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Preface

Physics is always difficult, though it is extremely interesting. Many times I thought I under-
stood it sufficiently profoundly, but after some time, it turned out that my understanding of
physics was far from satisfactory. In particular, field theory has special complexities which
may not be common to other fields of research. The symmetry and its breaking are most
exotic and sometimes almost mysterious to even those who can normally understand the
basic physics in a clear manner.

In this textbook, I focused on presenting a simple and clear picture of the symmetry
and its breaking in quantum field theory. For this purpose, I explained physics of elemen-
tary field theory of fermions interacting by gauge fields as well as by four body fermion
fields. In this respect, the interpretation of the basic field theory is repeatedly done such
that physicists including graduate students may understand the essential points of the sym-
metry breaking in this textbook.

Also, this book is intended for researchers who look for the basic problems in their
investigations. In many fields of research, field theory is used as a computational tool. In
this regard, I present some elaborate technical tools which are quite useful and sometimes
incentive for new ideas in fundamental researches.

In physics, deeper understanding is more important than quicker understanding. In
particular, graduate students should realize that, if someone else can understand the basic
physics very quickly, then he is most likely a good interpreter of the textbook knowledge.
Slow but deep understanding of physics is most important since it should definitely take
much time to understand physics in depth. The shortest path of understanding physics is
only one of many paths, and interesting physics may well be found in the paths which are
far from the shortest one.

Physics must be simple once we understand it all. For example, I believe that QCD can
surely describe the strong interaction physics. However, it may well be difficult to justify the
perturbative calculation of the interactions between quarks, unless the gauge independence
of the quark-quark interactions is guaranteed. In other words, when the unperturbed as
well as interaction Hamiltonians are gauge dependent, we should make it sure that any
physical quantities evaluated perturbatively are indeed gauge invariant, which seems to be
very difficult.

In this textbook, there are quite a few issues which are still debating. I believe that the
present understanding of the basic field theory in this textbook must be reasonably good,
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and as far as physics of the symmetry and its breaking is concerned, it should be the best
of all. The spontaneous symmetry breaking of the global symmetry is by now understood
in this textbook in terms of a simple physics terminology, and there is nothing mysterious
from the standard way of understanding physics. However, it is still not yet settled whether
the local gauge symmetry can be broken in terms of Higgs mechanism or not. At least,
the gauge fixing for the non-gauge field is physically not at all easy to understand. For this
problem, we need a lot to think over in future what should be physical observables in the
Higgs mechanism.

This textbook contains a brief description of the lattice field theory even though it is not
directly connected to the symmetry breaking physics. Still it may be interesting for readers
to understand the basic point of the lattice field theory. For example, the continuum field
theory must be richer than the lattice version, and it is most likely true that the lattice field
theory can give only limited information on the continuum field theory, particularly when
the latter keeps some symmetry while the former does not.

In Appendix, I explain some elementary physics so that readers may grasp the essence
of the symmetry breaking phenomena in fermion field theory with little advanced knowl-
edge. In some sense, Appendix can be read in its own interests since it includes non-
relativistic quantum mechanics, Dirac equation and Maxwell equation, in addition to the
notations which are often used in field theory. At the same time, Appendix contains some
new physics interpretation for bosons, Dirac fields and quantization procedure. In particu-
lar, I believe that the first quantization of[x, px] = ih̄, etc. may well be the result of the
Dirac equation in that the Dirac Lagrangian density can be derived from the gauge principle
as well as the Maxwell equations without involving the first quantization procedure. In the
final chapter of Appendix, I briefly explain the renormalization in QED which is the most
successful theory in quantum field theory. The perturbation theory is not the main issue of
this textbook, but nevertheless readers may learn the essence of the renormalization scheme
in quantum field theory.

The motive force of writing this textbook is initiated by Frank Columbus who under-
stands the importance of the new picture of spontaneous symmetry breaking physics prior
to experts and has encouraged me to write it into a textbook form. Indeed, I started to write
this book from intensive discussions and hard works with my collaborators on this subject
to achieve deeper but simpler understanding of the symmetry and its breaking in quantum
field theory.

I should be grateful to all of my collaborators, in particular, Tomoko Asaga, Makoto
Hiramoto, Takashi Homma, Seiji Kanemaki, Sachiko Oshima and Hidenori Takahashi for
their great contributions to this book. Quite a few physicists and students also helped me a
great deal for their critical reading of this manuscript. However, it is trivial to note that any
mistakes in this book are entirely due to my carelessness.



To the Second Edition

The revision of this textbook is made mainly because of the following two reasons. Firstly,
the first edition contained the wrong description of the path integral formulation. Even
though it is normally found in the field theory textbooks, the path integral description in
the field theory textbooks is not a correct one, and therefore I had to rewrite it into a cor-
rect formulation which was originally presented by Feynman. Secondly, the revision is
concerned with the quantum gravity, and fortunately, the Lagrangian density that includes
the gravitational interactions with fermions is properly constructed. Therefore, I included
quantum gravity in this textbook, and one can now understand the basic physics of quantum
gravity with our standard knowledge of quantum field theory, without referring to the space
deformation.

In this occasion, I would like to express my sincere gratitude to late Prof. Kazuhiko
Nishijima for his many useful comments and encouragements. His continuous supports for
our works encouraged me a great deal, and in particular, the discussions of quantum gravity
helped me to improve the description of the graviton propagation.

Finally I should like to thank numerous students and physicists for their interesting
comments and suggestions to the first edition as well as the draft of the second edition. In
particular, I should be grateful to Atsushi Kusaka, Kazuhiro Tsuda, Naohiro Kanda, Hiroshi
Kato, Hiroaki Kubo and Yasunori Munakata for their careful reading of the manuscript.

