 1

2

is simply written as

E1s 1
2

= m
√

1− (Zα)2 .

The ground state wave function is explicitly given as

ψ
(−1)
1
2
,ms

(r) =
(

f (−1)(r)
−iσ · r̂g(−1)(r)

)
χms√

4π
, (D.3.9)

whereχms
denotes the two component spinor and is given as

χ 1
2

=
(

1
0

)
, χ

− 1
2

=
(

0
1

)
.

r̂ is defined as
r̂ =

r

r
.
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The radial wave functionsf (−1)(r) andg(−1)(r) can be analytically written

f (−1)(r) = Nρ
√

1−(Zα)2 e−ρ

ρ
, (D.3.10a)

g(−1)(r) = Nρ
√

1−(Zα)2 e−ρ

ρ


ε

(√
1− (Zα)2 − 1

)
− Zα

√
1− (Zα)2 + 1− Zαε


 , (D.3.10b)

whereρ andε are defined as

ρ =
√

m2 −E2
1s 1

2

r = Zαmr,

ε =

√√√√m−E1s 1
2

m + E1s 1
2

=
1−

√
1− (Zα)2

Zα
.

N is a normalization constant and should be determined from

∞∫

0

[(
f (−1)(r)

)2
+

(
g(−1)(r)

)2
]

r2 dr = 1.

D.4 Lamb Shifts

The important consequence of the Dirac equation in hydrogen atom is that the energy eigen-
values are specified by the total angular momentumj apart from the principal quantum
numbern, and indeed this is consistent with experimental observations.

There is one important deviation of the experiment from the Dirac prediction, that is,
the degeneracy of2p 1

2
-state and2s 1

2
-state is resolved. The2p 1

2
-state is lower than the

2s 1
2
-state in hydrogen atom. This splitting is originated from the second order effect of the

vector fieldA which affects only on the2s 1
2
-state. Intuitively, the second order effects must

be always attractive. However, in the calculation of the Lamb shift, one has to consider the
renormalization of the mass term, and due to this renormalization effect, the second order
contribution of the vector fieldA becomes repulsive, and therefore the2s 1

2
-state becomes

higher than the2p 1
2
-state.

D.4.1 Quantized Vector Field

Here, we briefly explain how to evaluate the Lamb shift in the non-relativistic kinematics.
In this calculation, the quantized electromagnetic fieldA should be employed

Â(x) =
∑

k

2∑

λ=1

1√
2V ωk

ε(k, λ)
[
ck,λe−ikx + c†k,λeikx

]
, (D.4.1)
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whereck,λ andc†k,λ denote the creation and annihilation operators which satisfy the follow-
ing commutation relations

[ck,λ, c†k′,λ′ ] = δk,k′δλ,λ′

and all other commutation relations vanish.

D.4.2 Non-relativistic Hamiltonian

We start from the Hamiltonian for electron in the hydrogen atom with the electromagnetic
interaction

H =
p̂2

2m0
− Ze2

r
− e

m0
p̂ · Â, (D.4.2)

where theÂ2 term is ignored in the Hamiltonian.

D.4.3 Second Order Perturbation Energy

Now, the second order perturbation energy due to the electromagnetic interaction for a free
electron state can be written as

δE = −
∑

λ

∑

k

∑

p′

(
e

m0

)2 1
2V ωk

|〈p′|ε(k, λ) · p̂|p〉|2
Ep′ + k − Ep

, (D.4.3)

where|p〉 and |p′〉 denote the free electron state with its momentum. Since the photon
energy (ωk = k) is much larger than the energy difference of the electron states(Ep′−Ep)

|Ep′ − Ep| ¿ k (D.4.4)

one obtains

δE = − 1
6π2

Λ
(

e

m0

)2

p2, (D.4.5)

whereΛ is the cutoff momentum of photon. This divergence is proportional to the cutoff
Λ which is not the logarithmic divergence. However, this is essentially due to the non-
relativistic treatment, and if one carries out the relativistic calculation of quantum field
theory, then the divergence becomes logarithmic.

D.4.4 Mass Renormalization and New Hamiltonian

Defining the effective massδm as

δm =
1

3π2
Λe2 (D.4.6)

the free energy of electron can be written as

EF =
p2

2m0
− p2

2m2
0

δm ' p2

2(m0 + δm)
, (D.4.7)
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where one should keep only the term up to order ofe2 because of the perturbative expansion.
Now, one defines the renormalized (physical) electron massm by

m = m0 + δm (D.4.8)

and rewrites the HamiltonianH in terms of the renormalized electron massm

H =
p̂2

2m
− Ze2

r
+

p̂2

2m2
δm− e

m
p̂ · Â. (D.4.9)

Here, the third term (p̂
2

2m2 δm) corresponds to the counter term which cancels out the second
order perturbation energy [eq.(D.4.3)].

D.4.5 Lamb Shift Energy

Using eq.(D.4.3), one can calculate the second order perturbation energy due to the electro-
magnetic interaction for the2s1/2 electron state in hydrogen atom [12]

∆E2s1/2
=

1
6π2

Λ
( e

m

)2
〈2s1/2|p̂2|2s1/2〉

−
∑

λ

∑

k

∑

n`

( e

m

)2 1
2V ωk

|〈n`|ε(k, λ) · p̂|2s1/2〉|2
En,` + k −E2s1/2

, (D.4.10)

where the first term comes from the counter term. This energy can be rewritten as

∆E2s1/2
=

1
6π2

( e

m

)2 ∑

n,`

|〈n, `|p̂|2s1/2〉|2
Λ∫

0

dk
En,` − E2s1/2

En,` + k −E2s1/2

, (D.4.11)

where the following identity equation is employed
∑

n,`

|〈n, `|p̂|2s1/2〉|2 = 〈2s1/2|p̂2|2s1/2〉. (D.4.12)

Further, neglecting the dependence ofEn,` in the energy denominator because of eq.(D.4.4),
one can carry out the summation of

∑
n,` in eq.(D.4.11) as

∑

n,`

|〈n, `|p̂|2s1/2〉|2(En,` − E2s1/2
)

=
1
2
〈2s1/2|

[
[p̂, Ĥ0], p̂

]
|2s1/2〉 = 2πZe2〈2s1/2|δ(r)|2s1/2〉, (D.4.13)

whereĤ0 is the unperturbed Hamiltonian of hydrogen atom

Ĥ0 =
p̂2

2m
− Ze2

r
.
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Choosing the value of the cutoffΛ, though there is no justification, as

Λ ∼ m (D.4.14)

one obtains the energy shift for the2s1/2 electron state

∆E2s1/2
' 1040 MHz

which is close to a right Lamb shift for the2s1/2 state

∆Eexp
2s1/2

= 1057.862 ± 0.020 MHz.

It should be noted that there is no energy shift for the2p1/2 state.

D.4.6 Lamb Shift in Muonium

The Lamb shift energy of2s 1
2

state in muonium (µ+e− system) presents an important QED

test [7, 79, 97, 113]. This Lamb shift energy of muonium∆E
(µ)
2s1/2

can be related to that of

hydrogen atom∆E
(H)
2s1/2

as [85]

∆E
(µ)
2s1/2

=

(
m

(µ)
r

m
(H)
r

)3

∆E
(H)
2s1/2

(D.4.15)

wherem
(µ)
r andm

(H)
r are given as

m(µ)
r =

me

1 + me
mµ

, m(H)
r =

me

1 + me
Mp

.

Here,mµ andMp denote the masses of muon and proton, respectively. Using the experi-
mental value of the hydrogen Lamb shift energy

∆E
(H)
2s1/2

(exp) = 1057.845 ± 0.009 MHz

we can predict the Lamb shift energy of muonium

∆E
(µ)
2s1/2

(th) = 1044 MHz.

This value should be compared to the observed value [113]

∆E
(µ)
2s1/2

(exp) = 1042 ± 22 MHz

which perfectly agrees with the prediction. The important point is that the new relation does
not depend on the cutoffΛ. If the observed accuracy of the Lamb shift energy in muonium
is improved, then the Lamb shift of muonium should present a very good test of the QED
renormalization scheme.
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D.4.7 Lamb Shift in Anti-hydrogen Atom

The structure of the negative energy state should be examined if one can measure the Lamb
shift of anti-hydrogen atom [4]. In this case, positron should feel the effect of the vacuum
state which should be somewhat different from the case in which electron may feel in the
same situation. The Lamb shift energy of the2s1/2 state in anti-hydrogen atom can be
written as

∆E2s1/2
=

2m3
rα

5

3m2
e

ln
(

Λ̄
< En,` >

)
(D.4.16)

where Λ̄ denotes the effective cutoff value of the anti-hydrogen atom. If the observed
value of theΛ̄ differs from theΛ value, then it should mean that there is some chance of
understanding the structure of the negative energy state in the interacting field theory model.

D.4.8 Physical Meaning of CutoffΛ

The calculated result of the Lamb shift energy depends on the cutoffΛ, which is not sat-
isfactory at all. However, there is no way to avoid the presence of the cutoffΛ as long as
we treat the Lamb shift in the non-relativistic field equations. The important point is that
we should understand the origin of the value of the cutoffΛ. This should, of course, be
understood if one treats it relativistically.

In the non-relativistic treatment, the mass counter term is linear divergent. However,
if one treats it relativistically, the divergence is logarithmic. This reason of the one rank
down of the divergence is originated from the fact that the relativistic treatment considers
the negative energy states which in fact reduce the divergence rank due to the cancellation.
Now, we consider the renormalization effect in hydrogen atom, and if we calculate the
Lamb shift energy in the non-relativistic treatment, then it has the logarithmic divergence
as we saw above, and this is the one rank down of the divergence. This is due to the fact that
the evaluation of the Lamb shift energy is based on the cancellation between the counter
term and the perturbation energy in hydrogen atom. In the same way, if one can calculate
the Lamb shift energy relativistically, then one should obtain the one rank down of the
divergence, and this means that it should be finite.





Appendix E

Maxwell Equation and Gauge
Transformation

Fundamental equations for electromagnetic fields are the Maxwell equation, and they are
written for the electric fieldE and magnetic fieldB as

∇ ·E = ρ, (E.0.1)

∇ ·B = 0, (E.0.2)

∇×E = −∂B

∂t
, (E.0.3)

∇×B = j +
∂E

∂t
, (E.0.4)

whereρ andj denote the charge and current densities, respectively. These are already equa-
tions for the fields and therefore they are quantum mechanical equations. In this respect, it
is important to realize that the first quantization procedure ([xj , pi] = ih̄δij) is already done
in the Maxwell equation.

E.1 Gauge Invariance

The Maxwell equation is written in terms ofE andB. Now, if one introduces the vector
potentialA as

B = ∇×A (E.1.1)

then eq.(E.0.2) can be always satisfied since

∇ ·B = ∇ ·∇×A = ∇×∇ ·A = 0.

Therefore, one often employs the vector potential in order to solve the Maxwell equation.
However, one notices in this case that the number of the degrees of freedom is still 3, that is,
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Ax, Ay, Az in spite of the fact that we made use of one equation [eq.(E.0.2)]. This means
that there must be a redundancy in the vector potential. This is the gauge freedom, that is,
if one transforms

A = A′ + ∇χ (E.1.2a)

then the magnetic fieldB does not depend onχ

B = ∇×A = ∇×A′ + ∇×∇χ = ∇×A′,

whereχ is an arbitrary function that depends on(r, t). Now, Faraday’s law [eq.(E.0.3)]
can be rewritten by using the vector potential,

∇×
(

E +
∂A

∂t

)
= 0. (E.1.3)

This means that one can write the electric fieldE as

E = −∇A0 − ∂A

∂t
, (E.1.4)

whereA0 is an arbitrary function of(r, t) and is called electrostatic potential. SinceE in
eq.(E.1.4) must be invariant under the gauge transformation of eq.(E.1.2a), it suggests that
A0 should be transformed under the gauge transformation as

A0 = A′0 −
∂χ

∂t
. (E.1.2b)

In this case, the electric field is invariant under the gauge transformation of eqs.(E.1.2)

E = −∇A0 − ∂A

∂t
= −∇

(
A′0 −

∂χ

∂t

)
− ∂

∂t

(
A′ + ∇χ

)
= −∇A′0 −

∂A′

∂t

and eq.(E.1.4) can automatically reproduce Faraday’s law since

∇×E = −∇×∇A0 −∇× ∂A

∂t
= −∂B

∂t
.

E.2 Derivation of Lorenz Force in Classical Mechanics

The interaction of electrons with the electromagnetic forces in nonrelativistic kinematics
can be determined from the gauge invariance. This is remarkable and therefore we ex-
plain the derivation below since it is indeed interesting to learn the basic mechanism of the
interaction. First, one starts from a free electron Lagrangian in classical mechanics

L =
1
2

mṙ2. (E.2.1)

When one wishes to add any interaction of electron withA andA0 to the above Lagrangian,
one sees that the Lagrangian must be linear functions ofA andA0. This is clear since the
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Lagrangian must be gauge invariant under eqs.(E.1.2). From the parity and time reversal
invariance, one can write down the new Lagrangian

L =
1
2

mṙ2 + g(ṙ ·A−A0), (E.2.2)

whereg is a constant which cannot be determined from the gauge condition. When one
makes the gauge transformation

A = A′ + ∇χ, A0 = A′0 −
∂χ

∂t

one obtains

L =
1
2

mṙ2 + g(ṙ ·A′ −A′0) + g
dχ

dt
. (E.2.3)

Since the total derivative in the Lagrangian does not have any effects on the equation of
motion, eq.(E.2.2) is invariant under the gauge transformation. It is amazing that the shape
of the Lagrangian for electrons interacting with the electromagnetic fields is determined
from the gauge invariance.

