
Chapter 5

Weak Interactions

Abstract: In this chapter, we first present a brief review of the weak interac-
tion theory. In particular, we discuss why the conserved vector current model had to
be modified to a new theory. After that, we clarify the physics of the spontaneous
symmetry breaking and then discuss the intrinsic problem of the Higgs mechanism
in the Weinberg-Salam model. In addition, we present the calculation of the vertex
correction due to the weak vector bosons and show that there is no logarithmic diver-
gence in this vertex corrections. Therefore, there is no need of the renormalization
procedure in the weak interaction models with massive vector bosons.
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5.1 Introduction

The physics of weak interactions started from the Fermi model of the four fermion inter-
action Hamiltonian. This model pointed to the essentially correct physics picture of the
weak decay processes. However, the four fermion interaction model has a quadratic di-
vergence in the second order perturbation calculations even with a very small coupling
constant. Therefore, the model cannot be accepted for a correct theory unless one makes
some modifications, even though this model is applied to physical processes with the first
order perturbation theory and has made a great success.

At the same time, there were several strong experimental evidences that the four fermion
interaction model should be mediated by very heavy bosons, and indeed, the experimental
discovery of the weak vector bosons (W±, Z0 ) was followed. In the mean time, Weinberg
and Salam proposed a weak interaction model which is based on theSU(2) ⊗ U(1) non-
abelian gauge theory. The reason why they employ the gauge theory is simply because they
believed that the gauge theory should be renormalizable, though without any foundations.

However, the problem is that this standard model has two serious mistakes. The first
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one is related to the non-abelian nature of gauge fields in the model Lagrangian density. As
we discuss in the previous chapter, the charges of the non-abelian gauge fields are gauge
dependent, and therefore they are not physical observables at all. This means that these
gauge fields cannot become free particles unless one makes mistakes somewhere within
the theoretical framework. The second mistake in the standard model is connected to their
treatment of the Higgs mechanism. There, the local gauge invariance is broken by hand
in order to give a finite mass to the gauge field at the Lagrangian density level, and this is
a wrong procedure. This is mainly based on the fact that the symmetry breaking physics
is completely misunderstood at the time of the construction of the theory, and indeed the
symmetry breaking physics is only concerned with the property of the interacting vacuum
state, and it cannot induce any change of the gauge field properties in the Hamiltonian since
the symmetry breaking has nothing to do with the field operators. In reality, the chiral
symmetry is never broken spontaneously, as we see below.

In this chapter, we review what is the basic problem of the standard model of the weak
interactions. In short, the problem of the Weinberg-Salam model is concerned with the
symmetry nature which should be kept at any time in the Lagrangian density, even though
the state (here the vacuum state of the interacting field theory model) can find the symmetry
property which is different from the one found in the free field theory model. There is
nothing surprising since the true vacuum of the interacting Hamiltonian may well have
a non-vanishing charge associated with the symmetry of the Hamiltonian while the free
field theory model may have zero charge of the symmetry group. On the other hand, the
Weinberg-Salam model had to break the symmetry itself at the Lagrangian density level
because it started from the local gauge theory whose fields must be always massless, and
this is more than a serious defect of the model Hamiltonian, but it is physically a wrong
procedure. This clearly indicates that, instead of the Weinberg-Salam model, one should
find a new model Hamiltonian with three massive vector bosons from the beginning, and it
turns out that this is indeed renormalizable. In fact, there is no logarithmic divergence in
the calculations of any physical observables in the new model, and thus one does not have
to worry about the renormalization procedure.

5.2 Critical Review of Weinberg-Salam Model

The Weinberg-Salam model has basically two important ingredients. The first one is con-
cerned with the fermion and vector field coupling that leads to the four fermion interaction
model in the second order perturbative calculations. This is a very reasonable assumption,
and indeed one sees that the model can reproduce almost all of the experimental observa-
tions. The second part is the Higgs mechanism which has, in fact, a serious problem in
connection with theunitary gaugefixing. In this mechanism, the condition ofφ = φ† is
imposed on the Higgs fields. However, this does not correspond to a proper gauge fixing.
Instead, this is simply a procedure for giving a finite but very large mass to a gauge field
by breaking the local gauge invariance by hand. This suggests that the starting Lagrangian
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density of the weak interactions should be reconsidered, and indeed we should start from
the three massive vector boson fields from the beginning. The massive vector fields should
couple to the fermion currents as the initial ingredients. Here, it is shown that the new
renormalization scheme with massive vector bosons has no intrinsic problem, and the mas-
sive vector boson fields do not give rise to any divergences for physical observables and
therefore we do not need any renormalization procedure.

