
Chapter 9

Quantum Gravity

The quantum field theory of gravitation is constructed in terms of Lagrangian density of
Dirac fields which couple to the electromagnetic fieldAµ as well as the gravitational field
G. The gravity appears in the mass term asm(1 + gG)ψ̄ψ with the coupling constant of
g. In addition to the gravitational force between fermions, the electromagnetic fieldAµ

interacts with the gravity as the fourth order effects and its strength amounts toα times the
gravitational force. Therefore, the interaction of photon with gravity is not originated from
Einstein’s general relativity. Further, we present a renormalization scheme for the gravity
and show that the graviton stays massless.

9.1 Problems of General Relativity

The motion of the earth is governed by the gravitational force between the earth and the
sun, and the Newton equation is written as

mr̈ = −G0mM
r

r3
, (9.1)

whereG0, m andM denote the gravitational constant, the mass of the earth and the mass
of the sun, respectively. This is the classical mechanics which works quite well.

The gravitational potential that appears in eq.(9.1) is experimentally determined. How-
ever, the theoretical derivation of the gravity cannot be achieved in any of the equations
such as Newton equation or Maxwell equations. Einstein presented the equation of gen-
eral relativity which should be some analogous equations to the Maxwell equations in the
sense that the gravitational field should be determined by the equation of general relativity.
However, since he employed the principle of equivalence which has nothing to do with real
experiments, the general relativity became an equation that determines the metric tensor.
This does not mean that one can determine the gravitational interaction, and indeed, we
have completely lost the correct direction in physics. Therefore, we should find a theoreti-
cal frame work to determine the gravitational interaction with fermions in some way or the
other.
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170 Chapter 9. Quantum Gravity

Before constructing a theory that can describe the field equation under the gravity, we
discuss the fundamental problems in the theory of general relativity. Basically, there are
two serious problems in the general relativity, the lack of field equation under the gravity
and the assumption of the principle of equivalence.

9.1.1 Field Equation of Gravity

When one wishes to write the Dirac equation for a particle under the gravitational interac-
tion, then one faces to the difficulty. Since the Dirac equation for a hydrogen-like atom can
be written as (

−i∇ ·α + mβ − Ze2

r

)
Ψ = EΨ (9.2a)

one may write the Dirac equation for the gravitational potentialV (r) = −G0mM
r as

(
−i∇ ·α + mβ − G0mM

r

)
Ψ = EΨ. (9.2b)

But there is no foundation for this equation. At least, one cannot write the Lagrangian
density which can describe the Dirac equation for the gravitational interaction. This is clear
since one does not know whether the interaction can be put into the zero-th component of a
vector type or a simple scalar type in the Dirac equation. That is, it may be of the following
type [

−i∇ ·α +
(

m− G0mM

r

)
β

]
Ψ = EΨ. (9.2c)

In fact, this is a right Dirac equation for a particle in the gravitational potential.

9.1.2 Principle of Equivalence

The theory of general relativity is entirely based on the principle of equivalence. Namely,
Einstein started from the Gedanken experiment that physics of the two systems (a system
under the uniform external gravity and a system that moves with a constant acceleration)
must be the same. This looks plausible from the experience on the earth. However, one
can easily convince oneself that the system that moves with a constant acceleration cannot
be defined properly since there is no such an isolated system in a physical world. The
basic problem is that the assumption of the principle of equivalence is concerned with the
two systems which specify space and time, not just the numbers in connection with the
acceleration of a particle. Note that the acceleration of a particle is indeed connected to
the gravitational acceleration,̈z = −g, but this is, of course, just the Newton equation.
Therefore, the principle of equivalence inevitably leads Einstein to the space deformation.
It is clear that physics must be the same between two inertia systems, and any assumption
which contradicts this basic principle cannot be justified at all.
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Frame or Coordinate Transformation

Besides, this problem can be viewed differently in terms of Lagrangian. For the system
under the uniform external gravity, one can write the corresponding Lagrangian. On the
other hand, there is no way to construct any Lagrangian for the system that moves with a
constant acceleration. One can define a Lagrangian for a particle that moves with a constant
acceleration, but one cannot write the system (or space and time) that moves with a constant
acceleration.

Physics in one inertia frame must be equivalent to that of another inertia frame, and this
requirement is very severe. It is not only a coordinate change of space and time with Lorentz
transformation, but also physical observables must be the same between two systems. In
this respect, the principle of equivalence violates this important condition, and therefore,
it is very hard to accept the assumption of the principle of equivalence even with the most
modest physical intuition.

9.1.3 General Relativity

Einstein generalized the Poisson type equation for gravity

∇2φg = 4πG0ρ

to the tensor equations which should have some similarities with the Maxwell equations.
Therefore, he had to find some tensor quantity like the field strengthFµν of the electro-
magnetic field, and the metric tensorgµν is chosen as the basic tensor field since he started
from the principle of equivalence. Thus, the general relativity is the equation for the metric
tensorgµν which, he believed, should be connected to the gravitational fieldφg. By noting
that

g00 ' 1 +
2φg

c2

together with
T00 ' ρ

with the energy momentum tensor ofTµν , he arrived at the equation of the general relativity

Rµν − 1
2

gµνR = 8πG0T
µν ,

whereRµν denotes the Ricci tensor which can be described in terms of the metric tensor
gµν . However, the physical meaning of thegµν is unclear, and that is the basic problem of
the general relativity.