It is now easy to calculate the equation of motion for electron,

mr̈ = gṙ ×B + gE, (E.2.4)

where the first term in the right hand side corresponds to the Lorenz force.

E.3 Number of Independent Functional Variables

The Maxwell equations are described in terms of the electric fieldE and the magnetic field
B. Once the charge densityρ and the current densityj are given, then one can determine
the fieldsE, B. It should be important to count the number of the unknown functional
variables and the number of equations.

E.3.1 Electric and Magnetic fieldsE and B

In terms of the electric fieldE and the magnetic fieldB, it is easy to count the number of
the functional variables. The number is six since one has

Ex, Ey, Ez, Bx, By, Bz. (E.3.1)

On the other hand, the number of equations looks eight since the Gauss law [eq.(E.0.1)] and
no magnetic monopole [eq.(E.0.2)] give two equations, and Faraday’s law [eq.(E.0.3)] and
Ampere’s law [eq.(E.0.4)] seem to have six equations. However, Faraday’s law gives only
two equations since there is one constraint because

∇×E +
∂B

∂t
= 0 −→ ∇ ·

(
∇×E +

∂B

∂t

)
= ∇×∇ ·E +

∂(∇ ·B)
∂t

= 0. (E.3.2)
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In addition, Ampere’s law has two equations since there is one constraint due to the conti-
nuity equation because

∇×B − j − ∂E

∂t
= 0 −→ ∇ ·

(
∇×B − j − ∂E

∂t

)

= ∇×∇ ·B −∇ · j − ∂ρ

∂t
= 0. (E.3.3)

Therefore, the number of the Maxwell equations is six which agrees with the number of the
independent functional variables as expected.

Integrated Gauss’s Law

In the electro-static exercise problems, one often employs the integrated Gauss law
∫

S

E · dS =
∫

V

∇ ·E d3r =
∫

V

ρ d3r = Q. (E.3.4)

For the spherical charge distribution ofρ, for example, one can determine the electric field
Er in spite of the fact that one has employed only one equation of the Gauss law. This
is of course clear because the symmetry makes it possible to adjust the number of the
independent functional variableEr which is one and the number of equation which is also
one.

E.3.2 Vector FieldAµ and Gauge Freedom

When one introduces the vector fieldAµ as

B = ∇×A, E = −∇A0 − ∂A

∂t
(E.3.5)

then the number of the independent fields is four since

A0, Ax, Ay, Az. (E.3.6)

On the other hand, the number of equations is three since the Gauss law [eq.(E.0.1)] gives
one equation

−∇ ·
(

∇A0 +
∂A

∂t

)
= ρ (E.3.7)

and Ampere’s law gives two equations as discussed above due to the continuity equation

∇× (∇×A) = j − ∂

∂t

(
∇A0 +

∂A

∂t

)
. (E.3.8)

It is of course easy to see that no magnetic monopole

∇ ·B = ∇ ·∇×A = ∇×∇ ·A = 0 (E.3.9)
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and Faraday’s law

∇×E = ∇×
(
−∂A

∂t
−∇A0

)
= −∇× ∂A

∂t
= −∂B

∂t
(E.3.10)

are automatically satisfied in terms of the vector potentialAµ.

Gauge Freedom

Therefore, the number of the unknown functional variables is four, but the number of equa-
tions is three, and they are not the same. This redundancy of the vector field is just related to
the gauge freedom, and if one wishes to solve the Maxwell equations in terms of the vector
potentialAµ, then one should reduce the number of the functional variables of the vector
potential by fixing the gauge freedom.

Electromagnetic Wave

As an example, if there is no source term present [ρ = 0 andj = 0], then the solution of the
Maxwell equations with the Coulomb gauge fixing gives the electromagnetic wave which
is composed of the transverse field only

A0 = 0, Az = 0, (Ax, Ay) 6= 0, (E.3.11)

where the direction ofk is chosen to bez-direction.

E.4 Lagrangian Density of Electromagnetic Fields

For the electric fieldE and magnetic fieldB, the total energy of the system becomes

E =
1
2

∫
(EkEk + BkBk) d3r

=
1
2

∫ [(
Ȧk +

∂A0

∂xk

)2

+
(

∂Ak

∂xj

∂Ak

∂xj
− ∂Ak

∂xj

∂Aj

∂xk

)]
d3r. (E.4.1)

Now, one introduces the field strengthFµν as

Fµν = ∂µAν − ∂νAµ (E.4.2)

which is gauge invariant. In this case, one sees thatFµν just corresponds to the electric field
E and magnetic fieldB as

F0k = F k0 = −Fk0 = −F 0k = Ek, Fij = F ij = −Fji = −F ji = −εijkBk.
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The Lagrangian density can be written as

L =
1
2
(EkEk −BkBk) =

1
2

[(
Ȧk +

∂A0

∂xk

)2

−
(

∂Ak

∂xj

∂Ak

∂xj
− ∂Ak

∂xj

∂Aj

∂xk

)]
(E.4.3)

which leads to the following Lagrangian density

L =
1
4

(
−F0kF

0k − Fk0F
k0 − FjkF

jk
)

= −1
4

FµνF
µν . (E.4.4)

The Lagrange equation forAν is given as

∂µ
∂L

∂(∂µAν)
≡ ∂

∂t

∂L
∂Ȧ0

+
∂

∂xk

∂L
∂(∂Aν

∂xk
)

=
∂L
∂Aν

(E.4.5)

which becomes

[ν = 0] −→ ∂

∂xk

(
Ȧk +

∂A0

∂xk

)
= 0 −→ ∇ ·E = 0,

[ν = k] −→ ∂

∂t

(
Ȧk +

∂A0

∂xk

)
+

∂

∂xj
(εjkiBi) = 0 −→ ∂E

∂t
−∇×B = 0.

They are just the Maxwell equations [eqs.(E.0.1) and (E.0.4)] without any source terms.
Since no magnetic monopole and Faraday’s law [eqs.(E.0.2) and (E.0.43] can be automat-
ically satisfied in terms of the vector potentialAµ, the Lagrangian density of eq.(E.4.4) is
the right one that reproduces the Maxwell equations.

E.5 Boundary Condition for Photon

When there is no source term present (ρ = 0, j = 0), then eq.(E.3.8) becomes

(
∇2 − ∂2

∂t2

)
A = 0, (E.5.1)

where the Coulomb gauge fixing condition

∇ ·A = 0

is employed. In this case, one sees that eq.(E.5.1) is a quantum mechanical equation for
photon. Yet, one does not discuss the bound state of photon. This is clear since photon
cannot be confined. There is no bound state of photon in quantum mechanics and eq.(E.5.1)
has always the plane wave solution

A(x) =
∑

k

2∑

λ=1

1√
2V ωk

ελ

[
ck,λe−ikx + c†k,λeikx

]
, (E.5.2)
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where the polarization vectorsελ has two components

ε1 = (1, 0, 0), ε2 = (0, 1, 0) (E.5.3)

when the direction ofk is chosen to bez-direction.
This is basically due to the fact that photon is massless and therefore one cannot specify

the system one measures. It always propagates with the speed of light! But still the equation
derived from the Maxwell equation is a quantum mechanical equation of motion, though
relativistic.





Appendix F

Regularizations and
Renormalizations

In quantum field theory, one often faces to the regularization which is not very easy to
understand. Mathematically it is straightforward, but the connection of the regularization
with physics is not at all simple.

F.1 Euler’s Regularization

Here, we first explain Euler’s regularization which has nothing to do with physics, at least,
at the time of derivation. However, we can learn the essence of the regularization from this
mathematical example.

F.1.1 Abelian Summation

Let us define the following abelian summationN0

N0 =
∞∑

n=0

(−)n. (F.1.1)

This quantity has no definite value as long as one makes the summation as it is.

F.1.2 Regularized Abelian Summation

Now, one regularizes this quantity as

Nλ =
∞∑

n=0

(−)ne−nλ, (F.1.2)
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whereλ is a positive value which is eventually set to zero. The summation of eq.(F.1.2)
can be carried out in a straightforward way, and one obtains

N0 = lim
λ→0

1
1 + e−λ

=
1
2

. (F.1.3)

In this way, one obtains the finite value for the summation of(−)n if one regularizes the
summation in a proper way. It is no doubt that quantities defined in eqs.(F.1.1) and (F.1.2)
are mathematically different from each other. If there is any model in physics which can
realize the procedure described above, then one should employ the above procedure of
eq.(F.1.2) as the regularization. Therefore, the regularization is closely connected with
field theory models in physical world.

F.2 Chiral Anomaly

In the massless QED2, one finds that the axial vector current is classically conserved due to
Noether’s theorem in the Lagrangian density

∂µjµ
5 = 0.

However, the conservation of the axial vector current is violated when the vacuum state is
regularized in a gauge invariant fashion. Here, we discuss how the anomaly appears when
regularized and show it in an explicit calculation.

F.2.1 Charge and Chiral Charge of Vacuum

In the vacuum of the Dirac fields, all the negative energy states are filled with the negative
energy particles. In this case, one often asks what is the charge and the chiral charge of the
vacuum states.

Here, we consider the Schwinger model which is the two dimensional field theory
model. In this case, the charge and the chiral charge of the vacuum states can be defined as

Q =
n0∑

n=−∞
+

∞∑

n=n0+1

, (F.2.1a)

Q5 =
n0∑

n=−∞
−

∞∑

n=n0+1

. (F.2.1b)

It is obvious that the summation of theQ andQ5 does not make sense.



F.2. Chiral Anomaly 249

F.2.2 Large Gauge Transformation

Now, one wishes to regularize the above charge and chiral charge. Here, one makes the
regularization so that the regularization procedure is consistent with the so calledlarge
gauge transformation.

Qλ =
n0∑

n=−∞
eλ(n+Lg

2π
A1) +

∞∑

n=n0+1

e−λ(n+Lg
2π

A1), (F.2.2a)

Q5
λ =

n0∑
n=−∞

eλ(n+Lg
2π

A1) −
∞∑

n=n0+1

e−λ(n+Lg
2π

A1), (F.2.2a)

whereL, g and A1 denote the box length, the gauge coupling constant and the vector
potential, respectively. Here, the vector potentialA1 depends only on time. The reason
why the term(n + Lg

2π A1) appears is because the Hamiltonian of the Schwinger model has
the invariance under the large gauge transformation

A1 → A1 +
2π

Lg
N, N integer.

Therefore, it is natural to assume that the regularization should keep this invariance.

F.2.3 Regularized Charge

In this case, the regularized chargeQλ and the chiral chargeQ5
λ become

Qλ =
2
λ

+ O(λ), (F.2.3a)

Q5
λ = 2n0 + 1 +

Lg

π
A1 + O(λ). (F.2.3b)

Now, one should letλ very small, and then the chargeQ becomes infinity. But this is of
course expected since one counts the number of the particles in the negative energy states
which must be infinity. Since this number has no meaning in the vacuum, one can reset the
chargeQ to zero.

On the other hand, the chiral chargeQ5 is finite when the value ofλ is set to zero.
This means that the chiral charge of the vacuum is not conserved sinceA1 depends on
time! This is somewhat strange since the Schwinger model has the chiral symmetry in the
classical Lagrangian density. But the regularization induces the non-conservation of the
chiral charge and this is calledanomaly. In four dimensional QED, the same phenomena
occur and the presence of the anomaly is indeed confirmed by experiments.
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F.2.4 Anomaly Equation

If one makes a time derivative ofQ5, then one obtains

Q̇5 =
Lg

π
Ȧ1. (F.2.4)

SinceQ5 is described as

Q5 =
∫

j0
5(x) dx (F.2.5)

one can rewrite eq.(F.2.4) as

∂µjµ
5 =

g

2π
εµνF

µν , (F.2.6)

whereεµν denotes the anti-symmetric symbol in two dimensions. That is,

ε01 = −ε10 = 1, ε00 = ε11 = 0.

Eq.(F.2.6) clearly shows that the conservation of the axial vector current does not hold any
more due to the anomaly.

Physics of Anomaly

Physics of the anomaly is closely related to the gauge invariant regularization of the energy
and charge of the vacuum state. Since we respect most the local gauge invariance in the reg-
ularization procedure, the axial vector current conservation is violated. The regularization
of the charge is originated from the field quantization, and therefore one may say that the
quantization and the local gauge invariance induce the violation of the axial vector current
conservation.

F.3 Index of Renormalizability

Field theory models have infinite degrees of freedom, and therefore some of the quanti-
ties which are evaluated perturbatively become infinity. When the infinite quantity can be
renormalized into some constants such as the coupling constant or fermion mass, this field
theory model is called ”renormalizable”. When one calculates a dimensionless quantityÔ
in the perturbation theory, then one can expand the expectation value ofÔ in terms of the
coupling constantg as

〈Ô〉 = c0 + c1g + c2g
2 + · · ·+ cngn + · · · . (F.3.1)

F.3.1 Renormalizable

If the coupling constantg is dimensionless, then one sees thatc1 should depend on the
cut-off momentumΛ, at most,

c1 ∼ ln(Λ/m). (F.3.2)
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The logarithmic dependence of the cut-off momentumΛ is not at all serious. This is clear
since even if one makesΛ very large,ln(Λ/m) is just some number. In addition,cn should
be described in terms of some function ofln(Λ/m) as

cn ∼ fn (ln(Λ/m)) . (F.3.3)

Therefore, one can expect that this field theory model must be renormalizable since the
infinity only comes fromln(Λ/m).