5.2.1 Spontaneous Symmetry Breaking

Before going to the discussion of the Higgs mechanism, we should clarify the physics of
the spontaneous symmetry breaking. The whole idea of the symmetry breaking has been
critically examined in the recent textbook [31, 45, 46], and the physics of the spontaneous
symmetry breaking is, by now, well understood in terms of the standard knowledge of
quantum field theory. In particular, if one wishes to understand the vacuum state in a field
theory model of fermions, then one has to understand the structure of the negative energy
states of the corresponding field theory model.

The terminology of the spontaneous symmetry breaking is misleading, and one should
say that it is incorrectly used. It does not express the right physics of the symmetry breaking
[47, 48, 49]. This is simply because the breaking of the symmetry cannot, of course, occur
in the Hamiltonian of isolated system [50, 51]. If the symmetry breaking is concerned
with the comparison of the vacuum states between the free field theory and the interacting
field theory models, then we see that the chiral charge associated with the chiral symmetry
transformation in the interacting vacuum state may well have a finite but different charge
from the vacuum state of the free field theory which indeed has a zero chiral charge. For
the total HamiltonianH = H0 + HI , we have the vacuum state|vac〉exact which is an
eigenstate ofH, and the vacuum state may well have the eigenvalue of the chiral charge
operatorQ̂5 as [31]

eiαQ̂5 |vac〉exact = einα|vac〉exact

wheren is±1 for the Thirring model. On the other hand, the free vacuum state|vac〉free

which is an eigenstate ofH0 should have

eiαQ̂5 |vac〉free = |vac〉free.

Here, one can see that there is nothing special in this symmetry arguments. The most
important of all is that there is no symmetry breaking in the Hamiltonian ofH. Only the
exact vacuum state has a finite chiral charge, in contrast to the zero chiral charge of the free
vacuum state.

On the other hand, some people completely misunderstood this physics of symmetry
breaking and thought that the vacuum state of the interacting Hamiltonian itself broke the
chiral symmetry [49]. This should arise from the two kinds of misunderstanding in their
calculations. The first point is that they made use of the approximation scheme of Bogoli-
ubov transformation, and this approximation method happens to induce a deceptive term
which looks like a mass term though its mass is infinite [31]. The second misunderstanding
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is concerned with the concept of the cutoff momentum, and in fact, their result of the mass
term is expressed by the cutoff momentumΛ which should be set to infinity at the end of
the calculation. In this respect, it is clear that one cannot discuss its physics by rewriting
the Lagrangian density into a new shape. As one knows, the property of the vacuum state
should be determined from the eigenstate of the total Hamiltonian in the corresponding field
theory model.

In summary, the symmetry of the Hamiltonian can never be spontaneously broken, and
the eigenstate of the Hamiltonian should keep the symmetry property, unless the symmetry
breaking terms should be added to the Hamiltonian by hand. As we discuss below, the
physics of the Higgs mechanism has nothing to do with the property of the vacuum state,
and therefore it is not related to the symmetry breaking physics at all [52].

5.2.2 Higgs Mechanism

As we show below, the whole procedure of the Higgs mechanism cannot be justified at all.
This is mainly connected to the misunderstanding of the gauge fixing where one degree
of freedom of the gauge fields must be reduced in order to solve the equations of motion
of the gauge fields. Therefore, one cannot insert the condition of the gauge fixing into
the Lagrangian density. This is clear since the Lagrangian density only plays a role for
producing the equation of motions. Indeed, the Lagrangian density itself is not directly a
physical observable, and the Hamiltonian constructed from the Lagrangian density is most
important after the fields are quantized. For the field quantization, one has to make use
of the gauge fixing condition which can determine the gauge fieldAµ together with the
equation of motions. This means that only the final Hamiltonian density is relevant to the
description of physical observables, and thus the success of the Glashow-Weinberg-Salam
model [53, 54, 55] is entirely due to the final version of the weak Hamiltonian which is not
at all the gauge field theory but is a model field theory of the massive vector fields which
couple to the fermion currents. The success of the standard model is, of course, due to the
fact that it can be reduced to the theory of conserved vector current (CVC).

