
Appendix E

Wave Propagations in medium and
vacuum

The classical wave such as sound can propagate through medium. However, it cannot prop-
agate in vacuum as is well known. This is, of course, clear since the classical wave is the
chain of the oscillations of the medium due to the pressure on the density.

On the other hand, quantum wave including photon can propagate in vacuum since it
is a particle. Here, we clarify the difference in propagations between the classical wave
and quantum wave. The most important point is that the classical wave should be always
written in terms of real functions while photon or quantum wave should be described by the
complex wave function of the shapeeikx since it should be an eigenstate of the momentum.

This part is written as Appendix to the field theory text book “Fundamental problems
in quantum field theory” published in Bentham publishers in 2013.

E.1 What is wave ?

The sound can propagate through medium such as air or water. The wave can be described
in terms of the amplitudeφ in one dimension

φ(x, t) = A0 sin(ωt− kx) (E.1)

whereω andk denote the frequency and wave number, respectively. The dispersion relation
of this wave can be written as

ω = vk. (E.2)

Here, it is important to note that the amplitude is written as the real function, in contrast to
the free wave function of electron in quantum mechanics. In fact, the free wave of electron
can be described in one dimension as

ψ(x, t) =
1√
V

ei(ωt−kx) (E.3)
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172 Appendix E. Wave Propagations in medium and vacuum

which is a complex function. The electron can propagate by itself and there is no medium
necessary for the electron motion.

What is the difference between the real wave amplitude and the complex wave function?
Here, we clarify this point in a simple way though this does not contain any new physics.

E.1.1 A real wave function: Classical wave

If the amplitude is real such as (E.1), then it can only propagate in medium. This can
be clearly seen since the energy of the wave can be transported in terms of the density
oscillation which is a real as the physical quantity. In addition, the amplitude becomes
zero at some point, and this is only possible when it corresponds to the oscillation of the
medium. This means that the wave function of (E.1) has nothing to do with the probability
of wave object. Instead, if it is the oscillation of the medium, then it is easy to understand
why one finds the point where the amplitude vanishes to zero. The real amplitude is called
a classical wave since it is indeed seen in the world of the classical physics.

E.1.2 A complex wave function: Quantum wave

On the other hand, the free wave function of electron is a complex function, and there is
no point where it can vanish to zero. Since this is just the wave function of electron, its
probability of finding the wave is always a constant1

V at any space point of volumeV .

E.2 Classical wave

The sound propagates in the air, and its propagation should be transported in terms of den-
sity wave. The amplitude of this wave can be written in terms of the real function as given
in eq.(E.1). This is quite reasonable since the density wave should be described by the real
physical quantity. Instead, this requires the existence of the medium (air), and the wave
can propagate as long as the air exists. Here, we first write the basic wave equation in one
dimension

1
v2

∂2φ

∂t2
=

∂2φ

∂x2
(E.4)

which is similar to the wave equation in quantum mechanics, though it is a real differential
equation. Here,v denotes the speed of wave.

E.2.1 Classical waves carry their energy ?

In this case, a question may arise as to what is a physical quantity which is carried by the
classical wave like sound. It seems natural that the wave carries its energy (or wave length).
In fact, the transportation of the energy should be carried out by the compression of the
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density and successive oscillations of the medium. Therefore this is called compression
wave.

E.2.2 Longitudinal and transverse waves

Here, we discuss the terminology of the longitudinal and transverse waves, even though one
should not stress its physics too much since there is no special physical meaning.

• Longitudinal wave : The sound propagates as the compressional wave, and the os-
cillations should be always in the direction of the wave motion. In this case, it is called
longitudinal wave. This wave can be easily understood since one can make a picture of the
density wave.

• Transverse wave : On the other hand, if the motion of the oscillations is in the perpen-
dicular to the direction of the wave motion, then it is called transverse wave. The tidal wave
may be the transverse wave, but its description may not be very simple since the density
change may not directly be related to the wave itself.