F.3.2 Unrenormalizable

On the other hand, if the coupling constantg has a mass inverse dimension, then one sees
that

c1 ∼ Λ. (F.3.4)

This is difficult since the〈O〉 becomes quickly infinity whenΛ becomes very large. In
addition,cn should behave as

cn ∼ Λn. (F.3.5)

In this case, it is impossible to adjust the parameters to renormalize the theory since then-th
order perturbative calculations diverge at the different level of theΛ dependence. Namely,
to then-th order perturbation evaluation, one needs a new parameter to adjust a new level
of infinity. Therefore, one sees that the field theory model with the coupling constant of the
mass inverse dimension cannot be renormalized perturbatively.

If one solves it non-perturbatively, then it should be a different story. However, at the
present stage, we cannot say more what should happen to this field theory model if it is
solved exactly.

F.3.3 Summary of Renormalizability

Here, we summarize the renormalizability conditions. The coupling constantg is defined
in the interaction Lagrangian density in the following shape.

QED : LI = gψ̄Aµγµψ,

QCD : LI = gψ̄Aa
µT aγµψ,

Thirring : LI = g(ψ̄γµψ)(ψ̄γµψ),

NJL : LI = g
[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

]
.

Renormalizability conditions

g ∼ M1 super-renormalizable QED2, QCD2

g ∼ M0 renormalizable QED4, QCD4, Thirring
g ∼ M−1 unrenormalizable
g ∼ M−2 unrenormalizable NJL
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QED2: Quantum electrodynamics in two dimensions D.

QCD2: Quantum chromodynamics in two dimensions D.

QED4: Quantum electrodynamics in four dimensions D.

QCD4: Quantum chromodynamics in four dimensions D.

Thirring: current- current interaction model in two dimensions D.

NJL: current- current interaction model in four dimensions D.

F.4 Infinity in Physics

In physics, there appear many kinds of infinities. Mathematically, infinity is simply denoted
as∞. For example, when one has to take the thermodynamic limit, one says that the box
lengthL must be set to infinityL → ∞. However, in physics, the above equation does
not make sense since there is no infinity in reality. In other words, if one calculates some
quantity in atomic system and has to take the thermodynamic limit, thenL = 6.4 × 106

m (the earth radius) is of course infinity since the atomic scale is of the order10−6 cm, at
most.

In this respect, the physical meaning ofL → ∞ is that the box lengthL must be
much larger than any of the relevant scales in the system of the model. If one has to take
an infinity in the mathematical sense, then it indicates that the model one considers is too
much simplified and should be improved to introduce some relevant scale such that the new
scale can play some role in the model.

Also, when one evaluates the momentum integral in the perturbation theory, then the
integral ranges from−Λ to Λ whereΛ is set to infinity. However, the infinity of this cutoff
momentumΛ means again that it should be much larger than any of the relevant mass
scalem

Λ À m.

For example, if the value ofΛ is
Λ ∼ 108 m

then it is physically sufficiently larger thanm. The important point is that one should build
a scheme in which physical observables should not depend on the choice of theΛ value if
it is sufficiently larger than any of the mass scales.

In this respect, the logarithmic divergenceln( Λ
m) is just a number for the infinity of the

cutoff momentumΛ. For example, the value ofΛ ∼ 108 m gives

ln
(

Λ
m

)
' ln 108 ' 18

which is not at all a large value. This indicates that one should not worry about the loga-
rithmic divergenceln( Λ

m) when one renormalizes the infinity of the self-energy diagrams
as discussed in Appendix I.
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Path Integral Formulation

The path integral in quantum mechanics can be obtained by rewriting the quantum mechan-
ical amplitudeK(x, x′ : t) into many dimensional integrations over discretized coordinates
xn. We discuss some examples which can be related to physical observables. However, the
path integral expression cannot be connected to the dynamics of classical mechanics, even
though, superficially, there is some similarity between them. Then, we show Feynman’s for-
mulation of the path integral in quantum electrodynamics (QED), which is based on many
dimensional integrations over the parametersqk,λ appearing in the vector potential. This
should be indeed connected to the second quantization in field theory models. However,
the field theory path integral formulation in most of the textbooks is normally defined in
terms of many dimensional integrations over fields. In this case, the path integral does not
correspond to the field quantization. Here, we clarify what should be the problems of the
path integral formulation over the field variables and why the integrations over fields do not
correspond to the field quantization.

G.1 Path Integral in Quantum Mechanics

The path integral formulation in one dimensional quantum mechanics starts from the am-
plitudeK(x, x′ : t) which is defined by

K(x, x′ : t) = 〈x′|e−iHt|x〉, (G.1.1)

where the system is specified by the HamiltonianH. In the field theory textbooks, one
often finds the expression of the amplitudeK(x, x′ : t) in terms of the transition between
the state|x, t〉 and|x′, t′〉 as

〈x′, t′|x, t〉 −→ 〈x′|e−iH(t′−t)|x〉. (G.1.2)

However, the state|x, t〉 is not an eigenstate of the Hamiltonian and therefore, one cannot
prove the rightarrow of eq.(G.1.2). Instead, we should rewrite the amplitudeK(x, x′ : t) so

253
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as to understand its physical meaning

K(x, x′ : t) = 〈x′|e−iHt|x〉 =
∑

n

ψn(x′)ψ†n(x)e−iEnt, (G.1.3)

whereψn(x) andEn should be the eigenstate and the eigenvalue of the HamiltonianH. We
note that eq.(G.1.3) is not yet directly related to physical observables.

G.1.1 Path Integral Expression

We start from the amplitudeK(x′, x : t)

K(x′, x : t) = 〈x′|e−iHt|x〉,
where the Hamiltonian in one dimension is given as

H =
p̂2

2m
+ U(x) = − 1

2m

∂2

∂x2
+ U(x). (G.1.4)

Here, a particle with its massm is bound in the potentialU(x). Now, one can maken
partitions oft andx′ − x, and therefore we label the discretized coordinatex as

x = x0, x1, x2, . . . , x
′ = xn. (G.1.5)

In this case, we assume that eachxi andp should satisfy the following completeness rela-
tions

∞∫

−∞
dxi |xi〉〈xi| = 1, 〈xi|p〉 =

1√
2π

eipxi ,

∞∫

−∞
dp|p〉〈p| = 1 (i = 1, . . . , n), (G.1.6)

Therefore,K(x′, x : t) becomes
K(x′, x : t)

=

∞∫

−∞
dx1 · · ·

∞∫

−∞
dxn−1 〈x′|e−iH∆t|xn−1〉〈xn−1|e−iH∆t|xn−2〉 · · · 〈x1|e−iH∆t|x〉, (G.1.7)

where∆t is defined as∆t = t
n . Further, one can calculate the matrix elements, for exam-

ple, as

〈x1|e−iH∆t|x〉 = 〈x1| exp
[
−i

(
−∆t

2m

∂2

∂x2
+ U(x)∆t

)]
|x〉

' exp(−iU(x)∆t)〈x1| exp
(

i
∆t

2m

∂2

∂x2

)
|x〉+ O((∆t)2). (G.1.8)

In addition, 〈x1|ei ∆t
2m

∂2

∂x2 |x〉 can be evaluated by inserting a complete set of momentum
states

〈x1| exp
(

i
∆t

2m

∂2

∂x2

)
|x〉
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=

∞∫

−∞

dp

2π
e−i p2

2m
∆t e−ip(x−x1) =

√
m

2iπ∆t
e−i

m(x−x1)2

2∆t . (G.1.9)

Therefore, one finds now the path integral expression forK(x′, x : t)

K(x′, x : t) = lim
n→∞

( m

2iπ∆t

)n
2 ×

∞∫

−∞
dx1 · · ·

∞∫

−∞
dxn−1 exp

{
i

n∑

k=1

(
m(xk − xk−1)2

2∆t
− U(xk)∆t

)}
, (G.1.10a)

wherex0 = x andxn = x′, respectively. Since the classical actionS is given as

S =

t∫

0

dt

(
1
2

mẋ2 − U(x)
)

= lim
n→∞

n∑

k=1

∆t

{
m

2

(
xk − xk−1

∆t

)2

− U(xk)

}
(G.1.11)

the amplitude can be symbolically written as

K(x′, x : t) = N
∫

[Dx] exp



i

t∫

0

(
1
2

mẋ2 − U(x)
)

dt



 , (G.1.10b)

whereN ∫
[Dx] is defined as

N
∫

[Dx] ≡ lim
n→∞

( m

2iπ∆t

)n
2

∞∫

−∞
dx1 · · ·

∞∫

−∞
dxn−1.

This is indeed amazing in that the quantum mechanical amplitude is connected to the La-
grangian of the classical mechanics for a particle with its massm in the same potential
U(x). Since the procedure of obtaining eq.(G.1.10) is just to rewrite the amplitude by in-
serting the complete set of the|xn〉 states, there is no mathematical problem involved in
evaluating eq.(G.1.10).

G.1.2 Physical Mmeaning of Path Integral

However, the physical meaning of the procedure is not at all easy to understand.
It is clear that eq.(G.1.10a) is well defined and there is no problem since it simply

involves mathematics. However, there is a big jump from eq.(G.1.10a) to eq.(G.1.10b), even
though it looks straightforward. Eq.(G.1.10b) indicates that the first term of eq.(G.1.10b)
in the curly bracket is the kinetic energy of the particle in classical mechanics. In this
case, however,xk andxk−1 cannot be varied independently as one sees it from classical
mechanics since it is related to the time derivative. On the other hand, they must be varied
independently in the original version of eq.(G.1.10a) since it has nothing to do with the
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time derivative in the process of the evaluation. This is clear since, in quantum mechanics,
time and coordinate are independent from each other. Therefore, it is difficult to interpret
the first term of eq.(G.1.10a) as the kinetic energy term in classical mechanics. Secondly,
the procedure of rewriting the amplitude is closely connected to the fact that the kinetic
energy of the Hamiltonian is quadratic inp, that is, it is described asp

2

2m . In this respect, the
fundamental ingredients of the path integral formulation must lie in eq.(G.1.9) which relates
the momentum operatorp2 to the time derivative of the coordinatex under the condition
that xk andxk−1 are sufficiently close to each other. In this sense, if the kinetic energy
operator were linear inp like the Dirac equation, then there is no chance to rewrite the
amplitude since the Gaussian integral is crucial in evaluating the integral.

Therefore, it should be difficult to claim that eq.(G.1.10a) can correspond to the dy-
namics of classical mechanics, even though, superficially, there is some similarity be-
tween them. In other words, it is hard to prove that the quantum mechanical expression
of K(x′, x : t) is related to any dynamics of classical mechanics. One may say that
K(x′, x : t) happens to have a similar shape to classical Lagrangian, mathematically, but,
physically it has nothing to do with the dynamics of classical mechanics.

No summation of Classical Path

In some of the path integral textbooks, one finds the interpretation that the quantum mechan-
ical dynamics can be obtained by summing up all possible paths in the classical mechanical
trajectories. However, if one starts from eq.(G.1.10b) and tries to sum up all the possible
paths, then one has to find the functional dependence of the coordinates on time and should
integrate over all the possible coordinate configurations as the function of time. This should
be quite different from the expression of eq.(G.1.10a). If one wishes to sum up all the pos-
sible paths in eq.(G.1.10b), then one may have to first consider the following expression of
the coordinatex as the function of time

x = xcl(t′) +
∞∑

n=1

yn sin
(

2πn

t

)
t′,

wherexcl(t′) denotes the classical coordinate that satisfies the Newton equation of motion
with the initial conditions ofxcl(0) = x andxcl(t) = x′. The amplitudeyn is the expan-
sion coefficient. Therefore, the integrations over all the paths should mean that one should
integrate over

∞∏

n=1

∞∫

−∞
dyn

and, in this case, one can easily check that the calculated result of the integration over all the
paths cannot reproduce the proper quantum mechanical result for the harmonic oscillator
case. This simply means that the integration overdx1 · · · dxn−1 in eq.(G.1.10a) and the
integration over classical paths are completely different from each other, which is a natural
result. This fact is certainly known to some careful physicists, but most of the path integral
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textbooks are reluctant to putting emphasis on the fact that the classical trajectories should
not be summed up in the path integral formulation. Rather, they say that the summation of
all the classical paths should correspond to the quantization by the path integral, which is a
wrong and misleading statement.

G.1.3 Advantage of Path Integral

What should be any merits of the path integral formulation? Eqs.(G.1.10) indicate that one
can carry out the first quantization of the classical system once the Lagrangian is given
where the kinetic energy term should have a quadratic shape, that is,cẋ2 with c some
constant. In this case, one can obtain the quantized expression just by tracing back from
eq.(G.1.10b) to eq.(G.1.10a).

There is an advantage of the path integral formulation. That is, one does not have to
solve the differential equation. Instead, one should carry out many dimensional integrations.
It is, of course, not at all clear whether the many dimensional integrations may have some
advantage over solving the differential equation or not. However, one can, at least, claim
that the procedure of the many dimensional integrations is indeed an alternative method to
solving the Schr̈odinger equation.