In this respect, it is very important to examine the renormalizability of the final version
of the weak Hamiltonian. Here, we show that the renormalizability of the model field
theory can be indeed justified. This is basically due to the fact that there is no divergence
in the vertex corrections of fermions due to the massive vector boson propagations once we
employ a proper propagator of the massive vector bosons. Here, we briefly review how we
can obtain the new propagator of the massive vector boson, and the correct shape of the
propagator of the massive vector bosons should be given as [56]

Dµν(k) = − gµν − kµkν

k2

k2 −M2 − iε
. (5.0)

This shape is determined by solving the equations of motion for the massive vector bosons.
As long as we employ the above propagator, we find that the anomalous magnetic moment
of electron due to weakZ0 bosons does not have any divergences and it is indeed very
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small number which is consistent with experiment. Thus, one can see that the physical
observables with the massive vector boson propagations are all finite and that there are
neither conceptual nor technical problems in the renormalization scheme of the massive
vector bosons interacting with fermions. Namely, there is no need of the wave function
renormalization.

5.2.3 Gauge Fixing

Now we discuss the basic problem of the Higgs mechanism [46]. The Lagrangian density
of the Higgs mechanism is given as

L =
1
2
(Dµφ)†(Dµφ)− 1

4
u0

(|φ|2 − λ2
)2 − 1

4
FµνF

µν (5.1)

where

Dµ = ∂µ + igAµ, Fµν = ∂µAν − ∂νAµ. (5.2)

Here, we only consider the U(1) case since it is sufficient for the present discussions. The
above Lagrangian density is indeed gauge invariant, and in this respect, the scalar field
may interact with gauge fields in eq.(5.1). However, it should be noted that there is no
experimental indication that the fundamental scalar field can interact with any gauge fields
in terms of the Lagrangian density of eq.(5.1). In this sense, this is only a toy model. Now,
the equations of motion for the scalar fieldφ become

∂µ(∂µ + igAµ)φ = −u0φ
(|φ|2 − λ2

)− igAµ(∂µ + igAµ)φ (5.3)

∂µ(∂µ − igAµ)φ† = −u0φ
† (|φ|2 − λ2

)
+ igAµ(∂µ − igAµ)φ†. (5.4)

On the other hand, the equation of motion for the gauge fieldAµ can be written as

∂µFµν = gJν (5.5)

where

Jµ =
1
2
i
{

φ†(∂µ + igAµ)φ− φ(∂µ − igAµ)φ†
}

. (5.6)

One can also check that the currentJµ is conserved, that is

∂µJµ = 0. (5.7)

This Lagrangian density of eq.(5.1) has been employed for the discussion of the Higgs
mechanism.
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5.2.4 Gauge Freedom and Number of Independent Equations

Now, we should count the number of the degrees of freedom and the number of equations.
For the scalar field, we have two independent functionsφ andφ†. Concerning the gauge
fieldsAµ, we have four since there areA0, A1, A2, A3 fields. Thus, the number of the in-
dependent fields is six. On the other hand, the number of equation is five since the equation
for the scalar fields is two and the number of the gauge fields is three. This number of three
can be easily understood, even though it looks that the independent number of equations in
eq.(5.5) is four, but due to the current conservation the number of the independent equations
becomes three. This means that the number of the independent functions is six while the
number of equations is five, and they are not equal. This is the gauge freedom, and there-
fore in order to solve the equations of motion, one has to put an additional condition for the
gauge fieldAµ like the Coulomb gauge which means∇ ·A = 0. In this respect, the gauge
fixing is simply to reduce the redundant functional variable of the gauge fieldAµ to solve
the equations of motion, and nothing more than that.