Takehisa Fujita
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Chapter 1

Classical Field Theory of Fermions

The world of elementary particles is basically composed of fermions. Quarks, electrons
and neutrinos are all fermions. On the other hand, elementary bosons are all gauge bosons,
except Higgs particles though unknown at present. Therefore, if one wishes to understand
field theory, then it should be the best to first study fermion field theory models.

In this chapter, we discuss the classical field theory in which “classical field” means that
the field is not an operator but ac-number function. First, we treat the Schrödinger field
and its equation in terms of the non-relativistic field theory model. In this case, the first
quantization of[xi, pj ] = ih̄δij is already done since we start from the Lagrangian density.
In fact, the Lagrange equation leads to the Schrödinger equation or in other words, the
Lagrangian density is constructed such that the Schrödinger equation can be derived from
the Lagrange equation. The Dirac field is then discussed in terms of the Lagrangian density
and the Lagrange equation. We also discuss the electromagnetic fields which interact with
the Dirac field. The gauge invariance will be repeatedly discussed in this textbook, and the
first introduction is given here. Finally, the field theory models with self-interacting fields
are introduced and their Lagrangian density as well as Hamiltonian are described.

In this textbook, the basic parts of elementary physics can be found in Appendix, and in
fact, Appendix is prepared such that it can be read in its own interests independently from
the main part of the textbook.

Throughout this book, we employ the natural units

c = 1, h̄ = 1.

This is, of course, due to its simplicity, and one can easily recover the right dimension of
any physical quantities by making use of

h̄c = 197 MeV · fm.

1.1 Non-relativistic Fields

If one treats a classical fieldψ(r), it does not matter whether it is a relativistic field or
non-relativistic one. The kinematics becomes important when one solves the equation of
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motion which is relativistic or non-relativistic. If the kinematics is non-relativistic, then the
equation of motion that governs the fieldψ(r) is the Schr̈odinger equation. Therefore, we
should first study the Schrödinger field from the point of view of the classical field theory.

1.1.1 Schr̈odinger Equation

Electron in classical mechanics is treated as a point particle whose equation of motion
is governed by the Newton equation. When electrons are trapped by atoms, then their
motions should be described by quantum mechanics. As long as electrons move much
slowly in comparison with the velocity of lightc, the equation of their motion is governed
by the Schr̈odinger equation. The Schrödinger equation for electron with its massm in the
external fieldU(r) can be written as [102]

(
i

∂

∂t
+

1
2m

∇2 − U(r)
)

ψ(r, t) = 0, (1.1)

whereU(r) is taken to be a real potential.ψ(r, t) corresponds to the electron field in atoms,
and|ψ(r, t)|2 can be interpreted as a probability density of finding the electron at(r, t).

Field ψ(r, t) is Complex

The Schr̈odinger fieldψ(r, t) should be a complex function, and the complex field just
corresponds to one particle state in the classical field theory. This is a well known fact, but
below we will see what may happen when we assumea priori that the Schr̈odinger field
ψ(r, t) should be a real function.

Real Field Condition is Unphysical

If one imposes the condition that the fieldψ(r, t) should be real

ψ(r, t) = ψ†(r, t)

then, one sees immediately that the fieldψ(r, t) becomes time-independent since eq.(1.1)
and its complex conjugate equation give the following constraint for a real fieldψ(r, t)

∂ψ(r, t)
∂t

= 0.

Also, the fieldψ(r) should satisfy the following equation
(
− 1

2m
∇2 + U(r)

)
ψ(r) = 0.

Since the general solution of eq.(1.1) can be written as

ψ(r, t) = e−iEtφ(r)
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the fieldψ(r, t) may become a real function only if the energyE of the system vanishes.
That is, the energy eigenvalue ofE is

E = 0.

Therefore, the real field cannot propagate and should be unphysical. This means that the
real field condition ofψ(r, t) is physically too strong as a constraint.

1.1.2 Lagrangian Density for Schr̈odinger Fields

The Lagrangian density which can produce eq.(1.1) is easily found as

L = iψ†
∂ψ

∂t
− 1

2m

∂ψ†

∂xk

∂ψ

∂xk
− ψ†Uψ, (1.2)

where the repeated indices ofk mean the summation ofk = 1, 2, 3 and, in this text, this
notation as well as the vector representation are employed depending on the situations.
The repeated indices notation is mostly better for the calculation, but for memorizing the
expressions or equations, the vector notation has some advantage.

The Lagrangian density of eq.(1.2) is constructed such that the Lagrange equation can
reproduce the Schrödinger equation of eq.(1.1). It may also be important to note that the
Lagrangian density of eq.(1.2) has aU(1) symmetry, that is, it is invariant under the change
of the fieldψ as

ψ′(x) = eiθψ(x) −→ L′ = L,

whereθ is a real constant. This invariance is clearly satisfied, and it is related to the con-
servation of vector current in terms of Noether’s theorem which will be treated in the later
chapters and in Appendix A.

Non-hermiticity of Lagrangian Density

At this point, we should discuss the non-hermiticity of the Lagrangian density. As one
notices, the Lagrangian density of eq.(1.2) is not hermitian, and therefore some symmetry
will be lost. One can build the Lagrangian density which is hermitian by replacing the first
term by

iψ†
∂ψ

∂t
−→

(
i

2
ψ†

∂ψ

∂t
− i

2
∂ψ†

∂t
ψ

)
.