G.1.4 Harmonic Oscillator Case

When the potentialU(x) is a harmonic oscillator

U(x) =
1
2

mω2x2

then one can evaluate the amplitude analytically after some lengthy calculations

K(x′, x : t) =
√

mω

2iπ sinωt
exp

{
i
mω

2

[
(x′2 + x2) cot ωt− 2x′x

sinωt

]}
. (G.1.12)

On the other hand, one finds

K(x, x : t) = 〈x|e−iHt|x〉 =
∑

n

e−iEnt|ψn(x)|2. (G.1.13)

Therefore, if one integratesK(x, x : t) over all space, then one obtains

∞∫

−∞
dxK(x, x : t) =

∞∑

n=0

e−iEnt =

∞∫

−∞
dx

√
mω

2iπ sinωt
e−imωx2 tan ωt

2

=
1

2i sin ωt
2

. (G.1.14)
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Since the last term can be expanded as

1
2i sin ωt

2

=
e−

i
2
ωt

1− e−iωt
= e−

i
2
ωt

∞∑

n=0

(e−iωt)n =
∞∑

n=0

e−iωt(n+ 1
2
) (G.1.15)

one obtains by comparing two equations

En = ω

(
n +

1
2

)
(G.1.16)

which is just the right energy eigenvalue of the harmonic oscillator potential in quantum
mechanics.

It should be important to note that the evaluation of eq.(G.1.12) is entirely based on the
expression of eq.(G.1.10a) which is just the quantum mechanical equation. Therefore, this
example of the harmonic oscillator case shows that the rewriting of the amplitudeK(x′, x :
t) is properly done in obtaining eq.(G.1.10a). This does not prove any connection of the
K(x′, x : t) to the classical mechanics.

G.2 Path Integral in Field Theory

The basic notion of the path integral was introduced by Feynman [56, 57, 58], and the for-
mulation of the path integral in quantum mechanics is given in terms of many dimensional
integrations of the discretized coordinatesxn. As one sees from eq.(G.1.10), the amplitude
is expressed in terms of many dimensional integrations with the weight factor ofeiS where
S is the action of the classical mechanics. This was, of course, surprising and interesting.
However, as Feynman noted in his original papers, the path integral expression is not more
than the ordinary quantum mechanics.

When the classical particle interacts with the electromagnetic fieldA, the amplitude
of the particle can be expressed in terms of the many dimensional integrations of the ac-
tion of the classical particle. However, the electromagnetic fieldA is already a quantum
mechanical object, and therefore, there is no need for the first quantization in the Maxwell
equation. However, when one wishes to treat physical processes which involve the absorp-
tion or emission of photon, then one has to quantize the electromagnetic fieldA which is
called field quantization or second quantization.

G.2.1 Field Quantization

The field quantization of the electromagnetic fieldA can be done by expanding the fieldA
in terms of the plane wave solutions

A(x) =
∑

k

2∑

λ=1

1√
2V ωk

ε(k, λ)
[
ck,λe−ikx + c†k,λeikx

]
. (G.2.1)
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The field quantization requires thatck,λ and c†k,λ should be operators which satisfy the
following commutation relations

[ck,λ, c†k′,λ′ ] = δk,k′δλ,λ′ (G.2.2)

and all other commutation relations should vanish. This is the standard way of the second
quantization procedure even though it is not understood well from the fundamental princi-
ple. However, it is obviously required from experiments since electron emits photon when
it decays from the2p 1

2
state to the1s 1

2
state in hydrogen atom.

G.2.2 Field Quantization in Path Integral (Feynman’s Ansatz)

In his original paper, Feynman proposed a new method to quantize the electromagnetic field
A in terms of the path integral formulation [56, 57, 58]. Here, we should first describe his
formulation of the path integral. For the fermion part, he employed the particle expression,
and therefore the path integral is defined in terms of quantum mechanics.

For the gauge field, Feynman started from the Hamiltonian formulation of the electro-
magnetic field. The Hamiltonian of the electromagnetic field can be expressed in terms of
the sum of the harmonic oscillators

Hel =
1
2

∑

k,λ

(
p2
k,λ + k2q2

k,λ

)
, (G.2.3)

wherepk,λ is a conjugate momentum toqk,λ. Here, it should be noted that theqk,λ corre-
sponds to the amplitude of the vector potentialA(x). The classicalck,λ andc†k,λ can be
expressed in terms ofpk,λ andqk,λ as

ck,λ =
1√
2ωk

(pk,λ − iωkqk,λ) , (G.2.4a)

c†k,λ =
1√
2ωk

(pk,λ + iωkqk,λ) . (G.2.4b)

In this case, the Hamiltonian can be written in terms ofck,λ andc†k,λ as

Hel =
1
2

∑

k,λ

ωk

(
c†k,λck,λ + ck,λc†k,λ

)
. (G.2.5)

It should be important to note that the Hamiltonian of eq.(G.2.3) is originated from the
Hamiltonian of field theory and it has nothing to do with the classical Hamiltonian of New-
ton dynamics. For the electromagnetic field, there is no corresponding Hamiltonian of the
Newton dynamics.
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Feynman’s Ansatz

Feynman proposed a unique way of carrying out the field quantization [56, 57, 58]. Since
the Hamiltonian of the electromagnetic field can be written as the sum of the harmonic
oscillators, he presented the path integral formulation for the electromagnetic field

K(qk,λ, q′k,λ, t) ≡ N
∫

[Dqk,λ] exp





i

2

t∫

0

∑

k,λ

(
q̇2
k,λ − k2q2

k,λ

)
dt



 (G.2.6)

which should correspond to the quantization of the variablesqk,λ, and this corresponds to
the quantization of theck,λ andc†k,λ. Thus, it is the second quantization of the electromag-
netic field.

In this expression, there is an important assumption for the coordinatesqk,λ which are
the parameters appearing in the vector potential. That is, the states|qk,λ〉 should make a
complete set. Only under this assumption, one can derive the quantization of the harmonic
oscillators. Since this is the parameter space, it may not be easy to prove the completeness
of the states|qk,λ〉. Nevertheless, Feynman made use of the path integral expression to
obtain the Feynman rules in the perturbation theory for QED. It may also be important to
note that the path integral in Feynman’s method has nothing to do with the integration of
the configuration space. It is clear that one should not integrate out over the configuration
space in the path integral since the field quantization should be done for the parametersck,λ

andc†k,λ.

G.2.3 Electrons Interacting through Gauge Fields

When one treats the system in which electrons are interacting through electromagnetic
fields, one can write the whole system in terms of the path integral formulation. In this
case, however, we treat electrons in the non-relativistic quantum mechanics. The electro-
magnetic fields are treated just in the same way as the previous section.

K(qk,λ, q′k,λ, r, r′, t)

≡N
∫

[Dr][Dqk,λ] exp



i

t∫

0


1

2
mṙ2−gṙ ·A(r)+

1
2

∑

k,λ

(
q̇2
k,λ−k2q2

k,λ

)

 dt



 , (G.2.7)

where the vector potentialA is given in eq.(G.2.1)

A(x) =
∑

k

2∑

λ=1

ε(k, λ)√
V ωk

[
q̇k,λ cos(k · r) + ωkqk,λ sin(k · r)

]
(G.2.8)

which is now rewritten in terms of the variablesqk,λ.
It should be noted that the path integral formulation works only for the electromagnetic

field since its field Hamiltonian can be described by the sum of the harmonic oscillators.
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This is a very special case, and there is only little chance that one can extend his path
integral formulation to other field theory models. In particular, it should be hopeless to
extend the path integral formulation to the field quantization of quantum chromodynamics
(QCD) since QCD includes fourth powers ofqk,λ. In this case, one cannot carry out the
Gaussian integral in the parameter space ofqk,λ.

G.3 Problems in Field Theory Path Integral

In this section, we discuss the problems in the standard treatment of the path integral formu-
lation in field theory models. Normally, one starts from writing the path integral formulation
in terms of the many dimensional integrations over field variables [33, 34].

G.3.1 Real Scalar Field as Example

For simplicity, we take a real scalar field in 1+1 dimensions. In most of the field theory
textbooks, the amplitudeZ is written as

Z = N
∫

[Dφ(t, x)] exp
[
i

∫
L(φ, ∂µφ) dt dx

]
, (G.3.1)

where the Lagrangian densityL(φ, ∂µφ) is given as

L(φ, ∂µφ) =
1
2

(
∂φ

∂t

)2

− 1
2

(
∂φ

∂x

)2

− 1
2

m2φ2. (G.3.2)

If we rewrite the path integral definition explicitly in terms of the field variable integrations
like eq.(G.1.10), we find

Z = N lim
n→∞

∞∫

−∞
· · ·

∞∫

−∞

n∏

k,`=1

dφk,`

× exp


i

n∑

k,`=1

∆t∆x

(
(φk,` − φk−1,`)2

2(∆t)2
− (φk,` − φk,`−1)2

2(∆x)2
− 1

2
m2φ2

k,`

)
 , (G.3.3)

whereφk,` is defined as

φk,` = φ(tk, x`), with t1 = t, · · · , tn = t′ and x1 = x, · · · , xn = x′. (G.3.4)

Also, ∆t and∆x are defined as

∆t =
(t− t′)

n
, ∆x =

(x− x′)
n

. (G.3.5)

Now, we should examine the physical meaning of the expression of the amplitudeZ in
eq.(G.3.3), and clarify as to what are the problems in eq.(G.3.3) in connection to the field
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quantization. The first problem is that eq.(G.3.3) does not contain any quantity which is
connected to the initial and final states. This is clear since, in eq.(G.3.3), one should in-
tegrate over fields as defined and therefore no information ofφ(t, x) andφ(t′, x′) is left
while, in quantum mechanics version, the amplitude is described by the quantitiesψn(x)
andψ†n(x′) which are the eigenstates of the Hamiltonian. The second problem is that the
calculated result of the amplitudeZ must be only a function ofm,∆t, ∆x, that is

Z = f(m,∆t, ∆x). (G.3.6)

This shows that the formulation which is started from many dimensional integrations over
the fieldφ(t, x) has nothing to do with the second quantization. In addition,Z depends on
the artificial parameters∆t and∆x, and this clearly shows that it cannot be related to any
physical observables.

This is in contrast with the formulation of eq.(G.2.7) where the amplitudeK is specified
by the quantum number of the parameter spaceqk,λ which is connected to the state with a
proper number of photons, and it must be a function ofm, g, qk,λ

K = f(m, g, qk,λ, q′k,λ). (G.3.7)

In addition, theK does not depend on the parameters∆t and∆x, which is a natural result
as one can see it from the quantum mechanical path integral formulation.

Finally, we note that the treatment of Feynman is based on the total QED Hamiltonian
which is a conserved quantity. On the other hand, eq.(G.3.3) is based on the action which
is obtained by integrating the Lagrangian density over space and time. As one knows, the
Lagrangian density is not directly related to physical observables. Therefore, unless one
can confirm that the path integral is reduced to the quantum mechanical amplitude like
eq.(G.1.10), one cannot make use of the field theory path integral formulation. In fact,
one cannot rewrite the expression of eq.(G.3.3) in terms of the field theory Hamiltonian
densityH, contrary to the path integral formulation in quantum mechanics. This shows
that the amplitudeZ has nothing to do with the amplitudeK in eq.(G.2.7). In this respect,
the amplitudeZ has no physical meaning, and therefore one cannot calculate any physical
quantities from the path integral formulation ofZ in field theory.

G.3.2 Lattice Field Theory

Most of the numerical calculations in the lattice field theory are based on the path integral
formulation of eq.(G.3.3). Unfortunately, the path integral formulation of eq.(G.3.3) has
lost its physical meaning, and therefore there is little chance that one can obtain any physics
out of numerical simulations of the lattice field theory. In this respect, it is, in a sense, not
surprising that the calculated result of Wilson’s area law [112] in QED is unphysical with
incorrect dimensions as we saw in Chapter 8.

Since Wilson’s calculation is presented analytically, it may be worth writing again the
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result of the Wilson loop calculation in QED as given in Chapter 8

W ≡ N
∏
m

∏
µ

∞∫

−∞
dBmµ exp

(
i
∑

P

Bnµ +
1

2g2

∑
nµν

eifnµν

)
. (8.49)

In the strong coupling limit, one can evaluate eq.(8.49) analytically as

W ' (g2)−∆S/a2
, (G.3.8)

where∆S should be an area encircled by the loop. This has the same behavior as that of
eq.(G.3.6) since the lattice constanta is equal toa = ∆x = ∆t, that is,

W = f(g,∆S, ∆x,∆t). (G.3.9)

This amplitudeW has the dependence of the artificial parameters∆t and ∆x. This is
completely different from eq.(G.3.7), and therefore one sees that the calculation of eq.(8.49)
has no physical meaning, contrary to Feynman’s treatment which has a right behavior as the
function of the field parametersqk,λ.

G.3.3 Physics of Field Quantization

The quantization of fields is required from experiment. Yet, it is theoretically quite difficult
to understand the basic physics of the field quantization. The fundamental step of the quan-
tization is that the Hamiltonian one considers becomes an operator after the quantization.
The reason why one considers the Hamiltonian is because it is a conserved quantity. In this
respect, one cannot quantize the Hamiltonian density since it is not a conserved quantity
yet. This is an important reason why one must quantize the field in terms of the creation
and annihilation operatorck,λ and c†k,λ in QED. In this respect, it is clear that the field

quantization must be done in terms ofck,λ andc†k,λ with which the Hamiltonian in classical
QED can be described.