5.2.5 Unitary Gauge Fixing

In the Higgs mechanism, the central role is played by the gauge fixing of the unitary gauge.
The unitary gauge means that one takes

φ = φ†. (5.8)

This is the constraint on the scalar fieldφ even though there is no gauge freedom in this
respect. For the scalar field, the phase can be changed, but this does not mean that one can
erase one degree of freedom. One should transform the scalar field in the gauge transfor-
mation as

φ′ = e−igχφ

but one must keep the number of degree of freedom after the gauge transformation. What-
ever one fixes the gaugeχ, one cannot change the shape of the scalar fieldφ since it is a
functional variable and must be determined from the equations of motion. The gauge free-
dom is, of course, found in the vector potentialAµ as we discussed above. In this sense,
one sees that the unitary gauge fixing is a simple mistake [57]. The basic reason why peo-
ple overlooked this simple-minded mistake must be due to their obscure presentation of
the Higgs mechanism. Also, it should be related to the fact that, at the time of present-
ing the Higgs mechanism, the spontaneous symmetry breaking physics was not understood
properly since the vacuum of the corresponding field theory was far beyond the proper un-
derstanding. Indeed, the Goldstone boson after the spontaneous symmetry breaking was
taken to be almost a mysterious object since there was no experiment which suggests any
existence of the Goldstone boson. Instead, a wrong theory prevailed among physicists.
Therefore, they could assume a very unphysical procedure of the Higgs mechanism and
people pretended that they could understand it all.
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5.2.6 Non-abelian Gauge Field

Now, one should be careful for the renormalizability of the non-abelian gauge field theory.
As one can easily convince oneself, the non-abelian gauge theory has an intrinsic problem
of the perturbation theory [58]. This is connected to the fact that the color charge in the
non-abelian gauge field depends on the gauge transformation, and therefore it cannot be
physical observables. This means that the free gauge field which has a color charge is
gauge dependent, and thus one cannot develop the perturbation theory in a normal way. In
QCD, this is exhibited as the experimental fact that both free quarks and free gluons are
not observed in nature. The absence of free fields is a kinematical constraint and thus it
is beyond any dynamics. Therefore, one cannot discuss the renormalizability of the non-
abelian gauge field theory models due to the lack of the perturbation scheme in this model
field theory [31, 58]. Therefore, the problem of the renormalizability in the non-abelian
field theory model is a meaningless subject since the perturbation theory is not defined in
this model field theory.

5.2.7 Summary of Higgs Mechanism

The intrinsic problem of the Higgs mechanism is discussed in terms of the gauge fixing con-
dition. This is also related to the misunderstanding of the spontaneous symmetry breaking
physics. Here, we have shown that the Higgs mechanism cannot be justified since the gauge
invariance of the Lagrangian density is violated by hand. However, we believe that the final
version of the weak Hamiltonian should be correct, and therefore we should discuss the
renormalization scheme of the massive vector bosons in detail. As we discuss above, the
basic reason why the standard model Hamiltonian becomes a reasonable model is due to the
fact that they make mistakes twice and thus it gets back to the right Hamiltonian which can
describe the nature. The first mistake is related to the non-abelian character of the gauge
field theory model while the second mistake is concerned with the breaking of the local
gauge invariance in terms of Higgs mechanism, and it is, of course, an incorrect treatment.
Therefore, if we remove the Higgs fields and the non-abelian nature of the massive vector
bosons from the Weinberg-Salam model, then the final Hamiltonian of the standard model
should be physically acceptable.

At this point, we should make a comment on the present status of the Higgs particle
search. At present (January, 2013), there is no indication of the existence of the Higgs
particle in spite of the fact that the total period of the experimental efforts of the Higgs
search must be almost more then three decades. The main difference between theW and
Z bosons and Higgs particle searches can be understood in the following way. The Higgs
particle search started from the theoretical requirements (though incorrect) without having
any firm experimental motivations of its existence, while the W-boson cases had many
experimental indications of their existence before they were discovered by the UA1 and
UA2 collaborations of the CERN-SPS experiments in 1983.
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5.3 Theory of Conserved Vector Current

It should be important to construct the Lagrangian density which can describe the weak
interaction processes. The basic starting point is, of course, the conserved vector current
(CVC) theory which can describe most of the observed weak decay processes quite well.
This CVC theory should be derived from the second order perturbation theory by exchang-
ing the weak vector bosons between corresponding fermions.