Mathematics vs Physics

It should be important to note that Einstein’s equation is mathematically complicated, but
physically it is just simple. First, we should understand the physics of the Poisson type
equation, and the equation is to determine the gravitational fieldφg when there is a matter
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field densityρ. Just in the same way, Einstein’s equation can describe the behavior of
the metric tensorgµν when there is the energy-momentum tensorTµν which should be
generated by the matter field densityρ. However, the Poisson type equation is unfortunately
insufficient to determine the gravitational interaction with the matter field since one has to
know in which way the matter field should be influenced by the gravitational field, and this
should be determined by the equation for the matter field like the Dirac equation. In the
same way, Einstein’s equation is insufficient to find the interaction with the matter field.
In addition, the energy-momentum tensorTµν cannot be defined well unless one has a
good field theoretical picture of fermions. In this respect, it is most important to find the
Lagrangian density which includes the gravitational field interacting with the fermions, and
this will be explained in the next section.

Before going to the discussion of the Lagrangian density of the gravity, it should be
important to clarify the origin of the coordinatexµ in the metric tensorgµν(x) from where
it is measured. From Einstein’s equation, it is clear that the origin of the coordinate should
be found in the matter field center. Therefore, one can see that the metric tensorgµν should
be in contradiction with the principle of special relativity since its space and time become
different from the space and time of the other inertia system. This peculiar behavior of the
metric tensorgµν is just the result of the principle of equivalence which is not consistent
with the principle of special relativity as discussed above.

9.2 Lagrangian Density for Gravity

We should start from constructing the quantum mechanics of the gravitation. In other words,
we should find the Dirac equation for electron when it moves in the gravitational potential.
In this chapter, we present a model Lagrangian density which can describe electrons inter-
acting with the electromagnetic fieldAµ as well as the gravitational fieldG.

9.2.1 Lagrangian Density for QED

We first write the Lagrangian density for electrons interacting with the electromagnetic field
Aµ as given in eq.(5.1)

Lel = iψ̄γµ∂µψ − eψ̄γµAµψ −mψ̄ψ − 1
4

FµνF
µν , (9.3)

where
Fµν = ∂µAν − ∂νAµ.

This Lagrangian density of QED is best studied and is most reliable in many respects.
In particular, the renormalization scheme of QED is theoretically well understood and is
experimentally well examined, and there is no problem at all in the perturbative treatment
of QED. All the physical observables can be described in terms of the free Fock space
terminology after the renormalization, and therefore one can compare any prediction of the
physical quantities with experiment. However, it should be noted that QED is the only
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field theory model in four dimensions which works perfectly well without any conceptual
difficulties.

9.2.2 Lagrangian Density for QED plus Gravity

Now, we propose to write the Lagrangian density for electrons interacting with the electro-
magnetic field as well as the gravitational fieldG [36]

L = iψ̄γµ∂µψ − eψ̄γµAµψ −m(1 + gG)ψ̄ψ − 1
4

FµνF
µν +

1
2

∂µG∂µG, (9.4)

where the gravitational fieldG is assumed to be a massless scalar field. It is easy to prove
that the new Lagrangian density is invariant under the local gauge transformation

Aµ → Aµ + ∂µχ, ψ → e−ieχψ. (9.5)

This is, of course, quite important since the introduction of the gravitational field does not
change the most important local symmetry.

9.2.3 Dirac Equation with Gravitational Interactions

Now, one can easily obtain the Dirac equation for electrons from the new Lagrangian den-
sity

iγµ∂µψ − eγµAµψ −m(1 + gG)ψ = 0. (9.6)

Also, one can write the equation of motion of gravitational field

∂µ∂µG = −mgψ̄ψ. (9.7)

The symmetry property of the new Lagrangian density can be easily examined, and one can
confirm that it has a right symmetry property under the time reversal transformation, parity
transformation and the charge conjugation.

9.2.4 Total Hamiltonian for QED plus Gravity

The Hamiltonian can be constructed from the Lagrangian density in eq.(9.4)

H =
∫ {

ψ̄
(− iγ ·∇ + m(1 + gG)

)
ψ − ej ·A

}
d3r +

e2

8π

∫
j0(r′)j0(r) d3r d3r′

|r′ − r|

+
1
2

∫ (
Ȧ2 + (∇ × A)2

)
d3r +

1
2

∫ (
Ġ2 + (∇G)2

)
d3r, (9.8)

wherejµ is defined asjµ = ψ̄γµψ. In this expression of the Hamiltonian, the gravitational
energy is still written without making use of the equation of motion. In the next section, we
will treat the gravitational energy and rewrite it into an expression which should enable us
to easily understand the structure of gravitational force between fermions.
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9.3 Static-dominance Ansatz for Gravity

In eq.(9.4), the gravitational fieldG is introduced as areal scalarfield, and therefore it
cannot be a physical observable as a classical field [48, 80]. In this case, since the real part
of the right hand side in eq.(9.7) should be mostly time independent, it may be reasonable
to assume that the gravitational fieldG can be written as the sum of the static and time-
dependent terms and that the static part should carry the information of diagonal term in the
external source term. Thus, the gravitational fieldG is assumed to be written as

G = G0(r) + Ḡ(x), (9.9)

whereG0(r) does not depend on time. This ansatz is only a sufficient condition, and its
validity cannot be verified mathematically, but it can be examined experimentally.