G.3.4 No Connection between Fields and Classical Mechanics

Here, we should make a comment on the discretized coordinates and fields. The discretized
space is, of course, artificial, and there is no physics in the discretized fields and equations.
In some textbooks, the field equation is derived from the picture that the field is constructed
by the sum of springs in which the discretized coordinates of neighboring sites are con-
nected by the spring. This picture can reproduce the field equation for a massless scalar
field by adjusting some parameters, even though one started from a non-relativistic classi-
cal mechanics. However, this is obviously a wrong picture for a scalar field theory since the
field equation has nothing to do with classical mechanics. It is somewhat unfortunate that it
may have had some impact on the picture concerning lattice gauge field calculations as an
excuse to make use of the discretized classical fields. As we saw in the previous section, the
path integral formulation has nothing to do with the dynamics of classical mechanics, and
it is, of course, clear that the field theory path integral is never connected to any dynamics
of the classical field theory.
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G.4 Path Integral Function Z in Field Theory

As we saw in Section G.2, Feynman’s path integral formulation in terms of many dimen-
sional integrations in parameter space is indeed a plausible method to quantize the fields
in QED. However, people commonly use the expression of the amplitudeZ as defined in
eq.(G.3.1).

G.4.1 Path Integral Function in QCD

The “new formulation” of the path integral in QCD was introduced by Faddeev and Popov
who wrote theS-matrix elements as [32]

〈out|in〉 ≡ Z = N
∫

[DAa
µ(x)] exp

[
i

∫
LQCDd4x

]
, (G.4.1)

where the definition of the path integral volume[DAa
µ(x)] is just the same as the one ex-

plained in the previous section
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3). (G.4.2)

The Lagrangian densityLQCD for QCD is given as

LQCD = −1
2

Tr (GµνG
µν) , (G.4.3)

whereGµν denotes the field strength in QCD as given in Chapter 6

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ]. (G.4.4)

However, the expression of the path integral in QCD in eq.(G.4.1) does not correspond to
the field quantization. One can also understand why the path integral formulation of QCD
cannot be done, in contrast to Feynman’s integrations over the parameter space in QED.
In QCD, the Hamiltonian for gluons contains the fourth power ofqa

k,λ, and therefore one
cannot carry out the Gaussian integrations over the parametersqa

k,λ in QCD. As Feynman
stated repeatedly in his original papers, the path integral formulation is closely connected
to the Gaussian integration where the kinetic energy term in non-relativistic quantum me-
chanics is always described in terms of the quadratic termp2

2m . This naturally leads to the
conclusion that the path integral formulation cannot be properly constructed in QCD, and
this is consistent with the picture that QCD does not have a free Fock space due to its gauge
non-invariance.
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G.4.2 Fock Space

In quantum field theory, one must prepare Fock space since the Hamiltonian becomes an
operator. The second quantized formulation is based on the creation and annihilation op-
erators which act on the Fock space. In Feynman’s path integral formulation, he prepared
states which determine the number of photons in terms of|qk,λ〉. Therefore, he started
from the second quantized expression of the path integral formulation. However, Faddeev
and Popov simply employed the same formula of the Lagrangian density, but integrated
over the functionDAa

µ(x). This cannot specify any quantum numbers of the Fock space,
and therefore the integration over the functionDAa

µ(x) does not correspond to the field
quantization.





Appendix H

New Concept of Quantization

In this textbook, the first quantization of[xi, pj ] = iδij is employed to derive the Dirac
equation. Here, we present a new way of understanding the first quantization. From the
local gauge invariance and the Maxwell equation, one can derive the Lagrangian density of
the Dirac field without involving the first quantization. This leads to a new concept of the
quantization itself.

H.1 Derivation of Lagrangian Density of Dirac Field from
Gauge Invariance and Maxwell Equation

Dirac derived the Dirac equation by factorizing eq.(D.1.1) such that the field equation be-
comes the first order in time derivative. Now, one can derive the Lagrangian density of
Dirac field in an alternative way by employing the local gauge invariance and the Maxwell
equation as the most fundamental principle [50].

H.1.1 Lagrangian Density for Maxwell Equation

We start from the Lagrangian density that reproduces the Maxwell equation

L = −gjµAµ − 1
4

FµνF
µν , (H.1.1)

whereAµ is the gauge field, andFµν is the field strength and is given as

Fµν = ∂µAν − ∂νAµ.

jµ denotes the current density of matter field which couples to the electromagnetic field.
From the Lagrange equation, one obtains

∂µFµν = gjν (H.1.2)

which is just the Maxwell equation as we also saw in Appendix E.
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H.1.2 Four Component Spinor

Now, one can derive the kinetic energy term of the fermion Lagrangian density. First, one
assumes that the Dirac fermion should have four components

ψ =




ψ1

ψ2

ψ3

ψ4


 .

This is based on the observation that electron has spin degree of freedom which is two. In
addition, there must be positive and negative energy states since it is a relativistic field, and
therefore the fermion field should have 4 components.

16 Independent Components

Now, the matrix elements

ψ†Ôψ

can be classified into 16 independent Lorentz invariant components as

ψ̄ψ : scalar, ψ̄γ5ψ : pseudo− scalar, (H.1.3a)

ψ̄γµψ : 4 component vector, ψ̄γµγ5ψ : 4 component axial-vector, (H.1.3b)

ψ̄σµνψ : 6 component tensor, (H.1.3c)

whereψ̄ is defined for convenience as

ψ̄ = ψ†γ0.

These properties are determined by mathematics.

Shape of Vector Current

From the invariance consideration, one finds that the vector currentjµ must be written as

jµ = C0ψ̄γµψ, (H.1.4)

whereC0 is a constant. Since one can renormalize the constantC0 into the coupling con-
stantg, one can set without loss of generality

C0 = 1. (H.1.5)
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H.2 Shape of Lagrangian Density

Now, one can make use of the local gauge invariance of the Lagrangian density, and one
sees that the following shape of the Lagrangian density can keep the local gauge invariance

L = C1ψ̄∂µγµψ − gψ̄γµψAµ − 1
4

FµνF
µν , (H.2.1)

whereC1 is a constant. At this point, one requires that the Lagrangian density should be
invariant under the local gauge transformation

Aµ −→ Aµ + ∂µχ, (H.2.2a)

ψ −→ e−igχψ. (H.2.2b)

In this case, it is easy to find that the constantC1 must be

C1 = i. (H.2.3)

Here, the constant̄h should be included implicitly into the constantC1. The determination
of h̄ can be done only when one compares calculated results with experiment such as the
spectrum of hydrogen atom.

H.2.1 Mass Term

The Lagrangian density of eq.(H.2.1) still lacks the mass term. Since the mass term must
be a Lorentz scalar, it should be described as

C2ψ̄ψ (H.2.4)

which is, of course, gauge invariant as well. This constantC2 should be determined again
by comparing the calculated results of hydrogen atom, for example, with experiment. By
denotingC2 as(−m), one arrives at the Lagrangian density of a relativistic fermion which
couples with the electromagnetic fieldsAµ

L = iψ̄∂µγµψ − gψ̄γµψAµ −mψ̄ψ − 1
4

FµνF
µν (H.2.5)

which is just the Lagrangian density for the Dirac field interacting with electromagnetic
fields.

H.2.2 First Quantization

It is important to note that, in the procedure of deriving the Lagrangian density of eq.(H.2.5),
one has not made use of the quantization condition of

E → i
∂

∂t
, p → −i∇. (H.2.6)

Instead, the first quantization is automatically done by the gauge condition since the
Maxwell equation knows the first quantization in advance. This indicates that there may
be some chance to understand the first quantization procedure in depth since this method
gives an alternative way of the quantization condition of the energy and momentum.
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H.3 Two Component Spinor

The derivation of the Dirac equation in terms of the local gauge invariance shows that the
current density that can couple to the gauge fieldAµ must be rather limited. Here, we
discuss a possibility of finding field equation for the two component spinor. When the field
has only two components,

φ =
(

φ1

φ2

)

then one can prove that one cannot make the currentjµ that couples with the gauge field
Aµ. This can be easily seen since the matrix elements

φ†Ôφ

can be classified into 4 independent variables as

φ†φ : scalar, φ†σkφ : 3 component vector. (H.3.1)

Therefore, there is no chance to make four vector currents which may couple to the gauge
field Aµ. This way of making the Lagrangian density indicates that it should be difficult to
find a Lagrangian density of relativistic bosons.

H.4 Klein–Gordon Equation

In the new picture, the correspondence between (E,p) and the differential operators
(i ∂

∂t ,−i∇) can be obtained as a consequence from the Dirac equation

Dirac equation=⇒ E → i
∂

∂t
, p → −i∇.

Therefore, it should not be considered as the fundamental principle any more. This equation
can be applied to the non-relativistic motion since the Dirac equation can be reduced to the
Schr̈odinger equation in the non-relativistic limit. However, one cannot apply the above
relations to the relativistic kinematics since they are not the fundamental principle any more.
In this respect, the derivation of the Schrödinger equation by the replacement of the energy
and momentum by eq.(H.2.6)

E =
p2

2m
=⇒ i

∂ψ

∂t
= − 1

2m
∇2ψ

can be justified, but the Klein–Gordon equation

E2 = p2 + m2 =⇒ −∂2ψ

∂t2
=

(−∇2 + m2
)
ψ

may not be justified any more. Therefore, this picture shows that the Klein–Gordon equa-
tion should not be taken as the fundamental equation for the elementary particles.
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At the present stage, there is no way to derive the Klein–Gordon equation within the
new picture. Therefore, it is most likely that there should not exist any elementary Klein–
Gordon field of scalar bosons in nature, and in fact there is no elementary scalar boson
observed up to now. However, the study of scalar field is mathematically an interesting
subject, and one may learn some new aspects in boson fields in a future study.

In nature, there exist bosons, and they are all composite objects which have integer
spins. For the composite boson which is composed of fermion and anti-fermion, a Klein–
Gordon type equation should be obtained from the two particle Dirac equation. However,
it may not be very easy to derive the equation for the center of mass motion for the two
particle system in the Dirac equation since it involves the relativistic kinematics. But still
theoretically it must be a doable calculation.

H.5 Incorrect Quantization in Polar Coordinates

In the standard quantum mechanical treatment, the particle Hamiltonian in polar coordinates
in classical mechanics cannot be quantized in the canonical formalism. In order to see this
situation more explicitly, one can write a free particle Hamiltonian with its massm in polar
coordinates

H =
pr

2

2m
+

pθ
2

2mr2
+

pϕ
2

2mr2 sin2 θ
, (H.5.1)

wherepr, pθ, pϕ are the generalized momenta in polar coordinates in classical mechanics.
If one quantizes the Hamiltonian with the canonical quantization conditions

[r, pr] = i, [θ, pθ] = i, [ϕ, pϕ] = i (H.5.2)

then one obtains

H = − 1
2m

(
∂2

∂r2
+

1
r2

∂2

∂θ2
+

1
r2 sin2 θ

∂2

∂ϕ2

)
(H.5.3)

which is not a correct Hamiltonian for a free particle in polar coordinates. The correct
Hamiltonian for a free particle is, of course, given as

H = − 1
2m

(
1
r2

∂

∂r
r2 ∂

∂r

)
− 1

2mr2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
(H.5.4)

which is obtained by transforming the Schrödinger equation in Cartesian coordinates into
polar coordinates.

Now, we can explain the reason why the quantization condition is valid for the Cartesian
coordinates, but not for the polar coordinates. In the new picture, the differential operators
first appear in the Dirac equation and then the momentum is identified as the correspond-
ing differential operator. Therefore, the Schrödinger equation is obtained from the Dirac
equation, but not from the Hamiltonian of classical mechanics in the canonical formalism
by replacing the generalized momenta by the corresponding differential operators.
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H.6 Interaction with Gravity

The chain of the fundamental equations from classical mechanics to Dirac equation is now
reversed

Dirac equation=⇒ Schr̈odinger equation=⇒ Newton equation.

At this point, however, one realizes that there is no way to include the gravitational force
into the new system. This may be a serious defect of this new concept of the first quantiza-
tion. However, if the gravity is included in this formalism, then it means that the quantum
theory of gravity can be constructed.



Appendix I

Renormalization in QED

This textbook treats mainly the non-perturbative aspects of quantum field theory of fermions
and therefore we have only briefly discussed the perturbation theory in QED in Chap-
ter 5. In this Appendix, we present some of the basic ingredients in the renormalization
scheme in the perturbative evaluation in QED. However, we only describe the basic con-
cept of the renormalization scheme since calculations in detail are found in the textbook
of Bjorken-Drell [14]. The essential difference between the perturbative evaluation and
the non-perturbative treatment should be found in the Fock space which can be prepared in
advance in the perturbative treatment while one does not know the eigenstates of the Hamil-
tonian in the non-perturbative calculation where one has to solve the eigenvalue equation of
eq.(3.1).

I.1 Hilbert Space of Unperturbed Hamiltonian

First, we start from the QED Lagrangian densityL which is composed of the unperturbed
Lagrangian densityL0 and the interaction termLI

L0 = ψ̄(p/−m)ψ − 1
4

FµνF
µν , (I.1.1)

LI = −eAµψ̄γµψ. (I.1.2)

In this case, the unperturbed HamiltonianH0 can be constructed from the Lagrangian den-
sityL0 as given in eq.(5.28a) in Chapter 5. The Hilbert space of the quantized Hamiltonian
Ĥ0 can be well constructed since one finds the exact eigenvalues and eigenstates of eq.(3.1)
for theĤ0. In this case, the Fock space can be specified by the box lengthL and the cutoff
momentumΛ as well as by the energies and momenta of the free fermion and free gauge
field states

(L,Λ) :




Ep =
√

p2
n + m2, pn =

2πn

L

ωk = |kn|, kn =
2πn

L


 , (I.1.3)

273



274 Appendix I. Renormalization in QED

ni = 0,±1, . . . ,±N with Λ =
2πN

L
,

where the maximum number of freedomN is taken to be the same between the fermion
and the gauge fields. The perturbative evaluation can be made within this Hilbert space and
one can calculate physical quantities in terms of theS-matrix formulation.