5.3.1 Lagrangian Density of CVC Theory

The theory of the weak interactions is developed in terms of the four fermion interaction
model [59] by Fermi and, after some time, Feynman and Gell-Mann extended it to the con-
served vector current (CVC) theory, which is quite successful for describing experiments
[60, 61, 62, 63]. The Lagrangian density of the CVC theory can be written as

L = −GF√
2
J†µJµ + h.c.

whereGF denotes the weak coupling constantGF ' 1.2×10−5 1
M2

p
. AlsoJµ is composed

of the leptonic and hadronic currents and is written as

Jµ = jµ
` + jµ

h

where both of the currents can be expressed as

jµ
` = ψ̄νeγ

µ(1− γ5)ψe + ψ̄νµγµ(1− γ5)ψµ + · · ·

jµ
h = cos θψ̄uγµ(1− γ5)ψd + sin θψ̄uγµ(1− γ5)ψs + · · · .

It should be important to note that the current-current interaction model can describe many
experimental data to a very high accuracy, and this is, indeed, a well-known fact before the
discovery of the weak vector bosons ofW±, Z0.

5.3.2 Renormalizability of CVC Theory

However, this model Hamiltonian of CVC theory should have a serious problem related to
the divergence in the second order perturbation theory. Since the coupling constantGF is
very small compared to the fine structure constant, one can expect that the second order
perturbation must be reliable. On the contrary, however, the second order calculation has
a quadratic divergence since the coupling constantGF has the dimension of the inverse
square of the energy. Therefore, it is clear that this theoretical framework should have an
intrinsic problem of the divergence, and thus it should be very important to construct a
theory which should not have any divergence.
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5.3.3 Renormalizability of Non-Abelian Gauge Theory

Now, in order to construct a theory which is renormalizable, it was believed that the gauge
field theory should be renormalizable at the time when people discovered the CVC theory.
Therefore, it is natural that the non-abelian gauge theory ofSU(2)⊗U(1) was proposed by
Weinberg-Salam. However, one sees by now that the non-abelian gauge field has a charge
associated with its gauge group, but the charge is not a physical observable since it is gauge
dependent. Therefore, there is no way to develop any perturbation theory in this non-abelian
gauge field theory. This means that the non-abelian gauge theory has an intrinsic problem
before going to the renormalization scheme. [64]

5.4 Lagrangian Density of Weak Interactions

Even though the Higgs mechanism itself has an intrinsic problem, the final Hamiltonian
density may well be physically meaningful. This is clear since, from this Hamiltonian
density, one can construct the CVC theory which describes the experimental observables
quite well.

5.4.1 Massive Vector Field Theory

In this respect, we may write the simplest Lagrangian density for two flavor leptons which
couple to the SU(2) vector fieldsW a

µ

L = Ψ̄`(i∂µγµ −m)Ψ` − gJa
µWµ,a +

1
2
M2W a

µWµ,a − 1
4
Ga

µνG
µν,a (5.9)

whereM denotes the mass of the vector boson. Here, we do not write the hadronic part, for
simplicity. The lepton wave functionΨ` has two components

Ψ` =
(

ψe

ψν

)
. (5.10)

Correspondingly, the mass matrix can be written as

m =
(

me 0
0 mν

)
. (5.11)

The fermion currentJa
µ and the field strengthGa

µν are defined as

Ja
µ = Ψ̄`γµ(1− γ5)τaΨ`, Ga

µν = ∂µW a
ν − ∂νW

a
µ . (5.12)

This Lagrangian density is almost the same as the standard model Lagrangian density, apart
from the Higgs fields and the abelien nature. In fact, there is no experiment in weak process
which cannot be described by the Lagrangian density of eq.(5.9). The only thing which,
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people thought, may be a defect in the above Lagrangian density is concerned with the
renormalization of the theory. As we see below, the problem of the renormalization is
completely solved by employing the right propagator of the massive vector bosons. This
means that we find that there is no logarithmic divergence in the evaluation of the vertex
corrections due to the propagations of the massive vector bosons. Therefore, we do not
need any renormalization procedure since all the physical observables are calculated to be
finite.