The equations of motion forG0(r) andḠ(x) become

∇2G0 = mgρg, (9.10)

∂µ∂µḠ(x) = −mg
{

(ψ̄ψ)[non−diagonal] + (ψ̄ψ)[diagonal rest]

}
, (9.11)

whereρg is defined as
ρg ≡ (ψ̄ψ)[diagonal], (9.12)

where(ψ̄ψ)[diagonal] denotes the diagonal part of thēψψ, that is, the terms proportional to

[a†(s)k a
(s)
k′ − b

†(s)
k b

(s)
k′ ] of the fermion operators which will be defined in eq.(9.19). Further,

(ψ̄ψ)[non−diagonal] term is a non-diagonal part which is connected to the creation and anni-

hilation of fermion pairs, that is,[a†(s)k b
†(s)
−k′+b

(s)
−k′a

(s)
k ] of the fermion operators. In addition,

the term(ψ̄ψ)[diagonal rest] denotes time dependent parts of the diagonal term in the fermion
density, and this may also have some effects when the gravity is quantized.

In this case, we can solve eq.(9.10) exactly and find a solution

G0(r) = −mg

4π

∫
ρg(r′)
|r′ − r| d

3r′, (9.13)

which is a special solution that satisfies eq.(9.7), but not the general solution. Clearly as
long as the solution can satisfy the equation of motion of eq.(9.7), it is physically sufficient.
The solution of eq.(9.13) is quite important for the gravitational interaction since this is
practically a dominant gravitational force in nature.

Here, we assume that the diagonal term of(ψ̄ψ)[diagonal] is mostly time independent,
and in this case, the static gravitational energy which we callHS

G can be written as

HS
G = mg

∫
ρgG0 d3r +

1
2

∫
(∇G0)2 d3r = −m2G0

2

∫
ρg(r′)ρg(r)
|r′ − r| d3r d3r′, (9.14)

where the gravitational constantG0 is related to the coupling constantg as

G0 =
g2

4π
. (9.15)
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Eq.(9.14) is just the gravitational interaction energy for the matter fields, and one sees that
the gravitational interaction between electrons is always attractive. This is clear since the
gravitational field is assumed to be a massless scalar. It may also be important to note that
the HS

G of eq.(9.14) is obtained without making use of the perturbation theory, and it is
indeed exact, apart from the static ansatz of the fieldG0(r).

9.4 Quantization of Gravitational Field

In quantum field theory, we should quantize fields. For fermion fields, we should quantize
the Dirac field by the anti-commutation relations of fermion operators. This is required
from the experiment in terms of the Pauli principle, that is, a fermion can occupy only
one quantum state. In order to accommodate this experimental fact, we should always
quantize the fermion fields with the anti-commutation relations. On the other hand, for
gauge fields, we must quantize the vector field in terms of the commutation relation which is
also required from the experimental observation that one photon is emitted by the transition
between2p-state and1s-state in hydrogen atoms. That is, a photon is created from the
vacuum of the electromagnetic field, and therefore the field quantization is an absolutely
necessary procedure. However, it is not very clear whether the gravitational fieldG should
be quantized according to the bosonic commutation relation or not. In fact, there must be
two choices concerning the quantization of the gravitational fieldG.

9.4.1 No Quantization of Gravitational Field

As the first choice, we may take a standpoint that the gravitational fieldG should not be
quantized since there is no requirement from experiments. In this sense, there is no definite
reason that we have to quantize the scalar field and therefore the gravitational fieldG should
remain to be a classical field. In this case, we do not have to worry about the renormalization
of the graviton propagator, and we obtain the gravitational interaction between fermions as
we saw it in eq.(9.14) which is always attractive, and this is consistent with the experimental
requirement.

9.4.2 Quantization Procedure

Now, we take the second choice and should quantize the gravitational fieldḠ. This can be
done just in the same way as usual scalar fields

Ḡ(x) =
∑

k

1√
2V ωk

[
dke

−iωkt+ik·r + d†ke
iωkt−ik·r

]
, (9.16)

whereωk = |k|. The annihilation and creation operatorsdk andd†k are assumed to satisfy
the following commutation relations

[
dk, d

†
k′

]
= δk,k′ (9.17)
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and all other commutation relations should vanish. Since the graviton can couple to the time
dependent external field which is connected to the creation or annihilation of the fermion
pairs, the graviton propagator should be affected from the vacuum polarization of fermions.
Therefore, we should carry out the renormalization procedure of the graviton propagator
such that it can stay massless. We will discuss the renormalization procedure in the later
section.

9.4.3 Graviton

Once the gravitational fieldG is quantized, then the graviton should appear. From eq.(9.16),
one can see that the graviton can indeed propagate as a free massless particle after it is
quantized, and this situation is just the same as the gauge field case in QED, namely, photon
after the quantization becomes a physical observable. However, it should be noted that the
gauge field has a special feature in the sense that the classical gauge field (A) is gauge
dependent and therefore it is not a physical observable. After the gauge fixing, the gauge
field can be quantized since one can uniquely determine the gauge field from the equation
of motion, and therefore its quantization is possible.

On the other hand, the gravitational field is assumed to be a real scalar field, and there-
fore it cannot be a physical observable as a classical field [48, 80]. Only after the quanti-
zation, it becomes a physical observable as a graviton, and this can be seen from eq.(9.16)
since the creation of the graviton should be made through the second term of eq.(9.16). In
this case, the graviton field is a complex field which is an eigenstate of the momentum and
thus it is a free graviton state, which can propagate as a free particle.