However, it is a difficult question whether the Lagrangian density must be hermitian or not
since it is not an observable. In addition, when one introduces the conjugate fields

Πψ ≡ ∂L
∂ψ̇

, Πψ† ≡
∂L
∂ψ̇†

in accordance with the fieldsψ andψ†, then the symmetry between them is lost. However,
the conjugate fields themselves are again not observables, and therefore there is no reason
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that one should keep this symmetry. In any case, one can, of course, work with the symmet-
ric and hermitian Lagrangian density, but physical observables are just the same as eq.(1.2).
In this textbook, we employ eq.(1.2) since it is simpler.

1.1.3 Lagrange Equation for Schr̈odinger Fields

The Lagrange equation for field theory can be obtained by the variational principle of the
actionS

S =
∫
L dt d3r

and the Lagrange equation is derived in Appendix A. Since the fieldψ is a complex field,ψ
andψ† are treated as independent functional variables. The Lagrange equation for the field
ψ is given as

∂µ
∂L

∂(∂µψ)
≡ ∂

∂t

∂L
∂ψ̇

+
∂

∂xk

∂L
∂( ∂ψ

∂xk
)

=
∂L
∂ψ

, (1.3a)

where the four dimensional derivative

∂µ ≡
(

∂

∂x0
,

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
=

(
∂

∂t
,

∂

∂x
,

∂

∂y
,

∂

∂z

)

is introduced for convenience. Now, the following equations can be easily evaluated

∂

∂t

∂L
∂ψ̇

= i
∂ψ†

∂t
,

∂

∂xk

∂L
∂( ∂ψ

∂xk
)

= − 1
2m

∂

∂xk

∂ψ†

∂xk
,

∂L
∂ψ

= −ψ†U

and therefore one obtains
(
−i

∂

∂t
+

1
2m

∇2 − U(r)
)

ψ†(r, t) = 0

which is just the Schr̈odinger equation forψ† in eq.(1.1).
It should be interesting to calculate the Lagrange equation for the fieldψ†,

∂

∂t

∂L
∂ψ̇†

+
∂

∂xk

∂L
∂(∂ψ†

∂xk
)

=
∂L
∂ψ†

. (1.3b)

In this case, one finds

∂

∂t

∂L
∂ψ̇†

= 0,
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∂

∂xk

∂L
∂(∂ψ†

∂xk
)

= − 1
2m

∂

∂xk

∂ψ

∂xk
,

∂L
∂ψ†

= i
∂ψ

∂t
− Uψ

and therefore one obtains
(

i
∂

∂t
+

1
2m

∇2 − U(r)
)

ψ(r, t) = 0

which is just the same equation as eq.(1.1).
Here, we note that the Lagrangian density is not a physical observable and therefore it

does not necessarily have to be determined uniquely. It is by now clear that the Lagrangian
density eq.(1.2) reproduces a desired Schrödinger equation and thus can be taken as the
right Lagrangian density for Schrödinger fields.

1.1.4 Hamiltonian Density for Schr̈odinger Fields

From the Lagrangian density, one can build the Hamiltonian densityH which is the energy
density of the fieldψ(r, t). The Hamiltonian densityH is best constructed from the energy
momentum tensorT µν

T µν ≡ ∂L
∂(∂µψ)

∂νψ +
∂L

∂(∂µψ†)
∂νψ† − Lgµν

which will be derived in eq.(2.32) in Chapter 2. The energy momentum tensorT µν satisfies
the following equation of conservation law

∂µT µν = 0

due to the invariance of the Lagrangian density under the translation. Therefore, the con-
served charge associated with theT 0ν

Qν =
∫
T 0ν d3r

should be a conserved quantity. Thus, it is natural that one defines the Hamiltonian in terms
of theQ0.

Hamiltonian Density from Energy Momentum Tensor

The Hamiltonian densityH is defined as

H ≡ T 00 =
∂L
∂ψ̇

ψ̇ +
∂L
∂ψ̇†

ψ̇† − L. (1.4a)
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Therefore, introducing the conjugate fieldsΠψ andΠψ† by

Πψ ≡ ∂L
∂ψ̇

= iψ†, Πψ† ≡
∂L
∂ψ̇†

= 0

one can write the Hamiltonian density as

H = Πψψ̇ + Πψ†ψ̇
† − L =

1
2m

∇ψ† ·∇ψ + ψ†Uψ. (1.4b)

1.1.5 Hamiltonian for Schrödinger Fields

The Hamiltonian for the Schrödinger field is obtained by integrating the Hamiltonian den-
sity over all space

H ≡
∫
H d3r =

∫ [
1

2m
∇ψ† ·∇ψ + ψ†Uψ

]
d3r. (1.4c)

By employing the Gauss theorem
∫

V

∇ · (ψ†∇ψ) d3r =
∫

S

(ψ†∇nψ) dSn

one can rewrite eq.(1.4c)

H =
∫ [

− 1
2m

ψ†∇2ψ + ψ†Uψ

]
d3r, (1.4d)

where the following identity is employed

∇ · (ψ†∇ψ) = ∇ψ† ·∇ψ + ψ†∇2ψ.

In addition, the surface integral term is neglected since it should vanish at the surface of
sphere at infinity.

Now, it may be interesting to note that the Hamiltonian in eq.(1.4d) by itself does not
give us much information on the dynamics. As long as we stay in the classical field theory,
then the dynamics can be obtained from the equation of motion, that is, the Schrödinger
equation. The static Schrödinger equation can be derived from the variational principle of
the Hamiltonian with respect toψ, and this treatment is given in Appendix A.

The Hamiltonian of eq.(1.4c) becomes important when the fieldψ is quantized, that is,
the fieldψ is assumed to be written in terms of the annihilation operatorak as discussed in
Chapter 3. In this case, the Schrödinger field becomes an operator and therefore the Hamil-
tonian as well. This means that one has to prepare the Fock state on which the Hamiltonian
can operate, and if one solves the eigenvalue equation for the Hamiltonian, then one can
obtain the energy eigenvalue of the Hamiltonian corresponding to the Fock state.