5.5 Propagator of Massive Vector Boson

Here, we briefly review the derivation of the new propagator of the massive vector boson
which has recently been evaluated properly in terms of the polarization vector [56]. The
correct shape of the boson propagator is found to be the one given as

Dµν(k) = − gµν − kµkν

k2

k2 −M2 − iε
. (5.13)

This is quite important since this does not generate any quadratic divergences in the self-
energy diagrams of fermions any more while the old propagator in the textbooks

Dµν
old(k) = − gµν − kµkν

M2

k2 −M2 − iε

gives rise to the quadratic divergence [31, 15]. This old propagator is obtained by making
use of the Green’s function method. However, the summation of the polarization vectors
cannot be connected to the Green’s function as we discuss below, and thus the employment
of the old propagator is incorrect if one should treat the physical processes which involve
the loop integral.

5.5.1 Lorentz Conditions ofkµε
µ = 0

Here, we briefly explain how we can obtain eq.(5.13). The free Lagrangian density for the
vector fieldZµ with its massM is written as

LZ = −1
4
GµνG

µν +
1
2
M2ZµZµ

with Gµν = ∂µZν − ∂νZµ. In this case, the equation of motion becomes

∂µ(∂µZν − ∂νZµ) + M2Zν = 0. (5.14)

Since the free massive vector boson field should have the following shape of the solution

Zµ(x) =
∑

k

3∑

λ=1

1√
2V ωk

εµ
k,λ

[
ck,λeikx + c†k,λe−ikx

]
(5.15)
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Here, we can insert this solution into eq.(5.14) and obtain the following equation for the
polarization vectorεµ

(k2 −M2)εµ − (kνε
ν)kµ = 0. (5.16)

The condition that there should exist a non-zero solution for theεµ requires that the deter-
minant of the matrix should be zero, namely

det{(k2 −M2)gµν − kµkν} = 0. (5.17)

This equation can be easily solved, and we find the following equation

k2 −M2 = 0 (5.18)

which is the only physical solution of eq.(5.17). Therefore we insert this solution into
eq.(5.16) and obtain the equation for the polarization vectorεµ

kµεµ = 0 (5.19)

which should always hold. Here, we should note that this process of determining the con-
dition on the wave function ofεµ is just the same as solving the free Dirac equation. Ob-
viously this is the most important process of determining the wave functions in quantum
mechanics, and surprisingly, this has been missing in the treatment of determining not only
the massive vector boson propagator but also the photon propagator as well. Also, one can
notice that the condition of eq.(5.19) is just the same as the Lorentz gauge fixing condition
in quantum electrodynamics (QED), and this is often employed as the gauge fixing. How-
ever, one sees by now that the Lorentz condition itself can be obtained from the equation of
motion, and therefore it is more fundamental than the gauge fixing, even though the theory
of massive bosons has no gauge freedom. This indicates that the Lorentz gauge fixing in
QED should not be a proper gauge fixing procedure since the Lorentz gauge fixing cannot
give a further constraint on the polarization vector in the perturbation theory of QED. In
addition, the number of degrees of freedom for the gauge fields can be understood properly
since photon must have the two degrees of freedom due to the two constraint equations (the
Lorentz condition and the gauge fixing condition).

5.5.2 Right Propagator of Massive Vector Boson

Now, we can evaluate the propagator of the massive vector field in the S-matrix expression.
The second order perturbation of the S-matrix for the bosonic part can be written in terms
of the T-product of the boson fields and it becomes

〈0|T{Zµ(x1)Zν(x2)}|0〉 = i
3∑

λ=1

∫
d4k

(2π)4
εµ
k,λεν

k,λ

eik(x1−x2)

k2 −M2 − iε
. (5.20)

After the summation over the polarization states, we find the following shape for∑3
λ=1 εµ

k,λεν
k,λ as

3∑

λ=1

εµ
k,λεν

k,λ = −
(

gµν − kµkν

k2

)
(5.21)
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which satisfies the Lorentz invariance and the condition of the polarization vectorkµεµ = 0.
One sees that this is the only possible solution. From eq.(5.21), one finds that the right
propagator of the massive vector boson should be the one given in eq.(5.13)

Dµν(k) = − gµν − kµkν

k2

k2 −M2 − iε
.