9.5 Interaction of Photon with Gravity

From the Lagrangian density of eq.(9.4), one sees that photon should interact with the grav-
ity in the fourth order Feynman diagrams as shown in Fig.9.1. The interaction Hamiltonian
HI can be written as

HI =
∫ (

mgGψ̄ψ − eψ̄γψ ·A)
d3r, (9.18)

where the fermion fieldψ is quantized in the normal way

ψ(r, t) =
∑
p,s

1√
L3

(
a

(s)
p u

(s)
p eip·r−iEpt + b

†(s)
p v

(s)
p e−ip·r+iEpt

)
, (9.19)

whereu
(s)
p andv

(s)
p denote the spinor part of the plane wave solutions of the free Dirac

equation.a(s)
p andb

(s)
p are annihilation operators for particle and anti-particle states, and

they should satisfy the following anti-commutation relations,

{a(s)
p , a†

(s′)
p′ } = δs,s′δp,p′ , {b(s)

p , b†
(s′)
p′ } = δs,s′δp,p′ (9.20)
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q

pk

k′ p′

Fig. 9.1: The fourth order Feynman diagram

and all other anticommutation relations should vanish. The gauge fieldA can be quantized
as given in eq.(3.24) in Chapter 3

A(x) =
∑

k

2∑

λ=1

1√
2V ωk

ελ(k)
[
ck,λe−ikx + c†k,λeikx

]
, (9.21)

whereωk = |k|. The polarization vectorελ(k) should satisfy the following relations

ελ(k) · k = 0, ελ(k) · ελ′(k) = δλ,λ′ . (9.22)

The annihilation and creation operatorsck,λ, c†k,λ should satisfy the following commutation
relations

[ck,λ, c†k′,λ′ ] = δk,k′δλ,λ′ (9.23)

and all other commutation relations should vanish.
The calculation of theS-matrix can be carried out in a straightforward way [14, 89, 94],

and we can write

S = (ie)2ελ
µ(k)ελ′

ν (k′)
(

mm′g2

q2

)
ū(p′)u(p)

×
∫

d4a

(2π)4
Tr

[
γµ

i

a/−m + iε
γν

i

b/−m + iε

i

c/−m + iε

]
, (9.24)

wherek andk′ denote the four momenta of the initial and final photons whilep andp′

denote the four momenta of the initial and final fermions, respectively.m andm′ denote
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the mass of the fermion for the vacuum polarization and the mass of the external fermion.
a, b, c andq can be written in terms ofk andp as

q = p′ − p, k = a− b, k′ = a− c, q = k − k′.

Therefore, theS-matrix can be written as

S = ie2mm′g2ελ
µ(k)ελ′

ν (k′)

× 1
q2

ū(p′)u(p)
∫

d4a

(2π)4
1

a2 −m2

1
(a− k)2 −m2

1
(a− k′)2 −m2

×Tr
[
γµ(a/ + m)γν(a/− k/ + m)(a/− k/′ + m)

]
. (9.25)

Since the term proportional toq does not contribute to the interaction, we can safely ap-
proximate in the evaluation of the trace and the integration ofa as

k′ ≈ k.

Now, we define the trace part as

Nµν = Tr
[
γµ(a/ + m)γν(a/− k/ + m)(a/− k/′ + m)

]
, (9.26a)

which can be evaluated as

Nµν = 4m
[
(k2 − a2 + m2)gµν + 4aµaν − 2aµkν − 2aνkµ

]
. (9.26b)

Defining the integral by

Iµν ≡
∫

d4a

(2π)4
Nµν

(a2 −m2)[(a− k)2 −m2] [(a− k′)2 −m2]
(9.27)

we can rewrite it using Feynman integral

Iµν = 2
∫

d4a

(2π)4

1∫

0

z dz
Nµν

[(a− kz)2 −m2 + z(1− z)k2]3
. (9.28)

Therefore, introducing the variablew = a− kz we obtain theS-matrix as

S = 8ie2m2m′g2ελ
µ(k)ελ′

ν (k′)
1
q2

ū(p′)u(p)

1∫

0

z dz

×
∫

d4w

(2π)4

[
(−w2gµν +4wµwν)

[w2−m2+z(1−z)k2]3
+

{
m2+k2(1−z2)

}
gµν−4kµkνz(1−z)

[w2−m2+z(1−z)k2]3

]
. (9.29)
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The first part of the integration can be carried out in a straightforward way and we find

∫
d4w

(2π)4
(−w2gµν + 4wµwν)

[w2 −m2 + z(1− z)k2]3
= 0.

Thus, the two divergent parts just cancel with each other, and the cancellation here is not due
to the regularization as employed in the self-energy diagrams in QED, but it is a kinematical
and thus rigorous result. This situation is quite similar to the Feynman diagram ofπ0 → 2γ
decay process [94] and the calculated result of the Feynman diagram is indeed finite and is
consistent with the experiment.

The finite part can be easily evaluated [36], and therefore we obtain theS-matrix as

S =
e2

8π2
m2m′g2(ελελ′)

1
q2

ū(p′)u(p), (9.30)

where we made use of the relationk2 = 0 for free photon at the end of the calculation.