E.3 Quantum wave

Photon and quantum wave are quite different from the classical wave, and the quantum
wave is a particle motion itself. No medium oscillation is involved. For example, a free
electron moves with the velocityv in vacuum, and this motion is also called ”wave”. The
reason why we call it wave is due to the fact that the equation of motion that describes
electrons looks similar to the classical wave equation of motion. Further, the solution of the
wave equation can be described aseikx, and thus it is the same as the wave behavior in terms
of mathematics. But the physical meaning is completely different from the classical wave,
and quantum wave is just the particle motion which behaves as the probabilistic motion.

E.3.1 Quantum wave (electron motion)

The wave function of a free electron in one dimension can be described as

ψ(x, t) =
1√
V

ei(ωt−k·r) (E.5)

which is a solution of the Schrödinger equation of a free electron,

i
∂ψ

∂t
= − 1

2m
∇2ψ (E.6)

wherek =
√

2mω, andV denotes the corresponding volume. Since the Schrödinger equa-
tion is quite similar to the wave equation in a classical sense, one calls the solution of the
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Schr̈odinger equation as a wave. However, the physics of the quantum wave should be un-
derstood in terms of the quantum mechanics, and the relation to the classical wave should
not be stressed. That is, the quantum wave is completely different from the classical wave,
and one should treat the quantum wave as it is. In addition, the behavior and physics of
the classical wave are very complicated and it is clear that we do not fully understand the
behavior of the classical wave since it involves many body problems in physics.

E.3.2 Photon

The electromagnetic wave is called photon which behaves like a particle and also like a
wave. This photon can propagate in vacuum and thus it should be considered to be a parti-
cle. Photon can be described by the vector potentialA.

•A is real ! : However, thisA is obviously a real function, and therefore, it cannot propa-
gate like a particle. This can be easily seen since the free Hamiltonian of photon commutes
with the momentum operator̂p = −i∇, and therefore it can be a simultaneous eigenstate
of the Hamiltonian. Thus, theA should be an eigenstate of the momentum operator since
the free state must be an eigenstate of momentum. However, any real function cannot be an
eigenstate of the momentum operator, and thus the vector field in its present shape cannot
describe the free particle state.

• Free solution of vector field : What should we do ? The only way of solving this puzzle
is to quantize a photon field. First, the solution ofA can be written as

A(x) =
∑

k,λ

1√
2ωkV

εk,λ

(
c†k,λe−ikx + ck,λeikx

)
(E.7)

with kx ≡ ωkt− k · r. Here,εk,λ denotes the polarization vector which will be discussed
later more in detail. As one sees, the vector field is indeed a real function.

• Quantization of vector field : Now we impose the following quantization conditions
on c†k,λ andck,λ

[ck,λ, c†k′,λ′ ] = δk,k′δλ,λ′ , (E.8)
[ck,λ, ck′,λ′ ] = 0, [c†k,λ, c†k′,λ′ ] = 0. (E.9)

In this case,c†k,λ, ck,λ become operators. Therefore, one should now consider the Fock
space on which they can operate. This can be defined as

ck,λ|0〉 = 0 (E.10)

c†k,λ|0〉 = |k, λ〉 (E.11)

where|0〉 denotes the vacuum state of the photon field. Therefore, if one operates the vector
field on the vacuum state, then one obtains

〈k, λ|A(x)|0〉 =
1√

2ωkV
εk,λe−ikx. (E.12)
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As one sees, this new state is indeed the eigenstate of the momentum operator and should
correspond to the observables. Therefore, photon can be described only after the vector
field is quantized. Thus, photon is a particle whose dispersion relation becomes

ωk = |k|. (E.13)

E.4 Polarization vector of photon

Until recently, there is a serious misunderstanding for the polarization vectorεµ
k,λ. This is

related to the fact that the equation of motion for the polarization vector is not solved, and
thus there is one condition missing in the determination of the polarization vector.