Here it may be important to note that the polarization vectorεµ
k,λ should depend only on the

four momentumkµ, and it cannot depend on the boson mass at this expression. Later, one
may replace thek2 term byM2 in case the vector boson is found at the external line. But
in the propagator, the replacement of thek2 term byM2 is forbidden.

5.5.3 Renormalization Scheme of Massive Vector Fields

In 1970’s, people found that some experiments indicate there might be heavy vector bosons
exchanged between leptons and baryons in the weak processes. Therefore, people wanted to
start from the massive vector bosons. However, it was somehow believed among educated
physicists that only gauge field theories must be renormalizable. We do not know where
this belief came from. In fact, there is no strong reason that only the gauge field theory is
renormalizable. On the contrary, we know by now that only QED may well have a strange
divergence in the vertex corrections.

5.6 Vertex Corrections by Weak Vector Bosons

Now we can calculate the vertex correctionΛρ(p′, p) of electromagnetic interaction due to
theZ0 boson. The Lagrangian density for theZ0 boson which couples to the electron field
ψe should be written as

LZ0 = −1
4
GµνG

µν +
1
2
M2ZµZµ − gzψ̄eγµ(1− γ5)ψeZ

µ (5.22)

where the free Lagrangian density part of electron is not written here for simplicity. This
vertex correction is a physical process which can be directly related to the physical observ-
ables, and therefore we should be concerned with its divergences. The vertex correction
Λρ(p′, p) can be written by evaluating the corresponding Feynman diagrams as [56]

Λρ(p′, p) = −ig2
ze

∫
d4k

(2π)4

(
gµν − kµkν

k2

k2 −M2 − iε

)
γµγ5 1

p/′ − k/−me
γρ 1

p/− k/−me
γνγ

5

(5.23)
where only the term corresponding to theγ5γµ is written for simplicity.
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5.6.1 No Divergences

First, we show that the apparent logarithmic divergent terms in eq.(5.23) vanish to zero, and
this can be easily proved since we can find

Λρ(p, p) = −ieg2
z

∫
d4k

(2π)4

∫ 1

0
2xdx

(
γµk/γρk/γµ − k/k/γρk/k/

k2

)

(k2 − s− iε)3
= 0 (5.24)

wheres = M2(1−x)+m2
ex

2. Therefore, there is no logarithmic divergence for the vertex
correction from the weak massive vector boson propagations. This is very important in
that the physical processes do not have any divergences when we make use of the proper
propagator of the massive vector boson.

5.6.2 Electrong − 2 by Z0 Boson

The finite part of the vertex correction due to theZ0 boson can be easily calculated and,
therefore, the electrong − 2 should be modified by the weak interaction to

g − 2
2

' 7αz

12π

(me

M

)2
' 2× 10−14 (5.25)

where

αz =
g2
z

4π
' 2.73× 10−3.

This is a very small effect, and therefore, it is consistent with the electrong−2 experiment.
We should note that, if we employed the standard propagator of the massive vector boson
as given in the field theory textbooks [15], then we would have obtained a very large effect
on the electrong − 2, even if we had successfully treated the problem of the quadratic and
logarithmic divergences in some way or the other, by renormalizing them into the fermion
self-energy contributions. This strongly suggests from the point of view of the renormal-
ization scheme that the propagator of the massive vector field should be the one given by
eq.(5.13).

5.6.3 Muong − 2 by Z0 Boson

Here, we should also give a calculated value of the muong − 2 due to theZ0 boson since
it is just the same formula as eq.(5.24) except the mass of lepton. The result becomes

(
g − 2

2

)

µ

' 7αz

12π

(mµ

M

)2
' 8.6× 10−10 (5.26)

which is much larger than the electron case. This is, however, still too small to be observed
by the muong − 2 experiments at the present stage.