9.6 Renormalization Scheme for Gravity

At the present stage, it is difficult to judge whether we should quantize the gravitational field
or not. At least, there is no experiment which shows any necessity of the quantization of
the gravity. Nevertheless, it should be worth checking whether the gravitational interaction
with fermions can be renormalizable or not. We know that the interaction of the gravity
with fermions is extremely small, but we need to examine whether the graviton can stay
massless or not within the perturbation scheme.

Here, we present a renormalization scheme for the scalar field theory which couples to
fermion fields. The renormalization scheme for scalar fields is formulated just in the same
way as the QED scheme since QED is most successful.

9.6.1 Self-Energy of Graviton

First, we discuss the self-energy of graviton in gravitational interaction. As shown in Ap-
pendix J, the self-energy diagram of photon should not be considered for the renormaliza-
tion procedure in QED. In the same manner, we see that there is no renormalization pro-
cedure necessary for the self-energy of graviton. Intuitively, this can be easily understood
from eq.(9.7)

∂µ∂µG = −mgψ̄ψ. (9.7)

As can be seen, the gravitational fieldG does not appear in the right hand side of eq.(9.7).
This means that the change of the gravitational field from the second order perturbative
calculations should be described by the fermion fields and cannot be written in terms of the
gravitational fieldG.

Therefore, the gravitational interaction is not affected from the graviton self-energy
diagram. In theS-matrix evaluation, one sometimes finds that the calculated Feynman
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diagrams do not have any corresponding physical processes and the self-energy diagram of
the graviton is just the case. Thus the graviton stays always massless.

Even though there is no practically interesting observables in higher order perturbation
diagrams in the gravitational interaction, it is quite nice and transparent that the graviton
propagator is not affected by the perturbation theory.

9.6.2 Fermion Self-Energy from Gravity

The fermion self-energy term in QED is calculated to be

ΣQED(p) = −ie2

∫
d4k

(2π)4
γµ

1
p/− k/−m

γµ 1
k2

=
e2

8π2
ln

(
Λ
m

)
(−p/ + 4m) + finite terms.

(9.31)

In the same way, we can calculate the fermion self-energy due to the gravity

ΣG(p) = im2g2

∫
d4k

(2π)4
1

p/− k/−m

1
k2

= −m2g2

8π2
ln

(
Λ
m

)
(−p/ + 4m) + finite terms,

(9.32)

which is just the same as the QED case, apart from the factor in front. Therefore, the
renormalization procedure can be carried out just in the same way as the QED case since
the total fermion self-energy term within the present model becomes

Σ(p) =
1

8π2
ln

(
Λ
m

)
(e2 −m2g2)(−p/ + 4m) + finite terms. (9.33)

9.6.3 Vertex Correction from Gravity

Concerning the vertex corrections which arise from the gravitational interaction and elec-
tromagnetic interaction with fermions, it may well be that the vertex corrections do not
become physically very important. It is obviously too small to measure any effects of the
higher order terms from the gravity and electromagnetic interactions. However, we should
examine the renormalizability of the vertex corrections and can show that they are indeed
well renormalized into the wave function. The vertex corrections from the electromagnetic
interaction and the gravity can be evaluated as

ΛQED(k, q) = imge2

∫
d4p

(2π)4

[
γµ

1
(k/− p/−m)(k/− p/− q/−m)p2

γµ

]
, (9.34a)

ΛG(k, q) = −im3g3

∫
d4p

(2π)4

[
1

(k/− p/−m)(k/− p/− q/−m)p2

]
. (9.34b)
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We can easily calculate the integrations and obtain the total vertex corrections for the zero
momentum case ofq = 0 as

Λ(k, 0) = ΛQED(k, 0) + ΛG(k, 0) =
mg

π2
ln

(
Λ
m

)
(e2 −m2g2) + finite terms, (9.35)

which is logarithmic divergence and is indeed renormalizable just in the same way as the
QED case.

9.6.4 Renormalization Procedure

Since the infinite contributions to the fermion self-energy and to the vertex corrections
in the second order diagrams are just the same as the QED case, one can carry out the
renormalization procedure just in the same way as the QED case. In this way, we can
achieve a successful renormalization scheme for the gravity, even though we do not know
any occasions in which the higher order contributions may become physically important.

9.7 Gravitational Interaction of Photon with Matter

From eq.(9.30), one finds that the gravitational potentialV (r) for photon with matter field
can be written as

V (r) = −G0αm2
t M

2π

1
r

, (9.36)

wheremt andM denote the sum of all the fermion masses and the mass of matter field,
respectively.α denotes the fine structure constantα = 1

137 . In this case, the equation of
motion for photonAλ under the gravitational field becomes

(
∂2

∂t2
−∇2 − G0αm2

t M

2π

1
r

)
Aλ = 0. (9.37)

Assuming the time dependence of the photon fieldAλ as

Aλ = ελe−iωtA0(r) (9.38)

we obtain (
−∇2 − G0αm2

t M

2π

1
r

)
A0(r) = ω2A0(r). (9.39)

This equation shows that there is no bound state for photon even for the strong coupling
limit of G0 →∞.
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9.7.1 Photon-Gravity Scattering Process

Eq.(9.39) can be written with|k| = ω as

(∇2 + k2
)
A0(r) = −G0αm2

t M

2π

1
r

A0(r), (9.40)

which is just the same as the scattering process of a particle under the Coulomb interaction.
When the non-relativistic particle with its massm0 and momentumk scatters elastically
with a point nucleus with its chargeZ, the Schr̈odinger equation becomes

(∇2 + k2
)
ψ(r) = −2m0Ze2

r
ψ(r). (9.41)

The solution of eq.(9.41) is well studied and therefore we can make use of this equation
to solve eq.(9.39). In this case, we can obtain the differential cross section of the photon-
gravity scattering process

dσ

dΩ
=

α2
g

16ω4 sin4 θ
2

, (9.42)

whereαg is defined as

αg =
G0αm2

t M

2π
. (9.43)

This differential cross section is just the same as the Rutherford cross section.