However, the quantization of the Schrödinger field is not needed in the normal circum-
stances. The field quantization is necessary for the relativistic fields which contain negative
energy solutions, and it becomes important when one wishes to treat the quantum fluctua-
tion of the fields which corresponds to the creation and annihilation of particles.
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1.1.6 Conservation of Vector Current

From the Schr̈odinger equation, one can derive the current conservation

∂ρ

∂t
+ ∇ · j = 0,

whereρ andj are defined as

ρ = ψ†ψ, j =
i

2m

[
(∇ψ†)ψ − ψ†∇ψ

]
.

This continuity equation of the vector current can also be derived as Noether’s theorem from
the Lagrangian density of eq.(1.2) which is invariant under the global gauge transformation

ψ′ = eiαψ.

As treated in Appendix A, the Noether current is written as

jµ ≡ −i

[
∂L

∂(∂µψ)
ψ − ∂L

∂(∂µψ†)
ψ†

]
, with jµ = (ρ, j)

which just gives the above current densityρ andj when one employs the Lagrangian density
of eq.(1.2).

It may be interesting to observe that the Lagrange equation, energy momentum ten-
sor and the current conservation are all written in a relativistically covariant fashion when
the properties of the Schrödinger field are derived. That is, apart from the shape of the
Lagrangian density of the Schrödinger field, all the treatments are just the same as the rela-
tivistic description.

1.2 Dirac Fields

Electron in hydrogen atom moves much slowly compared with the velocity of lightc. How-
ever, if one considers a hydrogen-like209

83 Bi atom whereZ = 83, for example, then the
motion of electron becomes relativistic since its velocityv can be given as

v

c
∼ (Zα)2 ∼

(
83
137

)2

∼ 0.37

which is already comparable withc.
In this case, one should employ the relativistic kinematics, and therefore the

Schr̈odinger equation should be replaced by the Dirac equation which is obtained by a
natural extension of the relativistic kinematics. However, the Dirac equation contains new
properties which are essentially different from the Schrödinger equation, apart from the
kinematics. They have negative energy solutions and spin degrees of freedom. Both prop-
erties are very important in physics and will be repeatedly discussed in this textbook.
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1.2.1 Dirac Equation for Free Fermion

The Dirac equation for free fermion with its massm is written as [25, 26]
(

i
∂

∂t
+ i∇ ·α−mβ

)
ψ(r, t) = 0, (1.5)

whereψ has four components

ψ =




ψ1

ψ2

ψ3

ψ4


 .

α andβ denote the Dirac matrices and can be explicitly written in the Dirac representa-
tion as

α =
(

0 σ
σ 0

)
, β =

(
1 0
0 −1

)
,

whereσ denotes the Pauli matrix.
The derivation of the Dirac equation and its application to hydrogen atom are given

in Appendix D. One can learn from the procedure of deriving the Dirac equation that the
number of components of the electron fields is important, and it is properly obtained in the
Dirac equation. That is, among the four components of the fieldψ, two degrees of freedom
should correspond to the positive and negative energy solutions and another two degrees
should correspond to the spin withs = 1

2 . It is also important to note that the factorization
procedure indicates that the four component spinor is the minimum number of fields which
can take into account the negative energy degree of freedom in a proper way.

Eq.(1.5) can be rewritten in terms of the wave function components by multiplyingβ
from the left hand side

(i∂µγµ −m)ijψj = 0 for i = 1, 2, 3, 4, (1.6)

where the repeated indices ofj indicate the summation ofj = 1, 2, 3, 4. Here, gamma
matrices

γµ = (γ0,γ) ≡ (β, βα)

are introduced, and the repeated indices of Greek lettersµ indicate the summation ofµ =
0, 1, 2, 3 as defined in Appendix A. The expression of eq.(1.6) is calledcovariant since
the Lorentz invariance of eq.(1.6) is manifest. It is indeed written in terms of the Lorentz
scalars, but, of course there is no deep physical meaning in covariance.

1.2.2 Lagrangian Density for Free Dirac Fields

The Lagrangian density for free Dirac fermions can be constructed as

L = ψ†i [γ0(i∂µγµ −m)]ij ψj = ψ̄(i∂µγµ −m)ψ, (1.7)
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whereψ̄ is defined as
ψ̄ ≡ ψ†γ0.

This Lagrangian density is just constructed so as to reproduce the Dirac equation of (1.6)
from the Lagrange equation. It should be important to realize that the Lagrangian density
of eq.(1.7) is invariant under the Lorentz transformation since it is a Lorentz scalar. This is
clear since the Lagrangian density should not depend on the system one chooses.

Non-hermiticity of Lagrangian Density

This Lagrangian density is not hermitian, and it is easy to construct a hermitian Lagrangian
density. However, as we discussed in the context of Schrödinger field, there is no strong rea-
son that one should take the hermitian Lagrangian density since proper physical equations
can be obtained from eq.(1.7).

1.2.3 Lagrange Equation for Free Dirac Fields

The Lagrange equation forψ†i is given as

∂µ
∂L

∂(∂µψ†i )
≡ ∂

∂t

∂L
∂ψ̇i

† +
∂

∂xk

∂L
∂
(∂ψ†i

∂xk

) =
∂L
∂ψ†i

(1.8)

and one can easily calculate the following equations

∂

∂t

∂L
∂ψ̇i

† = 0,

∂

∂xk

∂L
∂(∂ψ†i

∂xk
)

= 0,

∂L
∂ψ†i

= [γ0(i∂µγµ −m)]ij ψj

and thus, this leads to the following equation

[γ0(i∂µγµ −m)]ij ψj = 0

which is just eq.(1.6). Here, it should be noted that theψi andψ†i are independent functional
variables, and the functional derivative with respect toψi or ψ†i gives the same equation of
motion.