E.4.1 Equation of motion for polarization vector

Now the equation of motion forAµ = (A0, A) without any source terms can be written
from the Lagrange equation as

∂µFµν = 0 (E.14)

whereFµν = ∂µAν − ∂νAµ. This can be rewritten as

∂µ∂µAν − ∂ν∂µAµ = 0. (E.15)

Now, the shape of the solution of this equation can be given as

Aµ(x) =
∑

k

∑

λ

1√
2V ωk

εµ
k,λ

[
ck,λe−ikx + c†k,λeikx

]
(E.16)

and thus we insert it into eq.(E.15) and obtain

k2εµ − (kνε
ν)kµ = 0. (E.17)

Now the condition that there should exist non-zero solution ofεµ
k,λ is obviously that the

determinant of the matrix in the above equation should vanish to zero, namely

det{k2gµν − kµkν} = 0. (E.18)

This leads tok2 = 0, which meansk0 ≡ ωk = |k|. This is indeed a proper dispersion
relation for photon.

E.4.2 Condition from equation of motion

Now we insert the condition ofk2 = 0 into eq.(E.17), and obtain

kµεµ = 0 (E.19)
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which is a new constraint equation obtained from the basic equation of motion. Therefore,
this condition (we call it “Lorentz condition”) is most fundamental. It should be noted that
the Lorentz gauge fixing is just the same as eq.(E.19). This means that the Lorentz gauge
fixing is improper and forbidden for the case of no source term. In this sense, the best gauge
fixing should be the Coulomb gauge fixing

k · ε = 0 (E.20)

from which one findsε0 = 0, and this is indeed consistent with experiment.

• Number of freedom of polarization vector : Now we can understand the number of
degree of freedom of the polarization vector. The Lorentz conditionkµεµ = 0 should give
one constraint on the polarization vector, and the Coulomb gauge fixingk · ε = 0 gives
another constraint. Therefore, the polarization vector has only two degrees of freedom,
which is indeed an experimental fact.

• State vector of photon : The state vector of photon is already discussed. But here we
should rewrite it again. This is written as

〈k, λ|A(x)|0〉 =
εk,λ√
2ωkV

e−ikx. (E.21)

In this case, the polarization vectorεk,λ has two components, and satisfies the following
conditions

εk,λ · εk,λ′ = δλ,λ′ , k · εk,λ = 0. (E.22)

E.4.3 Photon is a transverse wave ?

People often use the terminology of transverse photon. Is it a correct expression ? By now,
one can understand that the quantum wave is a particle motion, and thus it has nothing to
do with the oscillation of the medium. Therefore, it is meaningless to claim that photon
is a transverse wave. The reason of this terminology may well come from the polarization
vectorεk,λ which is orthogonal to the direction of photon momentum. However, as one
can see, the polarization vector is an intrinsic property of photon, and it does not depend on
space coordinates.

• No rest frame of photon ! : In addition, there is no rest frame of photon, and therefore,
one cannot discuss its intrinsic property unless one fixes the frame. Even if one says that
the polarization vector is orthogonal to the direction of the photon momentum, one has to
be careful in which frame one discusses this property.

In this respect, it should be difficult to claim that photon behaves like a transverse wave.
Therefore, one sees that photon should be described as a massless particle which has two
degrees of freedom with the behavior of a boson. There is no correspondence between
classical waves and photon, and even more, there is no necessity of making analogy of
photon with the classical waves.
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E.5 Poynting vector and radiation

We have clarified that the propagation of the real function requires some medium which
can make oscillations. Here, we discuss the Poynting vector how it appears in physics, and
show that it cannot propagate in vacuum at all. Also, we present a brief description of the
basic radiation mechanism how photon can be emitted.

E.5.1 Field energy and radiation of photon

Before discussing the propagation of the Poynting vector, we should first discuss the mech-
anism of the radiation of photon in terms of classical electrodynamics. The interaction
Hamiltonian can be written as

HI = −
∫

j ·A d3r (E.23)

which should be a starting point of all the discussions. Now, we make a time derivative of
the interaction Hamiltonian and obtain

W ≡ dHI

dt
= −

∫ [
∂j

∂t
·A + j · ∂A

∂t

]
d3r. (E.24)

Since we can safely setA0 = 0 in this treatment, we find

E = −∂A

∂t
. (E.25)

Therefore, we can rewrite eq.(E.24) as

W =
∫

j ·E d3r −
∫

∂j

∂t
·A d3r. (E.26)

Defining the first term of eq.(E.24) asWE , we can rewriteWE as

WE ≡
∫

j ·E d3r = − d

dt

[∫ (
1

2µ0
|B|2 +

ε0

2
|E|2

)
d3r

]
−

∫
∇ · S d3r (E.27)

which is just the energy of electromagnetic fields.