9.8 Cosmology

What should be a possible picture of our universe in the new quantum theory of gravity? By
now we have sufficient knowledge concerning the cosmology how the present universe is
created and what should be a fate of the present universe. Below is a simple picture one can
easily draw, even though it is almost a story. In order to make it into physics, hard works
may be required, though it must be a doable task.

9.8.1 Cosmic Fireball Formation

Since the gravity is always attractive, it is clear that all of the galaxies should eventually get
together. A question may arise in which way these galaxies would collapse into a Cosmic
Fireball. It is most likely true that, after the end of the expansion of the present universe,
a few galaxies should coalesce into a larger galaxy, and this coalescence should take place
repeatedly until two or three giant clusters of galaxies should be formed. Finally, these giant
clusters would eventually collide into a Cosmic Fireball which should be quite similar to the
initial stage of the big bang. After the Cosmic Fireball is created, it should rapidly expand,
and during the expansion, light nuclei should be created. In this picture, galaxies should be
naturally formed since the expansion after the explosion should not be very uniform. This is
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in contrast to the big bang cosmology in which the galaxy formation must be quite difficult
since the big bang should be extremely uniform.

In this respect, the universe should repeatedly make the same formation of galaxies. The
universe should have existed from the infinite time of past, and it should make the galaxy
formation and collision in the infinite time of future.

Here, it should be noted that the concept of the infinite time of past or future is beyond
the understanding of human being. Also, the whole universe should have infinite space, but
again the infinite space should not be a target of physics research.

9.8.2 Relics of Preceding Universe

According to the present picture of the universe, there may well be some relics of the
preceding universe before the Cosmic Fireball.

Large Scale Structure of Universe

In the present universe, there is a large scale structure of the universe among cluster of
galaxies such as the Great Attractor. This should be related to the remnants of the Cosmic
Fireball formation when the preceding universe got together into the Cosmic Fireball.

Photon Baryon Ratio

Another possible relic must be the large number of photons compared to the number of
baryons in the present universe. This photon-baryon ratio may well be understood in terms
of the relic of photons in the preceding universe since photon has some interactions with
strong gravitational fields and therefore some of photons may be trapped during the Cosmic
Fireball formation. On the other hand, neutrino should not be trapped due to the lack of the
interactions with baryons. Therefore, the number of neutrinos must be much smaller than
the number of photons in the present universe.

9.8.3 Remarks

The gravitational interaction appears always as the mass term and induces always the at-
tractive force between fermions. In addition, there is an interaction between photon and the
gravity as the fourth order Feynman diagrams. The behavior of photon under the gravita-
tional field may have some similarity with the result of the general relativity.

The renormalization procedure of the gravitational interaction is carried out in the same
way as the QED case, and therefore the propagator of the graviton stays massless, which is
just the same as the QED case in which photon stays always massless. This can be easily
understood from the observation that the self-energy of photon as well as graviton should
not be considered for the renormalization scheme.

Here, it is still an open question whether the gravitational field should be quantized
or not. This is basically because there is no definite requirement from experiment for the
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quantization. For the quantized theory of gravitational field, one may ask as to whether
there is any method to observe a graviton or not. The graviton should be created through
the fermion pair annihilation. Since this graviton can propagate as a free graviton like
a photon, one may certainly have some chance to observe it through the creation of the
fermion pair. But this probability must be extremely small since the coupling constant is
very small, and there is no enhancement in this process unless a strong gravitational field
like a neutron star may rapidly change as a function of time.

9.9 Time Shifts of Mercury and Earth Motions

The new gravity model is applied to the description of the observed advance shifts of the
Mercury perihelion, the earth rotation and the GPS satellite motion. First, we obtain the
gravitational potential which can be calculated from the non-relativistic reduction of the
Dirac equation in terms of the Foldy-Wouthuysen transformation. Then, we should make
the classical limit of the Hamiltonian so that we can obtain the classical potential for the
gravity.

9.9.1 Non-relativistic Gravitational Potential

The Hamiltonian of the Dirac equation in the gravitational field can be written as

H = −i∇ ·α +
(

m− GmM

r

)
β, (9.44)

whereM denotes the mass of the gravity center. This Hamiltonian can be easily reduced
to the non-relativistic equation of motion by making use of the Foldy-Wouthuysen transfor-
mation [14]. Here, we only write the result in terms of the HamiltonianH [46]

H = m +
p2

2m
− GmM

r
+

1
2m2

GmM

r
p2 − 1

2m2

GMm

r3
(s ·L), (9.45)

where the last term denotes the spin-orbit force, but we do not consider it here. Now, we
make the classical limit to derive the Newton equation. In this case, it is safe to assume the
factorization ansatz for the third term, that is,〈

1
2m2

GmM

r
p2

〉
=

〈
1

2m2

GmM

r

〉 〈
p2

〉
. (9.46)