1.2.4 Plane Wave Solutions of Free Dirac Equation

The free Dirac equation of eq.(1.5) can be solved exactly, and it has plane wave solutions.
A simple way to solve eq.(1.5) can be shown as follows. First, one writes the wave function
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ψ in the following shape

ψs(r, t) =
(

ζ1

ζ2

)
1√
V

e−iEt+ip·r, (1.9)

whereζ1 andζ2 are two component spinors

ζ1 =
(

n1

n2

)
, ζ2 =

(
n3

n4

)
.

In this case, eq.(1.5) becomes

(−m−E σ · p
σ · p m− E

)(
ζ1

ζ2

)
= 0 (1.10)

which leads to
E2 = m2 + p2.

This equation has the following two solutions.

Positive Energy Solution (Ep =
√

p2 + m2)

In this case, the wave function becomes

ψ(+)
s (r, t) =

1√
V

u
(s)
p e−iEpt+ip·r, (1.11a)

u
(s)
p =

√
Ep + m

2Ep




χs

σ · p
Ep + m

χs


 , with s = ±1

2
, (1.11b)

whereχs denotes the spin wave function and is written as

χ 1
2

=
(

1
0

)
, χ

− 1
2

=
(

0
1

)
.

Negative Energy Solution (Ep = −
√

p2 + m2)

In this case, the wave function becomes

ψ(−)
s (r, t) =

1√
V

v
(s)
p e−iEpt+ip·r , (1.12a)

v
(s)
p =

√
|Ep|+ m

2|Ep|


−

σ · p
|Ep|+ m

χs

χs


 . (1.12b)
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Some Properties of Spinor

The spinor wave functionu(s)
p andv

(s)
p are normalized according to

u
(s)†
p u

(s)
p = 1,

v
(s)†
p v

(s)
p = 1.

Further, they satisfy the following equations when the spin is summed over

2∑

s=1

u
(s)
p ū

(s)
p =

pµγµ + m

2Ep
, (1.13a)

2∑

s=1

v
(s)
p v̄

(s)
p =

pµγµ + m

2Ep
. (1.13b)

1.2.5 Quantization in Box with Periodic Boundary Conditions

In field theory, one often puts the theory into the box with its volumeV = L3 and re-
quires that the wave function should satisfy the periodic boundary conditions (PBC). This
is mainly because the free field solutions are taken as the basis states, and in this case, one
can only calculate physical observables if one works in the box. It is clear that the free field
can be defined well only if it is confined in the box.

Since the wave functionψs(r, t) for a free particle in the box should be proportional to

ψs(r, t) '
(

ζ1

ζ2

)
1√
V

e−iEt+ip·r

the PBC equations become

eipxx = eipx(x+L), eipyy = eipy(y+L), eipzz = eipz(z+L). (1.14a)

Therefore, one obtains the constraints on the momentumpk as

px =
2π

L
nx, py =

2π

L
ny, pz =

2π

L
nz, nk = 0,±1,±2, . . . . (1.14b)

In this case, the number of statesN in the largeL limit becomes

N =
∑

nx,ny ,nz

∑
s

= 2
L3

(2π)3

∫
d3p, (1.15)

where a factor of two comes from the spin degree of freedom.
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1.2.6 Hamiltonian Density for Free Dirac Fermion

The Hamiltonian density for free fermion can be constructed from the energy momentum
tensorT µν

T µν ≡
∑

i

(
∂L

∂(∂µψi)
∂νψi +

∂L
∂(∂µψ†i )

∂νψ†i

)
− Lgµν

which will be treated in eq.(A.12.3) of Appendix A.

Hamiltonian Density from Energy Momentum Tensor

Now, one defines the Hamiltonian densityH as

H ≡ T 00 =
∑

i


 ∂L

∂ψ̇i

ψ̇i +
∂L
∂ψ̇†i

ψ̇†i


− L. (1.16)

Since the Lagrangian density of free fermion is given in eq.(1.7) and is rewritten as

L = iψ†i ψ̇i + ψ†i [iγ0γ ·∇−mγ0]ij ψj

one can introduce the conjugate fieldsΠψi andΠ
ψ†i

, and calculate them

Πψi
≡ ∂L

∂ψ̇i

= iψ†i , Π
ψ†i

= 0. (1.17)

In this case, the Hamiltonian density becomes

H=
∑

i

(
Πψiψ̇i+Π

ψ†i
ψ̇†i

)
−L= ψ̄i [−iγ ·∇+m]ij ψj = ψ̄ [−iγ ·∇+m] ψ. (1.18)

1.2.7 Hamiltonian for Free Dirac Fermion

The Hamiltonian for free fermion fields is obtained by integrating the Hamiltonian density
over all space

H =
∫
H d3r =

∫
ψ̄ [−iγ ·∇ + m] ψ d3r. (1.19)

As we discussed in the Schrödinger field, the Hamiltonian itself cannot give us much in-
formation on the dynamics. One can learn some properties of the system described by
the Hamiltonian, but one cannot obtain any dynamical information of the system from the
Hamiltonian. In order to calculate the dynamics of the system in the classical field theory
model, one has to solve the equation of motions which are obtained from the Lagrange
equations for fields.