In the evaluation of the second order perturbation energy, there are some diagrams
which are divergent. However, the momentum integral has the cutoff due to theΛ, and
therefore, the second order energies are described as the function ofln(Λ/m). Among the
divergent diagrams, the photon self-energy contribution (vacuum polarization diagram) is
special, and therefore we will teat it separately in Appendix J. Here, we discuss the fermion
self-energy diagram and the vertex correction contribution.

I.2 Necessity of Renormalization

Before explaining the divergent contribution of the self-energy diagrams, we should un-
derstand reasons why we should make a renormalization procedure [59, 103, 107]. The
fermion self-energy diagram itself is obviously unphysical since the fermion with its mo-
mentump goes to the same fermion with the same momentump after emitting a photon
and absorbing the same photon. This process itself cannot be observed and examined ex-
perimentally. Why is it then necessary to consider the fermion self-energy diagram into the
renormalization procedure?

I.2.1 Intuitive Picture of Fermion Self-energy

The answer to the above question is simple. We should consider the following situation in
which the fermion is found in the different quantum state from the free state. For example, if
we consider electron in hydrogen atom, then its quantum state should be very different from
the free state. In this case, the fermion self-energy diagram gives a physical contribution
which is observed as the Lamb shift energy. Basically, in the renormalization procedure, we
consider a counter term which can exactly cancel the divergent contribution of the second
order self-energy diagrams in the free state of fermions. However, in atom, this cancellation
does not have to take place in an exact fashion, and this small effect of difference gives rise
to the Lamb shift energy in1s 1

2
and2s 1

2
states in hydrogen atom.

I.2.2 Intuitive Picture of Photon Self-energy

On the other hand, the photon self-energy is quite different in that photon can never become
a bound state. It is always found as a free state. Therefore, there is no physical process in
which the contribution of the photon self-energy is detectable in some way or the other. In
fact, there has been no physical processes which show the effect of the simple self-energy
diagrams.
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I.3 Fermion Self-energy

Now, the fermion self-energyΣ(p) is obtained from the corresponding Feynman diagram as

Σ(p) = −ie2

∫
d4k

(2π)4
γµ

1
p/− k/−m

γµ 1
k2

. (I.3.1)

This can be calculated to be

Σ(p) =
e2

8π2
ln

(
Λ
m

)
(−p/ + 4m) + finite terms. (I.3.2)

Therefore, the Lagrangian density of the free fermion part

LF = ψ̄(p/−m)ψ (I.3.3)

should be modified, up to one loop contributions, by the counter termδLF

δLF = ψ̄

[
e2

8π2
ln

(
Λ
m

)
(−p/ + 4m)

]
ψ.

In this case, the total Lagrangian density of fermion becomes

L′F = LF + δLF = ψ̄ [(1 + B)p/− (1 + A)m]ψ + finite terms, (I.3.4)

where

A = − e2

2π2
ln

(
Λ
m

)
, B = − e2

8π2
ln

(
Λ
m

)
. (I.3.5)

Now, one definesZ2 andδm as

Z2 ≡ 1 + B = 1− e2

8π2
ln

(
Λ
m

)
, (I.3.6a)

δm ≡ 3e2m

8π2
ln

(
Λ
m

)
. (I.3.6b)

Here, one can introduce the wave function renormalization and the bare massm0

ψb ≡
√

Z2ψ =
√

1 + Bψ, (I.3.7a)

m0 ≡ Z−1
2 m(1 + A)

= m

(
1 +

e2

8π2
ln

(
Λ
m

))(
1− e2

2π2
ln

(
Λ
m

))
' m− δm, (I.3.7b)

where one should always keep up to order ofe2. In this case, one can rewriteL′F as

L′F = ψ̄b(p/−m0)ψb + finite terms (I.3.8)

which has just the same shape as the original one, and thus it is renormalizable.
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I.4 Vertex Corrections

The vertex corrections can be evaluated as

Λµ(p′, p) = −ie2

∫
d4k

(2π)4
γν 1

p/′ − k/−m
γµ 1

p/− k/−m
γν

1
k2

=
e2

8π2
ln

(
Λ
m

)
γµ + finite terms. (I.4.1)

Therefore, the counter term of the interaction Lagrangian densityδLI becomes

δLI =
e3

8π2
ln

(
Λ
m

)
Aµψ̄γµψ.

In this case, the total interaction Lagrangian density can be written as

L′I = −eAµψ̄γµψ + δLI = −Z1eA
µψ̄γµψ + finite terms, (I.4.2)

whereZ1 is defined as

Z1 ≡ 1− e2

8π2
ln

(
Λ
m

)
. (I.4.3)

From eqs.(I.3.6) and (I.4.3), one finds

Z1 = Z2. (I.4.4)

This can be also understood from the following identity

∂

∂pµ

(
1

p/−m

)
= − 1

p/−m
γµ 1

p/−m
. (I.4.5)

Therefore, one finds

Λµ(p, p) = −∂Σ(p)
∂pµ

(I.4.6)

which leads to eq.(I.4.4). The interaction Lagrangian density can be rewritten in terms of
the bare quantities

ψb ≡
√

Z2ψ (I.4.7)

as

L′I = −Z1eA
µψ̄γµψ = −Z1e

1
Z2

Aµψ̄bγµψb = −ebA
µψ̄bγµψb + finite terms, (I.4.8)

where the bare chargeeb turns out to be

eb = e. (I.4.9)

Therefore, all the infinite quantities are renormalized into the physical constants as well
as the wave function. It should be important that the chargee is not affected from the
renormalization.
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I.5 New Aspects of Renormalization in QED

The renormalization scheme in QED is best studied and most reliable. Nevertheless there
is one important modification in the renormalization procedure, and it is connected to the
treatment of the photon self-energy diagram. It turns out that the photon self-energy con-
tribution should not be considered for the renormalization procedure since the contribution
itself is unphysical. The detailed discussion of the photon self-energy in QED is treated in
Appendix J. This gives rise to some important consequences. The most important of all is
that the charge is not affected by the renormalization procedure. This means that there is no
renormalization group equation. Here, we should first like to discuss the old version of the
renormalization group equation in QED and then compare the new simple picture which
has no renormalization group equation since the charge has no renormalization effect.

I.5.1 Renormalization Group Equation in QED

(1) Old Version

For the renormalization group equation, people start from the following equation for the
renormalized coupling constanteb

eb = eZ1λ
ε
2

1
Z2

√
Z3

= eλ
ε
2

(
1 +

e2

12π2ε

)
, (I.5.1)

whereλ is a parameter which is introduced in the dimensional regularization andε is an
infinitesimally small number. Here,Z3 is defined as

Z3 = 1− e2

6π2ε

which comes from the wave function renormalization of the photon self-energy contribu-
tion. Even though eq.(I.5.1) is obtained from renormalizing all of the self-energy diagrams
together with the vertex corrections, this renormalization of the coupling constanteb is basi-
cally originated from the photon self-energy contribution since the renormalization constant
Z1 of the vertex correction and the fermion wave function renormalizationZ2 cancel with
each other because ofZ1 = Z2. Since theeb should not depend on the scaleλ, one can
obtain the renormalization group equation

λ
∂e

∂λ
= −e

2

(
1− e2

4π2ε

)(
ε +

e2

12π2

)
= − ε

2
e +

1
12π2

e3 + O(e5). (I.5.2)

When one makesε → 0, then one finds

λ
∂e

∂λ
=

1
12π2

e3 (I.5.3)
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which is the renormalization group equation for QED. This equation can be easily solved
for e. The expression for the running coupling constantα(λ) ≡ e2

4π is given as

α(λ) =
α(λ0)

1− 2α(λ0)
3π ln( λ

λ0
)
, (I.5.4)

whereλ0 denotes the renormalization point for the coupling constant. This is the standard
procedure to obtain the behavior of the coupling constant as the function of theλ.

However, theλ does not appear in the Hilbert space of the unperturbed Hamiltonian
H0 and this means that one cannot interpret the result of eq.(I.5.4) in terms of the physical
observables which should be found in the unperturbed Fock space. Thereforeα(λ) does
not have any physical meaning at all.

(2) New Version

The fact that the photon self-energy contribution should not be considered for the renormal-
ization procedure has many important consequences. The most important is that the charge
is not influenced from the renormalization as one can see it from eq.(I.4.9) and, therefore,
there is no renormalization group equation in QED. The idea of the renormalization group
equation itself is gone.

I.6 Renormalization in QCD

When one wishes to carry out the perturbation calculation, then one should first construct
the free Fock space since all of the perturbative evaluations aim at describing physical
observables in terms of the free state physical quantities. However, QCD has intrinsic
difficulties to construct the free Fock space.

I.6.1 Fock Space of Free Fields

The normal perturbation theory always starts from the free field Hilbert space which is made
from the unperturbed HamiltonianH0. This free field Fock space must be constructed from
the physical states as long as one stays in the perturbation theory. However, in QCD, there
is no free quark state in nature due to the gauge non-invariance of the quark color charge.
In fact, if one defines the unperturbed Lagrangian densityL0 for QCD as

L0 = ψ̄(p/−m)ψ − 1
4

(∂µAa
ν − ∂νA

a
µ)(∂µAν,a − ∂νAµ,a)

then, one finds that it is not invariant under the local gauge transformation of eqs.(6.7) and
(6.8). Even for the free fermion part, it transforms under eq.(6.7) as

ψ̄′(p/−m)ψ′ = ψ̄(p/−m)ψ − g(∂µχa)ja
µ = ψ̄(p/−m)ψ − g∂µ(χaja

µ) + g(∂µja
µ)χa

which is not invariant since the vector current is not conserved (∂µja
µ 6= 0) for QCD, con-

trary to QED.
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I.6.2 Renormalization Group Equation in QCD

Therefore, one cannot find any perturbation scheme in QCD, and there is no renormaliza-
tion. In this respect, the gluon coupling constant is not affected from the renormalization.
This is always true even if one could define some type of the perturbation theory by hand.
Therefore, there is no renormalization group equation for QCD, and thus the concept of the
asymptotic freedom has lost its physical meaning.

I.6.3 Serious Problems in QCD

However, OCD has much more serious problems than the lack of the QCD renormalization
group equation. As we stress above, we cannot carry out the perturbative calculations since
there is no free Fock state in QCD. This means that one cannot describe any physical quan-
tities in terms of the free Fock state terminology since the free states of quarks and gluons
do not exist as the physical states. In this respect, the evaluation of QCD cannot be based
on the perturbation scheme and therefore one has to invent a new scheme to solve QCD.
This is a very important problem which should be solved in some way or the other in future
[35].

I.7 Renormalization of Massive Vector Fields

Since the self-energy of boson fields should not be considered for the renormalization pro-
cedure, there are many important consequences concerning the renormalizability of the
model field theory. Here, we should briefly discuss the renormalization procedure of the
massive vector fields which interact with fermion fields. The simplest Lagrangian density
for two flavor leptons which couple to the SU(2) vector fieldsW a

µ can be written as

L = Ψ̄(i∂µγµ + m)Ψ− gJa
µWµ,a +

1
2

M2W a
µWµ,a − 1

4
Ga

µνG
µν,a, (I.7.1)

whereM denotes the mass of the vector boson. The fermion wave functionΨ has two
components.

Ψ =
(

ψ1

ψ2

)
. (I.7.2)

Correspondingly, the mass matrix can be written as

m =
(

m1 0
0 m2

)
. (I.7.3)

The fermion currentJa
µ and the field strengthGa

µν are defined as

Ja
µ = Ψ̄γµτaΨ, Ga

µν = ∂µW a
ν − ∂νW

a
µ . (I.7.4)

This Lagrangian density is almost the same as the standard model Lagrangian density apart
from the Higgs fields, as far as the basic structure of the field theory is concerned.
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I.7.1 Renormalizability

Now, one can easily examine the renormalizability of the model field theory, and one can
prove that the fermion self-energy has the logarithmic divergence which is just the same
as the QED case. Also, the vertex correction in this model field theory has the logarithmic
divergence and is the same as the QED case as long as the renormalizability is concerned.
Since one should not consider the self-energy of the massive vector fields, one can safely
renormalize the divergent contributions of the fermion self-energy as well as the vertex
correction.

In this sense, this is just similar to checking the renormalizability of thefinal Lagrangian
density of the standard model, and it is indeed renormalizable. This is quite important since
the final Lagrangian density of the Weinberg-Salam model is quite successful for describing
the experiment even though the Higgs mechanism itself is not a correct procedure in terms
of the symmetry breaking physics as discussed in Chapter 4.
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Photon Self-energy Contribution in
QED

In the renormalization procedure of QED, one considers the vacuum polarization which is
the contribution of the self-energy diagram of photon

Πµν(k) = ie2

∫
d4p

(2π)4
Tr

[
γµ 1

p/−m
γν 1

p/− k/−m

]
. (J.0.1)

This integral obviously gives rise to the quadratic divergence (Λ2 term). However, when one
considers the counter term of the Lagrangian density which should cancel this quadratic di-
vergence term, then the counter Lagrangian density violates the gauge invariance since it
should correspond to the mass term in the gauge field Lagrangian density. Therefore, one
has to normally erase it by hand, and in the cutoff procedure of the renormalization scheme,
one subtracts the quadratic divergence term such that one can keep the gauge invariance of
the Lagrangian density. Here, we should notice that the largest part of the vacuum polariza-
tion contributions is discarded, and this indicates that there must be something which is not
fully understandable in the renormalization procedure. Physically, it should be acceptable
to throw away theΛ2 term since this infinite term should not be connected to any physical
observables. Nevertheless we should think it over why the unphysical infinity appears in
the self-energy diagram of photon.