By making use of the Virial theorem for the gravitational potential
〈

p2

m

〉
=

〈
GmM

r

〉
(9.47)

we obtain the new gravitational potential for the Newton equation

V (r) = −GmM

r
+

1
2mc2

(
GmM

r

)2

, (9.48)

where we explicitly write the light velocityc in the last term of the equation.
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9.9.2 Time Shifts of Mercury, GPS Satellite and Earth

The Newton equation with the new gravitational potential can be written as

mr̈ = −GmM

r2
+

`2

mr3
+

G2M2m

c2r3
. (9.49)

Therefore, we can introduce a new angular momentumL as

L2 ≡ `2 +
G2M2m2

c2
. (9.50)

Further, we define the angular velocityω and radiusR by

ω ≡ `

mR2
, R ≡ `2

GMm2(1− ε2)
3
4

, (9.51a)

whereε denotes the eccentricity. Correspondingly, we can define a new angular velocityΩ
associated withω as

Ω2 ≡ ω2 +
G2M2

c2R4
= ω2(1 + η), (9.51b)

whereη is defined as

η =
G2M2

c2R4ω2
. (9.52)

The equation (9.49) can be immediately solved, and one finds the solution of the orbit

r =
A

1 + ε cos
(

L
` ϕ

) , (9.53)

whereA andε are given as

A =
L2

GMm2
, ε =

√
1 +

2L2E

m(GmM)2
. (9.54)

Physical observables can be obtained by integratingϕ̇ = `
mr2 over the periodT

`

m

∫ T

0
dt =

∫ 2π

0
r2dϕ = A2

∫ 2π

0

1(
1 + ε cos

(
L
` ϕ

))2 dϕ. (9.55)

This can be easily calculated to be

ωT = 2π(1 + 2η) (1− εη) ' 2π{1 + (2− ε)η}, (9.56)

whereε is assumed to be small. Therefore, the new gravity potential gives rise to the
advance shift of the time shift, and it can be written as

(
∆T

T

)

th

' (2− ε)η. (9.57)

This is a physical observable which indeed can be compared to experiment.
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9.9.3 Mercury Perihelion Shift

The Mercury perihelion advance shift∆θ is well known to be [92]

∆θ ' 43 ′′ per 100 year. (9.58)

Since Mercury has the0.24 year period, it can amount to the shift ratioδθ

δθobs ≡
(

∆T

T

)

obs

' 8.0× 10−8. (9.59)

The theoretical calculation of the new gravity model shows

η =
G2M2

c2R4ω2
' 2.65× 10−8 (9.60)

where the following values are used for the Mercury case

R = 5.73× 1010 m, M = 1.989× 1030 kg, ω = 8.30× 10−7.

Therefore, the theoretical shift ratioδθth becomes

δθth ≡
(

∆T

T

)

th

' 4.8× 10−8 (9.61)

which should be compared to the observed value in eq.(9.59). As can be seen, this agree-
ment is indeed remarkable since there is no free parameter in the theoretical calculation.

9.9.4 GPS Satellite Advance Shift

Many GPS satellites which are orbiting around the earth should be influenced rather heavily
by the new gravitational potential. The GPS satellite advance shift can be estimated just in
the same way as above, and we obtain

η =
G2M2

c2R4ω2
' 1.69× 10−10 (9.62)

where we employ the following values for the GPS satellite [8, 100]

R = 2.6561× 107 m, M = 5.974× 1024 kg, ω = 1.4544× 10−4 (9.63)

since the satellite circulates twice per day. Therefore, the advance shift of the GPS satellite
becomes (

∆T

T

)

th

' 3.4× 10−10. (9.64)

This should be compared to the observed value of
(

∆T

T

)

exp

' 4.5× 10−10. (9.65)

As seen from the comparison between the calculation and the observed value, the new
gravity theory can indeed achieve a remarkable agreement with experiment.
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9.9.5 Time Shift of Earth Rotation− Leap Second

Here, we calculate the time shift of the earth rotation around the sun [47]. First, we evaluate
theη

η =
G2M2

c2R4ω2
' 0.992× 10−8 (9.66)

where we employ the following values forR, M andω

R = 1.496× 1011 m, M = 1.989× 1030 kg, ω = 1.991× 10−7. (9.67)

In this case, we find the time shift for one year

(∆T )th ' 0.621 s/year (9.68)

whereε = 0.0167 is taken. In fact, people have been making corrections for the leap
second, and according to the data, they made the first leap second correction in June of
1972. After that, they have made the leap second corrections from December 1972 to
December 2008. The total corrections amount to 23 seconds for 36.5 years since we should
start from June 1972. This corresponds to the time shift per year

(∆T )exp ' 0.63± 0.02 s/year (9.69)

where the errors are supposed to come from one year shift of the observation. This agrees
surprisingly well with the theoretical time shift of the earth.