When one wishes to consider the fluctuations of the fields or, in other words, creations
of particles and anti-particles, then one should quantize the fields. In this case, the Hamil-
tonian becomes an operator. Therefore, one has to prepare the Fock states on which the
Hamiltonian can operate. Most of the difficulties of the field theory models should be to
find the vacuum of the system.
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1.2.8 Conservation of Vector Current

The Lagrangian density of the Dirac field has a global gauge invariance,

ψ′ = eiαψ −→ L′ = L
and therefore there is a Noether current associated with the symmetry. As treated in Ap-
pendix A, the Noether current is written as

jµ ≡ −i

[
∂L

∂(∂µψ)
ψ − ∂L

∂(∂µψ†)
ψ†

]

and therefore the vector currentjµ becomes

jµ = ψ̄γµψ.

Due to the global gauge invariance of the Lagrangian density, the vector currentjµ satisfies
the continuity equation

∂µjµ = 0.

1.3 Electron and Electromagnetic Fields

The main part of the physical world is governed by the interaction between electrons and
electromagnetic fields. Therefore, the Dirac equation, the Maxwell equation and their inter-
actions are most important to understand the basic physics in many fundamental researches.

1.3.1 Lagrangian Density

When electron interacts with electromagnetic fields, the Lagrangian density becomes

L = ψ̄
(
i∂µγµ − gAµγµ −m

)
ψ − 1

4
FµνF

µν , (1.20)

whereFµν denotes the field strength and is given as

Fµν = ∂µAν − ∂νAµ.

Aµ denotes the gauge field with
Aµ = (A0,A),

whereA0 andA are the scalar and vector potentials, respectively.g denotes the gauge cou-
pling constant, and in the classical electromagnetism, it corresponds to the electric chargee.

In the four dimensional field theory of QED, the coupling constantg is dimension-
less, and therefore it is renormalizable in the perturbation calculation. In the two dimen-
sional case, the coupling constantg has a mass dimension, and thus it is calledsuper-
renormalizable. In this case, there appear no infinities from the momentum integral in
the perturbative calculations, and therefore one does not have to renormalize the coupling
constant.
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1.3.2 Gauge Invariance

The Lagrangian density of eq.(1.20) has an interesting feature. The free fermion Lagrangian
density part

ψ̄(i∂µγµ −m)ψ

is just the same as free Dirac Lagrangian density, and the last term in eq.(1.20)

−1
4

FµνF
µν

corresponds to the field energy term of the electromagnetic fields. The important point is
that the shape of the interaction term

−gψ̄Aµγµψ

can be determined by the requirement of the invariance under the local gauge transforma-
tion.

Local Gauge Transformation

We consider the following local gauge transformation

ψ′ = e−igχψ, A′µ = Aµ + ∂µχ, (1.21)

whereχ is an arbitrary real function of space and time, that is,χ(r, t) which is therefore
calledlocal. It is easy to prove that the shape of the field energy term of the electromagnetic
fields does not change under the local gauge transformation of eq.(1.21)

F ′
µν = ∂µA′ν − ∂νA

′
µ = ∂µ(Aν + ∂νχ)− ∂ν(Aµ + ∂µχ) = Fµν .

In addition, one can easily prove that the Lagrangian density of

ψ̄(i∂µγµ − gAµγµ −m)ψ

does not change its shape under the local gauge transformation of eq.(1.21). That is,

ψ̄′(i∂µγµ − gA′µγµ −m)ψ′

= ψ̄e−igχeigχ
(
i∂µγµ + g∂µχγµ − gAµγµ − g∂µχγµ −m

)
ψ

= ψ̄
(
i∂µγµ − gAµγµ −m

)
ψ. (1.22)

Therefore, a new Lagrangian densityL′ becomes equal to the original oneL

L′ = ψ̄′
(
i∂µγµ − gA′µγµ −m

)
ψ′ − 1

4
F ′

µνF
′µν = L.

The invariance of the Lagrangian density under the local gauge transformation determines
the shape of the interaction between electron and electromagnetic fields. This is surpris-
ing, but it is, in a sense, the same as the classical mechanics as discussed in AppendixE. In
this respect, it is interesting to realize that the gauge invariance that arises from the redun-
dancy of the vector potential in solving the Maxwell equations plays an important role for
determining the shape of the fundamental interactions.
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1.3.3 Lagrange Equation for Dirac Field

The Dirac equation with the electromagnetic interaction can be easily obtained from the
Lagrange equation forψ

(i∂µγµ − gAµγµ −m)ψ = 0. (1.23)

This is the Dirac equation for the hydrogen atom when the potential is static, that is

A = 0

and

gA0 = −Ze2

r
,

where we putg = e with e the electric charge.

1.3.4 Lagrange Equation for Gauge Field

The Lagrange equation for the gauge fieldAν is written as

∂µ
∂L

∂(∂µAν)
=

∂L
∂Aν

.

Since one can easily calculate

∂L
∂Aν

= −gψ̄γνψ,

∂µ
∂L

∂(∂µAν)
= −1

2
∂µ (∂µAν − ∂νAµ)× 2 = −∂µFµν

one obtains
∂µFµν = gψ̄γνψ = gjν , (1.24)

where the current densityjν is defined as

jν = ψ̄γνψ = (ψ̄γ0ψ, ψ̄γψ). (1.25)

Eq.(1.24) is the Maxwell equation, and more explicitly, one can evaluate eq.(1.24)

[ν = 0] −→ ∂F k0

∂xk
=

∂Ek

∂xk
= ∇ ·E = gj0, (1.26a)

[ν = k] −→ ∂F 0k

∂t
+

∂F ik

∂xi
= −Ėk + εkij

∂Bj

∂xi
= −Ėk + (∇×B)k = gjk (1.26b)

which are just the Maxwell equations. It is of course easy to see that no magnetic monopole

∇ ·B = 0
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and Faraday’s law

∇×E = −∂B

∂t
are automatically satisfied in terms of the vector potentialAµ since

B = ∇×A =⇒ ∇ ·B = ∇ ·∇×A = ∇×∇ ·A = 0,

E = −∂A

∂t
−∇A0 =⇒ ∇×E = ∇×

(
−∂A

∂t
−∇A0

)
= −∂B

∂t
.