On the other hand, the quadratic divergence term disappears in the treatment of the di-
mensional regularization scheme. Here, we clarify why the quadratic divergence term does
not appear in the dimensional regularization treatment. That is, the treatment of the dimen-
sional regularization employs the mathematical formula which is not valid for the evaluation
of the momentum integral. Therefore, the fact that there is no quadratic divergence term
in the dimensional regularization is simply because one makes a mistake by applying the
invalid mathematical formula to the momentum integral. This is somewhat surprising, but
now one sees that the quadratic divergence is still there in the dimensional regularization,
and this strongly indicates that we should reexamine the effect of the photon self-energy
diagram itself.

281
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J.1 Momentum Integral with Cutoff Λ

This procedure of the photon self-energy is well explained in the textbook of Bjorken and
Drell, and therefore we describe here the simplest way of calculating the momentum inte-
gral. The type of integral one has to calculate can be summarized as

∫
d4p

1
(p2 − s + iε)n

= iπ2

Λ2∫

0

w dw
1

(w − s + iε)n
, with w = p2, (J.1.1)

wherei appears because the integral is rotated into the Euclidean space and this corresponds
to D = 4 in the dimensional regularization as we will see it below.

J.1.1 Photon Self-energy Contribution

The photon self-energy contributionΠµν(k) in eq.(J.0.1) can be easily evaluated as

Πµν(k) =
4ie2

(2π)4

1∫

0

dz

∫
d4p

[
2pµpν − gµνp

2 + sgµν − 2z(1− z)(kµkν − k2gµν)
(p2 − s + iε)2

]

=
α

2π

1∫

0

dz

Λ2∫

0

dw

[
w(w − 2s)gµν + 4z(1− z)w(kµkν − k2gµν)

(w − s + iε)2

]
, (J.1.2)

wheres is defined ass = m2 − z(1− z)k2. This can be calculated to be

Πµν(k) = Π(1)
µν (k) + Π(2)

µν (k),

where

Π(1)
µν (k) =

α

2π

(
Λ2 + m2 − k2

6

)
gµν (J.1.3a)

Π(2)
µν (k)=

α

3π
(kµkν−k2gµν)


ln

(
Λ2

m2e

)
−6

1∫

0

dzz(1−z) ln
(

1− k2

m2
z(1−z)

)
. (J.1.3b)

Here, theΠ(1)
µν (k) term corresponds to the quadratic divergence term and this should be

discarded since it violates the gauge invariance. TheΠ(2)
µν (k) term can keep the gauge

invariance, and therefore one can renormalize it into the new Lagrangian density.

J.1.2 Finite Term in Photon Self-energy Diagram

After the renormalization, one finds a finite term which should affect the propagator change
in the process involving the exchange of the transverse photonA. The propagator1

q2 should
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be replaced by

1
q2

=⇒ 1
q2


1 +

2α

π

1∫

0

dz z(1− z) ln
(

1− q2z(1− z)
m2

)
 , (J.1.4)

whereq2 should becomeq2 ≈ −q2 for smallq2. It should be important to note that the
correction term arising from the finite contribution of the photon self-energy should affect
only for the renormalization of the vector fieldA. Since the Coulomb propagator is not
affected by the renormalization procedure of the transverse photon (vector fieldA), one
should not calculate its effect on the Lamb shift.

J.2 Dimensional Regularization

In the evaluation of the momentum integral, one can employ the dimensional regularization
[72, 73] where the integral is replaced as

∫
d4p

(2π)4
−→ λ4−D

∫
dDp

(2π)D
, (J.2.1)

whereλ is introduced as a parameter which has a mass dimension in order to compensate
the unbalance of the momentum integral dimension. This is the integral in the Euclidean
space, butD is taken to beD = 4− ε whereε is an infinitesimally small number.

J.2.1 Photon Self-energy Diagram withD = 4− ε

In this case, the photon self-energyΠµν(k) can be calculated to be

Πµν(k) = iλ4−De2

∫
dDp

(2π)D
Tr

[
γµ

1
p/−m

γν
1

p/− k/−m

]

=
α

3π
(kµkν − gµνk

2)
[
2
ε

+ finite term

]
, (J.2.2)

where the finite term is just the same as eq.(J.1.3). In eq.(J.2.2), one sees that the quadratic
divergence term (Π(1)

µν (k)) is missing. This is surprising since the quadratic divergence term
is the leading order contribution in the momentum integral, and whatever one invents in the
integral, there is no way to erase it unless one makes a mistake.

J.2.2 Mathematical Formula of Integral

Indeed, in the treatment of the dimensional regularization, people employ the mathematical
formula which is invalid for the integral in eq.(J.2.2). That is, the integral formula for
D = 4− ε

∫
dDp

pµpν

(p2−s+iε)n
= iπ

D
2 (−1)n+1 Γ(n− 1

2D−1)
2Γ(n)

gµν

sn− 1
2
D−1

(for n≥3) (J.2.3)
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is only valid forn ≥ 3 in eq.(J.2.3). Forn = 3, the integral should have the logarithmic
divergence, and this is nicely avoided by the replacement ofD = 4 − ε. However, the
n = 2 case must have the quadratic divergence and the mathematical formula of eq.(J.2.3)
is meaningless. In fact, one should recover the result of the photon self-energy contribution
Πµν(k) of eqs.(J.1.3) at the limit ofD = 4, apart from the(2/ε) term which corresponds
to the logarithmic divergence term.

J.2.3 Reconsideration of Photon Self-energy Diagram

In mathematics, one may define the gamma function in terms of the algebraic equations
with complex variables. However, the integral in the renormalization procedure is defined
only in real space integral, and the infinity of the integral is originated from the infinite
degrees of freedom which appear in the free Fock space as discussed in Appendix I.

Therefore, one sees that the disappearance of the quadratic divergence term in the eval-
uation ofΠµν(k) in the dimensional regularization is not due to the mathematical trick, but

simply due to a simple-minded mistake. In this respect, it is just accidental that theΠ(1)
µν (k)

term in the dimensional regularization vanishes to zero. Indeed, one should obtain the same
expression of theΠ(1)

µν (k) term as eq.(J.1.3a) when one makesε → 0 in the calculation of
the dimensional regularization. This strongly suggests that we should reconsider the photon
self-energy diagram itself in the renormalization procedure [45].

J.3 Propagator Correction of Photon Self-energy

In order to examine whether the inclusion of the photon self-energy contribution is neces-
sary for the renormalization procedure or not, we should consider the effect of the finite
contribution from the photon self-energy diagram. As we see, there is a finite contribution
of the transverse photon propagator to physical observables after the renormalization of the
photon self-energy. The best application of the propagator correction must be the magnetic
hyperfine splitting of the ground state (1s 1

2
state) in the hydrogen atom since this interaction

is originated from the vector fieldA which gives rise to the magnetic hyperfine interaction
between electrons and nucleus.

J.3.1 Lamb Shift Energy

In some of the textbooks [14], the correction term arising from the finite contribution of the
photon self-energy diagram is applied to the evaluation of the Lamb shift energy in hydro-
gen atom. However, this is not a proper application since only the renormalization of the
vector fieldA should be considered. This is closely connected to the understanding of the
field quantization itself. One sees that the second quantization of the electromagnetic field
should be made only for the vector fieldA, and this is required from the experimental ob-
servation that photon is created from the vacuum of the electromagnetic field in the atomic
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transitions. Therefore, it is clear that the renormalization becomes necessary only for the
vector fieldA.

Classical Picture of Polarization

This classical picture of the fermion pair creations (Uehling potential) should come from
the misunderstanding of the structure of the vacuum state [65, 66, 110]. In the medium of
solid state physics, the polarization can take place when there is an electric field present. In
this case, the electric field can indeed induce the electric dipole moments in the medium,
and this corresponds to the change of the charge density. However, this is a physical process
which can happen in the real space (configuration space). On the other hand, the fermion
pair creation in the vacuum in field theory is completely different in that the negative energy
states are all filled in momentum space, and the time independent field ofA0 which is only
a function of coordinates cannot induce any changes on the vacuum state. Therefore, unless
some time dependent field is present in the reaction process, the pair creation of fermions
cannot take place in physical processes. Therefore, in contrast to the common belief, there
is, unfortunately, no change of the charge distribution in QED vacuum, even at the presence
of two charges, and this is basically because the Coulomb field is not time dependent.

J.3.2 Magnetic Hyperfine Interaction

The magnetic hyperfine interaction between electron and proton in hydrogen atom can be
written with the static approximation in the classical field theory as

H ′ = −
∫

je(r) ·A(r) d3r, (J.3.1)

whereje(r) denotes the current density of electron, andA(r) is the vector potential gener-
ated by proton and is given as

A(r) =
1
4π

∫
Jp(r′)
|r − r′| d

3r′, (J.3.2)

whereJp(r) denotes the current density of proton. The hyperfine splitting of the ground
state in the hydrogen atom can be calculated as

∆Ehfs = 〈1s 1
2
, I : F |H ′|1s 1

2
, I : F 〉, (J.3.3)

whereI andF denote the spins of proton and atomic system, respectively. This can be
explicitly calculated as

∆Ehfs = (2F (F + 1)− 3)
αgp

3Mp

∞∫

0

F (1s)(r)G(1s)(r) dr, (J.3.4)
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wheregp andMp denote the g-factor and the mass of proton, respectively.F (1s)(r) and
G(1s)(r) are the small and large components of the radial parts of the Dirac wave function
of electron in the atom. In the nonrelativistic approximation, the integral can be expressed
as ∞∫

0

F (1s)(r)G(1s)(r) dr ' (mrα)3

me
, (J.3.5a)

whereme is the mass of electron andmr denotes the reduced mass defined as

mr =
me

1 + me
Mp

. (J.3.6)

It should be noted that, in eq.(J.3.5),me appears in the denominator because it is originated
from the current density of electron. Therefore, the energy splitting betweenF = 1 and
F = 0 atomic states in the nonrelativistic limit with a point nucleus can be calculated from
Eq.(J.3.4) as

∆E
(0)
hfs =

8α4m3
r

3meMp
. (J.3.7)

J.3.3 QED Corrections for Hyperfine Splitting

There are several corrections which arise from the various QED effects such as the anoma-
lous magnetic moments of electron and proton, nuclear recoil effects and relativistic effects.
We write the result

∆E
(QED)
hfs =

4gpα
4m3

r

3meMp
(1 + ae)

(
1 +

3
2

α2

)
(1 + δR), (J.3.8)

whereae denotes the anomalous magnetic moment of electron. The term(1+ 3
2 α2) appears

because of the relativistic correction of the electron wave function
∞∫

0

F (1s)(r)G(1s)(r) dr =
(mrα)3

me

(
1 +

3
2

α2 + · · ·
)

. (J.3.5b)

The termδR corresponds to the recoil corrections and can be written as [16]

δR = α2

(
ln 2− 5

2

)
− 8α3

3π
ln α

(
ln α− ln 4 +

281
480

)
+

15.4α3

π
. (J.3.9)

Now the observed value of∆E
(exp)
hfs is found to be [30]

∆E
(exp)
hfs = 1420.405751767 MHz.

Also, we can calculate∆E
(0)
hfs and∆E

(QED)
hfs numerically and their values become

∆E
(0)
hfs = 1418.83712 MHz, ∆E

(QED)
hfs = 1420.448815 MHz.
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Therefore, we find the deviation from the experimental value as

∆E
(exp)
hfs −∆E

(QED)
hfs

∆E
(0)
hfs

' −30 ppm. (J.3.10)

J.3.4 Finite Size Corrections for Hyperfine Splitting

In addition to the QED corrections, there is a finite size correction of proton and its effect
can be written as

∆E
(FS)
hfs = ∆E

(0)
hfs(1 + ε), (J.3.11)

where theε term corresponds to the Bohr-Weisskopf effect [17, 37, 114]

ε ' −meαRp, (J.3.12)

whereRp denotes the radius of proton. It should be noted that the perturbative treatment
of the finite proton size effect on the hyperfine splitting overestimates the correction by a
factor of two. Now, the calculated value ofε becomes

ε ' −17 ppm.

Therefore, the agreement between theory and experiment is quite good.

J.3.5 Finite Propagator Correction from Photon Self-energy

The hyperfine splitting of the1s 1
2

state energy including the propagator correction can be
written in terms of the momentum representation in the nonrelativistic limit as

∆E
(V P )
hfs = (2F (F + 1)− 3)

16
3π

α5m4
r

meMp

∞∫

0

q2dq

(q2 + 4(mrα)2)2
(
1 + MR(q)

)

≡ ∆E
(0)
hfs(1 + δvp). (J.3.13)

MR(q) denotes the propagator correction and can be written as

MR(q) =
2α

π

1∫

0

dz z(1− z) ln
(

1 +
q2

m2
e

z(1− z)
)

. (J.3.14)

We can carry out numerical calculations of the finite term of the renormalization in the
photon self-energy diagram, and we find

δvp ' 18 ppm (J.3.15)

which tends to make a deviation larger between theory and experiment of hyperfine splitting
in hydrogen atom. This suggests that the finite correction from the photon self-energy
contribution should not be considered for the renormalization procedure.
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J.3.6 Magnetic Moment of Electron

The finite terms of the vacuum polarization contribute to the magnetic moment of electron.
The evaluation of the magnetic moment of electron which is often described asg factor
can be carried out within the renormalization scheme of QED. Here, we only quote the
calculated results of one and two loop diagrams which are up to the order ofα2.