9.9.6 Observables from General Relativity

Now, we discuss the calculated results by the general relativity [28, 92]. For the Mercury
perihelion shift, the result is quite well known, and it can be written in terms of the angular
shift. In fact, the angular variableϕ is modified by the general relativity to

cosϕ −→ cos(1− γ)ϕ (9.70)

whereγ is found to be

γ =
3G2M2

c2R4ω2
. (9.71)

This change of the shift in the angular variable could explain the observed Mercury perihe-
lion shift. However, as can be seen from eq.(9.53), this effect vanishes to zero in the case
of ε = 0, that is, for the circular orbit. This is, of course, unphysical in that the effect of the
general relativity is valid only for the elliptic orbit case. In Newton dynamics, the angular
momentum̀ is the only quantity which can be affected from the external effects like the
general relativity or the additional potential.
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9.9.7 Prediction from General Relativity

Now, we should calculate the physical observables as to how the general relativity can
induce the perihelion shift. In this case, one finds that the change appears in eq.(9.53) as

r =
A

1 + ε cos
(

L
` ϕ

) ⇒ r =
A

1 + ε cos ((1− γ)ϕ)
(9.72)

and thus the physical observable becomes

ωT ' 2π(1 + 2εγ). (9.73)

Therefore, the advance shift of the Mercury perihelion becomes

δθth ≡
(

∆T

T

)

th

' 3.3× 10−8 (9.74)

which is a factor of 2.5 smaller than the observed value of the Mercury perihelion shift.
It should be noted that the predicted shift in eq.(9.72) is indeed the advance shift of the
Mercury perihelion as given in eq.(9.73).

In addition, the GPS satellite shift predicted by the general relativity becomes
(

∆T

T

)

th

' 0.10× 10−10 (9.75)

which is very small. This is because the GPS satellite motion has almost the circular orbit
around the earth.

Further, the time shift of the earth rotation around the sun predicted by the general
relativity becomes

(∆T )th ' 0.031 s/year. (9.76)

This shows that it is much too small compared to the observed time shift of the earth rotation
around the sun.

In reality, if the angular momentum is affected from the external potential as given in
eq.(9.50), then not only the angular variable but alsoA in eq.(9.54) should be changed, and
therefore as the total effects of the physical observables in the general relativity, eq.(9.73)
is modified to

ωT ' 2π{1− 2(2− ε)γ} (9.77)

which is, unfortunately, a retreat shift sinceε is smaller than unity.

9.9.8 Summary of Comparisons between Calculations and Data

We summarize the calculated results of the Mercury perihelion shift, GPS satellite advance
shift and Leap Second corrections due to the new gravity model as well as the general rela-
tivity. Here, the observed data are compared with the predictions of the model calculations
in Table 9.1.
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Table 9.1

Mercury (∆T/T ) GPS (∆T/T ) Leap Second∆T

Observed data 8.0× 10−8 4.5× 10−10 0.63± 0.02 s/year

New Gravity 4.8× 10−8 3.4× 10−10 0.62 s/year

General Relativity 3.3× 10−8 0.10× 10−10 0.031 s/year

Table 9.1 shows the calculated results of the Mercury perihelion shift, GPS satellite advance
shift and Leap Second corrections together with the observed data. The New Gravity shows
the prediction of the new gravity model calculations which are discussed in this paper. The
General Relativity is the calculation in which we only consider the angular shift following
Einstein. From this table, one sees that the general relativity cannot describe the observed
data.

9.9.9 Intuitive Picture of Time Shifts

It may be interesting to note that the velocity of the Mercury or the earth around the sun is
one of the fastest objects we can observe as a classical motion. This velocityv is aroundv ∼
1.0×10−4 c, which leads to the correction of the relativistic effects in physical observables
as (v

c

)2
∼ 1.0× 10−8

which is just the same magnitude as the values observed in the Mercury perihelion shift
(∆T/T ∼ 5 × 10−8) and the leap second corrections(∆T/T ∼ 2 × 10−8). Therefore,
it should not be surprising at all that the new additional gravitational potential which is
obtained as the relativistic effects of the gravity potential in Dirac equation can account for
the advance shifts of the planets orbiting around the sun.

In this sense, the physical effect of the earth rotation velocity on the perihelion shift
can be compared to the Michelson-Morley experiment. The interesting point is that the
Michelson-Morley experiment is essentially to examine the kinematical effect of the rel-
ativity that the light velocity is not influenced by the earth rotation velocity, even though
the classical mechanics indicates it should be affected. On the other hand, the leap second
correction is the relativistic effect of the dynamical motion of the earth rotation, and it is a
deviation from the Newton mechanics. Both of the observed facts can be understood by the
relativistic effects of the earth motion around the sun, and in fact, the Michelson-Morley
experiment proves that the light velocity is independent of the speed of the earth rotation,
which leads to the concept of the special relativity, while the perihelion shift of the planets
confirms the existence of the new additional gravity potential which is derived from the
non-relativistic reduction of the Dirac equation with the gravitational potential.
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9.9.10 Leap Second Dating

Since we know quite accurately the time shift of the earth rotation around the sun by now,
we may apply this time shift to the dating of some archaeological objects such as pyramids
or Stonehenge. For example, the time shift of 1000 years amounts to 10.3 minutes, and
some of the archaeological objects may well possess a special part of the building which
can be pointed to the sun at the equinox. In this case, one may be able to find out the date
when this object was constructed. This new dating procedure is basically useful for the
stone-made archaeological objects in contrast to the dating of the wooden buildings which
can be determined from the Carbon dating. It should be noted that the new dating method
has an important assumption that there should be no major earthquake in the region of the
archaeological objects.

It should be worthwhile noting that one should be careful for the Leap Second Dating
method in the realistic application. This is clear since the earth is also rotating in its own axis
when it is rotating around the sun. Therefore, the advance time shift of the earth rotation
around the sun should correspond to the retreat time shift of the earth’s own rotation if one
measures it at one fixed point of the earth surface.