1.3.5 Hamiltonian Density for Fermions with Electromagnetic Field

Now, one can construct the Hamiltonian density of fermion with electromagnetic field. The
Hamiltonian densityH can be defined by the energy momentum tensorT µν [eq.(A.12.3)] as

H ≡ T 00 =
∑

i


 ∂L

∂ψ̇i

ψ̇i +
∂L
∂ψ̇†i

ψ̇†i


 +

∑

k

(
∂L
∂Ȧk

Ȧk

)
− L

sinceT 0ν is a conserved quantity. By introducing the conjugate fieldsΠψi , Πψ†i
andΠAk

as

Πψi ≡
∂L
∂ψ̇i

, Π
ψ†i
≡ ∂L

∂ψ̇†i
, ΠAk

=
∂L
∂Ȧk

one can rewrite the Hamiltonian density as

H =
∑

i

(
Πψiψ̇i + Π

ψ†i
ψ̇†i

)
+

∑

k

ΠAk
Ȧk − L. (1.27)

The conjugate fieldsΠψi , Π
ψ†i

andΠAk
can be calculated by employing the Lagrangian

density of eq.(1.20)

Πψi =
∂L
∂ψ̇i

= iψ†i , Π
ψ†i

= 0, ΠAk
= Ȧk +

∂A0

∂xk
= −Ek.

It should be noted that there is no corresponding conjugate field forA0 in the Hamiltonian
density, and thus there is no kinetic energy term present forA0. Now, the Hamiltonian
density can be calculated as

H = ψ̄

[
−iγk

∂

∂xk
+ m + gAµγµ

]
ψ

+
1
2

[
Ȧk

2 −
(

∂A0

∂xk

)2

+
(

∂Ak

∂xj

∂Ak

∂xj
− ∂Ak

∂xj

∂Aj

∂xk

)]
. (1.28a)

Eq.(1.28a) can be written in a familiar form

H = ψ̄ (−iγ ·∇ + m) ψ − gj ·A + gj0A0 +
1
2

[
Ȧ2 − (∇A0)2 + B2

]
. (1.28b)
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1.3.6 Hamiltonian for Fermions with Electromagnetic Field

The Hamiltonian can be obtained by integrating the Hamiltonian density over all space

H =
∫ [

ψ̄ (−iγ ·∇+m) ψ−gj ·A+gj0A0+
1
2

(
Ȧ2−(∇A0)2+B2

)]
d3r. (1.28c)

Now, one makes use of the equation of motion

∇ ·E = gj0

in order to rewrite theA0 in terms of the fermion current densityj0. Since there is a gauge
freedom left and one should fix it to avoid the redundancy of the field variables, one may
take a Coulomb gauge, for example

∇ ·A = 0. (1.29)

In this case, the equation of motion for the gauge fieldA0 becomes

∇2A0 = −gj0 (1.30)

which is just a constraint. This is not an equation of motion any more since it does not
depend on time. This constraint can be easily solved, and one obtains

A0(r) =
g

4π

∫
j0(r′) d3r′

|r′ − r| . (1.31)

Now, one can make use of the following equation

1
2

∫
(∇A0)2 d3r = −1

2

∫
(∇2A0)A0 d3r =

g2

8π

∫
j0(r′)j0(r) d3r d3r′

|r′ − r| , (1.32)

where the surface integrals are set to zero. Also,ET is introduced which denotes the trans-
verse electric field

ET = −Ȧ

and it satisfies
∇ ·ET = 0.

Therefore, the Hamiltonian of fermions with electromagnetic fields becomes

H =
∫ {

ψ̄ (−iγ ·∇ + m) ψ − gj ·A}
d3r

+
g2

8π

∫
j0(r′)j0(r) d3r d3r′

|r′ − r| +
1
2

∫ (
E2

T + B2
)
d3r (1.33)

which is a desired form.
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1.4 Self-interacting Fermion Fields

Interactions between fermions are mediated by the gauge fields and this is the basic princi-
ple for the description of the fundamental field theory models. The reason why the gauge
field theory is employed in modern physics is partly because the electromagnetic interaction
is described by the gauge field theory but also because the gauge field theory is a renormal-
izable field theory. This is important since the renormalizable field theory has a predictive
power in the perturbative calculations.

On the other hand, the field theory model with current-current interactions is not renor-
malizable in four dimensions since the coupling constant has the dimension of mass inverse
square. Nevertheless, the model proposed by Nambu and Jona-Lasinio has been discussed
frequently since it demonstrates, for the first time, the spontaneous symmetry breaking in
the vacuum state in fermion field theory models. Therefore, we briefly discuss the La-
grangian density of the Nambu-Jona-Lasinio (NJL) model [93]. In addition, we treat the
Thirring model which is the current current interaction model in two dimensions [109].
This model becomes important for the discussion of the spontaneous symmetry breaking
which will be discussed in detail in Chapter 4.

1.4.1 Lagrangian and Hamiltonian Densities of NJL Model

The Lagrangian density of the NJL model is given as

L = iψ̄γµ∂µψ −mψ̄ψ +
1
2

G
[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

]
. (1.34)

In this case, the Hamiltonian density of the NJL model can be written as

H = −iψ†∇ ·αψ + mψ̄ψ − 1
2

G
[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

]
. (1.35)

The coupling constant in this model has a dimension of inverse mass square,

G ∼ m−2. (1.36)

Therefore, the NJL model is not renormalizable in the perturbative sense. Some of physical
observables calculated in terms of the first order perturbation theory should have diver-
gences ofΛ2. When the cut-off momentumΛ becomes very large, the physical quantity
diverges very quickly, and there is no chance to renormalize this divergence into the cou-
pling constantG.