One loop calculation

The calculation of the electrong factor is just the result of the vertex correction in the
renormalization procedure, and it is given as

g = 2
(
1 +

α

2π
+ · · ·

)
. (J.3.16)

It should be important to note that the diagram that contains the vacuum polarization in
the one loop calculation vanishes to zero due to the condition that the magnetic moment of
electron is measured at the zero momentum transfer.

Two loop calculation

Theg factor of electron is calculated up to the two loop order, and it is given as

g = 2
(

1 +
α

2π
+ W0

(α

π

)2
+ Wvp

(α

π

)2
+ · · ·

)
, (J.3.17)

whereW0 denotes the contributions of the two loop diagrams without the vacuum polariza-
tion term whileWvp is the contribution of the two loop order from the vacuum polarization
term. They are calculated to be [3]

W0 =
3
4

ζ(3)− π2

2
ln 2 +

5
12

π2 − 279
144

= −0.34416639, (J.3.18a)

Wvp = −π2

3
+

119
36

= 0.015687, (J.3.18b)

whereζ(3) is given asζ(3) = 1.202056903. It should be noted that the contribution of the
finite term of the vacuum polarization is a few percents of the whole two loop order calcu-
lations, and in this sense it cannot be a very important contribution to the electron magnetic
moment. In addition, the vacuum polarization in two loop order should have a(lnΛ)2 term
which should give rise to a conceptual difficulty in the renormalization procedure.

Now, the observedg factor of electron is given [111]

gexp = 2 (1 + 0.001 159 652 ). (J.3.19a)

The calculatedg factor of electron without the vacuum polarization diagram becomes

gno−vp = 2 (1 + 0.001 159 553 ) (J.3.19b)
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while the total value of the calculatedg factor of electron becomes

gtotal = 2 (1 + 0.001 159 637 ) (J.3.19c)

where we take the value of the fine structure constant ofα asα−1 = 137.036.

Three loop calculation

The three loop calculations are found to be around [77]

gthreeloopl = 2
(

1 + · · ·+ c3

(α

π

)3
)

+ · · · (J.3.19d)

wherec3 ' 1.18. In this sense, one sees that the total value of the two loop calculations
seems to reproduce the experimental number better than the one without the vacuum polar-
ization diagram.

Ambiguity in Fine Structure Constant α

From the observed value of the Zeeman splitting energy in electron

∆Eexp =
eh̄g

2mec
B =

√
4παh̄g

2mec
B (J.3.20)

one can extract theg factor value. In this case, we should examine the accuracy of the
constants which appear in eq.(J.3.20). Here,B denotes the external magnetic field. The
experimental accuracies ofh̄,me, c, B are all reliable up to 8th digit. However, we should
be careful for the value of the coupling constantα since the experimental value ofgexp is
very sensitive to the value ofα. In fact, the difference between theα values at the 8-th
digit may well be responsible for theg factor value at the corresponding accuracy. In this
respect, it is most important that the experimental determination of theα value should be
done at the accuracy of the 8-th digit independently from theg − 2 experiment.

J.4 Spurious Gauge Conditions

The evaluation of the vacuum polarization contribution gives rise to the quadratic diver-
gence and, if this should exist, there is no way to renormalize it into the standard renormal-
ization scheme [14]. In fact, Pauli and Villars proposed [101] that the quadratic divergence
term should be evaded by the requirement that the calculated result should be gauge in-
variant when renormalizing it into the Lagrangian density. This requirement of the gauge
invariance should be based on the following relation for the vacuum polarization tensor
Πµν(k) as

kµΠµν(k) = 0. (J.4.1)

However, this equation does not hold and it is indeed a spurious equation even though it
has been employed as thegauge condition. The proof of eq.(J.4.1) in most of the field
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theory textbooks is simply a mathematical mistake basically due to the wrong replacement
of the integration variable in the infinite integral case. This problem of mathematics was,
of course, realized and stated in the text book of Bjorken and Drell [14], but they accepted
this relation up to the last step of their calculation of the vacuum polarization contributions.

J.4.1 Gauge Condition ofΠµν(k)

If one carries out the self-energy diagram of photon, then one obtains the vacuum polariza-
tion tensor which is given in eqs.(J.1.3), and this is obviously inconsistent with eq.(J.4.1).
For a long time, people believe that theΠµν(k) should satisfy the relation of eq.(J.4.1)

kµΠµν(k) = 0

and this equation is called “gauge condition ofΠµν(k)”. Now, we present the proof of the
above relation as discussed in the text book of Bjorken and Drell [14], and show that the
proof of eq.(J.4.1) is a simple mathematical mistake. Therefore, this gauge condition is
spurious, and the relation has no physical foundation at all. The standard method of the
proof starts by rewriting thekµΠµν(k) as

kµΠµν(k) = ie2

∫
d4p

(2π)4
Tr

[(
1

p/− k/−m + iε
− 1

p/−m + iε

)
γν

]
. (J.4.2)

In the first term, the integration variable should be replaced as

q = p− k

and thus one can prove that

kµΠµν(k) = ie2

{∫
d4q

(2π)4
Tr

[
1

q/−m + iε
γν

]
−

∫
d4p

(2π)4
Tr

[
1

p/−m + iε
γν

]}
= 0.

(J.4.3)
At a glance, this proof looks plausible. However, one can easily notice that the replacement
of the integration variable is only meaningful when the integral is finite.

In order to clarify the mathematical mistake in eq.(J.4.3), we present a typical exam-
ple which shows that one cannot make a replacement of the integration variable when the
integral is infinity. Let us now evaluate the following integral

Q =
∫ ∞

−∞

(
(x− a)2 − x2

)
dx. (J.4.4)

If we replace the integration variable in the first term asx′ = x − a, then we can rewrite
eq.(J.4.4) as

Q =
∫ ∞

−∞

(
x′2dx′ − x2dx

)
= 0. (J.4.5)
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However, if we calculate it properly, then we find

Q =
∫ ∞

−∞

(
(x− a)2 − x2

)
dx =

∫ ∞

−∞

(
a2 − 2ax

)
dx = a2 ×∞ (J.4.6)

which disagrees with eq.(J.4.5). If one wishes to carefully calculate eq.(J.4.4) by replacing
the integration variable, then one should do as follows

Q = lim
Λ→∞

[∫ Λ−a

−Λ−a
x′2dx′ −

∫ Λ

−Λ
x2dx

]
= lim

Λ→∞
2a2Λ. (J.4.7)

It is clear by now that the replacement of the integration variable in the infinite integral
should not be made, and this is just the mistake which has been accepted as the gauge
condition of theΠµν(k) in terms of eq.(J.4.1). Therefore, one sees that the requirement of
the gauge condition of the vacuum polarization is unphysical.

J.4.2 Physical Processes Involving Vacuum Polarizations

In nature, there are a number of Feynman diagrams which involve the vacuum polarization.
The best known physical process must be theπ0 decay into two photons,π0 → γ + γ.
This process of the Feynman diagrams can be well calculated in terms of the nucleon and
anti-nucleon pair creation where these fermions couple to photons [94]. In this calculation,
one knows that the loop integral gives a finite result since the apparent logarithmic diver-
gence vanishes to zero due to the kinematical cancellation. Also, the physical process of
photon-photon scattering involves the box diagrams where electrons and positrons are cre-
ated from the vacuum state. As is well known, the apparent logarithmic divergence of this
box diagrams vanishes again due to the kinematical cancellation, and the evaluation of the
Feynman diagrams gives a finite number. This is clear since all of the perturbative calcu-
lations employ the free fermion basis states which always satisfy the current conservation
of ∂µjµ = 0. In these processes, one does not have any additional “gauge conditions” in
the evaluation of the Feynman diagrams. In this respect, if the process is physical, then the
corresponding Feynman diagram should become finite without any further constraints of
the gauge invariance.

J.5 Renormalization Scheme

Here, it is shown that there occurs no wave function renormalization of photon in the ex-
act Lippmann-Schwinger equation for the vector potential [87]. The Lippmann-Schwinger
equation for the fermion fieldψ becomes

ψ(x) = ψ0(x) + g

∫
GF (x, x′)Aµ(x′)γµψ(x′)d4x′, (J.5.1)

whereGF (x, x′) denotes the Green function which satisfies the following equation

(i∂µγµ −m)GF (x, x′) = δ4(x− x′). (J.5.2)
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ψ0(x) is the free fermion field solution. The Green functionGF (x, x′) can be explicitly
written as

GF (x, x′) =
∫

1
pµγµ −m + iε

eip(x−x′) d4p

(2π)4
. (J.5.3)

On the other hand, the Lippmann-Schwinger equation for the vector fieldA becomes

A = A0 + g

∫
G0(x, x′)j(x′)d4x′, (J.5.4)

whereA0 denotes the free field solution of the vector field. Here, the Green function
G0(x, x′) satisfies (

∂2

∂t2
−∇2

)
G0(x, x′) = δ4(x− x′). (J.5.5)

This can be explicitly written as

G0(x, x′) =
∫

1
−p2

0 + p2 + iε
eip(x−x′) d4p

(2π)4
. (J.5.6)

Since we employ the Coulomb gauge fixing, the equation of motion for theA0 field be-
comes a constraint equation and thus can be solved exactly as

A0(r) =
g

4π

∫
j0(r′)
|r − r′|d

3r′. (J.5.7)

J.5.1 Wave Function Renormalization−Fermion Field

When we carry out the perturbation expansion, we can obtain the integral equations in
powers of the coupling constantg as

ψ(x) = ψ0(x) + g

∫
GF (x, x′)Aµγµψ0(x′)d4x′+

g2

∫
GF (x, x′)Aµ(x′)γµGF (x′, x′′)Aν(x′′)γνψ0(x′′)d4x′d4x′′ + · · · . (J.5.8)

This equation clearly shows that the fermion field should be affected by the perturbation
expansion, and if it diverges, then we have to renormalize the wave function so as to absorb
the infinity. Indeed, the infinity is logarithmic divergence and can be well renormalized into
the wave functionψ0.

J.5.2 Wave Function Renormalization−Vector Field

The vector fieldA can be determined from eq.(J.5.4) only when the fermion numbers are
conserved. The best example can be found when the annihilation of the fermion pair takes
place. In this case, we can write eq. (J.5.4) as

〈0|A|ff̄〉 = g

∫
G0(x, x′)〈0|j(x′)|ff̄〉d4x′, (J.5.9)
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where|ff̄〉 denotes the fermion and anti-fermion state. Now, we can consider the following
physical process ofe+e− → e+e− which can be described in terms of the T-matrix as

T = −g〈eē|
∫

j ·A|eē〉 = −g2

∫
〈eē|j(x)|0〉G0(x, x′)〈0|j(x′)|eē〉d3xd4x′, (J.5.10)

where one can see that there appears no self-energy of photon term whatever one evaluates
any physical processes in the Lippmann-Schwinger equation. From this equation, one finds
that the vector fieldA cannot be affected by the renormalization procedure, and it always
stays as a free state of photon. Since this is the exact equation of motion, there is no other
possibility for the vector field. In this respect, it is just simple that the gauge fieldA always
behaves as a free photon state in the evaluation of any Feynman diagrams.

J.5.3 Mass Renormalization−Fermion Self-energy

The evaluation of the self-energy of fermions can be carried out in a straight forward way,
and one can obtain the self-energy which has a logarithmic divergence of the momentum
cut-off Λ. Since electron has a mass, one can renormalize this logarithmic divergence term
into the new mass term. In this procedure, there is no conceptual difficulty and indeed
one can relate this renormalized effect to the observed value of the Lamb shift in hydrogen
atom, which is indeed a great success of the QED renormalization scheme.

J.5.4 Mass Renormalization−Photon Self-energy

The evaluation of the self-energy of photon gives rise to the energy which has a quadratic
divergence. There is no way to renormalize it into the renormalization scheme of QED since
photon has no mass term. This clearly indicates that one should not take the contributions
of the photon self-energy diagrams since they violate the Lorentz invariance. In this respect,
one can now realize that the quadratic divergence term should be discarded because it is not
consistent with the Lorentz invariance, and it has nothing to do with the gauge invariance.

The energy of photon is calculated in the system where fermion is at rest. The energy
of photon with its momentumk must be described asEk = |k|, and there is no other
expression. Therefore, the Lagrangian density of the vector fieldAµ should be always
written as

L0 = −1
4
FµνF

µν (J.5.11)

and there should not be any modifications possible.
It may be interesting to note that Tomonaga stated a half century ago that the self-energy

of photon should vanish to zero, even though he did not present any concrete proof at that
time [108]. This claim must come from the understanding that the vacuum polarization
energy of electromagnetic fields calculated by Heisenberg and Euler [65, 66] has no chance
to be renormalized into the original Lagrangian density of electromagnetic fields. This is
indeed the essence of the renormalization scheme.
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Schwinger model, 84, 85, 90
Schwinger model Hamiltonian, 86

second quantization, 211, 258, 260
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static-dominance ansatz, 174
strong coupling limit, 165
structure constant, 106
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super renormalizable, 252
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symmetry breaking, 54
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temporal gauge, 75, 77
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three loop calculation, 289
time reversal invariance, 20, 26
time shift, 184
trace in physics, 199
translational invariance, 31
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two loop calculation, 288

Uehling potential, 285
unitary operator, 63
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vacuum charge, 89
vacuum polarization, 178, 274, 281
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vertex correction, 180, 276
Virial theorem, 184

wave function renormalization, 275, 292
Wilson loop, 164
Wilson’s action, 162, 166

Zeeman splitting energy, 289
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zeta function regularization, 88