The NJL model has been discussed often in the context of the spontaneous symmetry
breaking physics [83, 84], and therefore we are bound to discuss it here since we will
discuss the symmetry and its breaking in the later chapter of this book. Further, it should be
fair to mention that, if one solves the field theory model exactly or non-perturbatively, then
one may find that the theory has some predictive power. But this problem is too difficult to
discuss further.
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1.4.2 Lagrangian Density of Thirring Model

There is a popular field theory model in two dimensions with current current interactions.
It is called Thirring model which has been extensively studied since it has an exact solution
due to the Bethe ansatz technique. This will be treated in detail in the later chapter. Here,
we should only introduce the model Lagrangian density. The Thirring model is described
by the following Lagrangian density

L = iψ̄γµ∂µψ −m0ψ̄ψ − 1
2

gjµjµ, (1.37)

where the fermion currentjµ is given as

jµ = ψ̄γµψ. (1.38)

The coupling constantg in two dimensional current current interaction model is a dimen-
sionless constant. Therefore, it is renormalizable, and the model has a predictive power in
the perturbation calculations.

1.4.3 Hamiltonian Density for Thirring Model

The Hamiltonian density of the Thirring model can be written as

H = −iψ̄γ1∂1ψ + m0ψ̄ψ +
1
2

gjµjµ. (1.39)

Here, the chiral representation forγ matrices in two dimensions is chosen

γ0 =
(

0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
, γ5 ≡ γ0γ1 =

(
1 0
0 −1

)
. (1.40)

By introducing the stateψ as

ψ =
(

ψa

ψb

)
(1.41)

the Hamiltonian density can be written

H = −i

(
ψ†a

∂

∂x
ψa − ψ†b

∂

∂x
ψb

)
+ m0(ψ†aψb + ψ†bψa) + 2gψ†aψaψ

†
bψb. (1.42)

Therefore, the Hamiltonian of the Thirring model can be written as

H =
∫

dx

[
−i

(
ψ†a

∂

∂x
ψa − ψ†b

∂

∂x
ψb

)
+m0(ψ†aψb + ψ†bψa)+2gψ†aψaψ

†
bψb

]
. (1.43)

In Chapter 7, we will discuss the diagonalization procedure of the Thirring model Hamilto-
nian in terms of the Bethe ansatz technique.
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1.5 Quarks with Electromagnetic and Chromomagnetic Inter-
actions

It should be worthwhile writing the total Lagrangian density which is composed of quarks
interacting with electromagnetic fields as well as chromomagnetic fields. Normally, one
considers either electromagnetic interactions or chromomagnetic interactions separately
since they become important at the different physical stages. Here, we write them together
since in reality there are always two different types of interactions (QED and QCD) for
quarks present in nature. In addition, we include the interaction terms which violate the
time reversal invariance as well as parity transformation just for academic interests.

1.5.1 Lagrangian Density

The Lagrangian density of quarks interacting with electromagnetic fields as well as chro-
momagnetic fields is given as

L = ψ̄f

[
i
(
∂µ + igsA

a
µT a + iefAµ

)
γµ −m0

]
ψf − 1

4
FµνF

µν − 1
4

Ga
µνG

µν,a

− i

2
d̃f ψ̄fσµνγ5T

aψfGµν,a − i

2
df ψ̄fσµνγ5ψfFµν , (1.44)

where the summation of flavor runsf = up, down, strange, charm, bottom and top quarks.
T a denotes the generator of theSU(3) color group. The last two terms represent theT -
andP -violating interactions.σµν andγ5 are defined as

σµν =
i

2
(γµγν − γνγµ), γ5 ≡ iγ0γ1γ2γ3.

Field Strength of Electromagnetic Field

Fµν denotes the electromagnetic field strength and is written as

Fµν = ∂µAν − ∂νAµ, (1.45)

whereAµ is the gauge field as given in Section 1.3.

Field Strength of Chromomagnetic Field

Gµν denotes the chromomagnetic field strength and is given as

Ga
µν = ∂µAa

ν − ∂νA
a
µ − gsC

abcAb
µAc

ν , (1.46)

whereAa
µ is the color gauge fields.Cabc denotes the structure constant in theSU(3) group.

The coupling constantsgs andef denote the gauge coupling constant off -flavor quarks
interacting with chromomagnetic field and electromagnetic field, respectively.
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1.5.2 EDM Interactions

The last two terms in eq.(1.44) represent the interaction terms which violate the time rever-
sal invariance as well as the space reflection at the same time. These terms are given just
for references in order to understand theT -violating interactions in future in terms of EDM
(Electric Dipole Moments). That is,

− i

2
d̃f ψ̄fσµνγ5T

aψfGµν,a : EDM for chromomagnetic fields,

− i

2
df ψ̄fσµνγ5ψfFµν : EDM for electromagnetic fields.

The coupling strengths̃df anddf denote the strength of the time reversal and parity vio-
lating interactions of quark with the chromomagnetic fields and the electromagnetic fields,
respectively. Thẽdf anddf have the dimension of the mass inverse, and, in fact, they are
related to the electric dipole moment.

The existence of the EDM interactions should be determined from experiments. If there
is any finite EDM interaction observed in future experiment, it should indicate an existence
of a new scale which is different from the quark masses. In this respect, the observation of
the EDM interaction must be physically very interesting and important indeed.