E.5.2 Poynting vector

Here, the last term of eq.(E.27) is Poynting vectorS as defined by

S = E ×B (E.28)

which is connected to the energy flow of the electromagnetic field. This Poynting vector
is a conserved quantity, and thus it has nothing to do with the electromagnetic wave. In
addition, it is a real quantity, and thus there is no way that it can propagate in vacuum.
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In addition, the Poynting vector cannot be a target of the field quantization, and thus it
always remains classical since it is written in terms ofE andB. However, there is still
some misunderstanding in some of the textbooks on Electromagnetism, and therefore, one
should be careful for the treatment of the Poynting vector.

•Exercise problem: Here, we present a simple exercise problem of circuit with condenser
with C (disk radius ofa and distance ofd) and resistance withR. The electric potential
differenceV is set on the circuit. In this case, the equation for the circuit can be written as

V = R
dQ

dt
+

Q

C
.

This can be easily solved with the initial condition ofQ = 0 at t = 0, and the solution
becomes

Q = CV
(
1− e−

t
RC

)
.

Therefore, the electric currentJ becomes

J =
dQ

dt
=

V

R
e−

t
RC .

In this case, we find the electric fieldE and the displacement currentjd

E =
Q

πa2
ez =

V C

ε0πa2

(
1− e−

t
RC

)
ez (E.29)

jd =
∂E

∂t
=

V

Rπa2
e−

t
RC ez. (E.30)

Thus, the magnetic fieldB becomes

B =
id r

2
eθ =

r

2πa2R
e−

t
RC eθ

where
∫
C B · dr = µ0idπr2 is used. Therefore, the Poynting vector at the surface (with

r = a ) of the cylindrical space of the disk condenser becomes

S = E ×B = − V 2

2πaRd
e−

t
RC

(
1− e−

t
RC

)
er.

It should be noted that the energy in the Poynting vector is always flowing into the cylin-
drical space. Therefore, the electric field energy is now accumlated in the cylindrical space.
There is, of course, no electromagnetic wave radiation, and in fact, the Poynting vector is
the flow of field energy, and has nothing to do with the electromagnetic wave.
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E.5.3 Emission of photon

The emission of photon should come from the second term of eq.(E.26) which can be de-
fined asWR and thus

WR = −
∫

∂j

∂t
·A d3r. (E.31)

In this case, we can calculate the∂j
∂t term by employing the Zeeman effect Hamiltonian

with a uniform magnetic field ofB0

HZ = − e

2me
σ ·B0. (E.32)

The relevant Schrödinger equation for electron with its massme becomes

i
∂ψ

∂t
= − e

2me
σ ·B0 ψ. (E.33)

Therefore, we find

∂j

∂t
=

e

me

[
∂ψ†

∂t
p̂ψ + ψ†p̂

∂ψ

∂t

]
= − e2

2m2
e

∇B0(r). (E.34)

In order to obtain the photon emission, one should quantize the fieldA in eq.(E.31).

• Field quantization : The field quantization in electromagnetic interactions can be done
only for the vector potentialA. The electric fieldE and the magnetic fieldB are classical
quantities which are defined before the field quantization.

E.6 Gravitational wave

People often discuss the gravitational wave which is supposed to come from the Einstein
equation. In this case, one sees that the equation for the metric tensor is all real, and thus
the solution of this equation must be also real. Therefore, the gravitational wave, if at all
exists, is a real function, and thus it cannot propagate in vacuum unless one believes the
aether hypothesis.

• No quantization of gravity : In addition, there is no physical meaning to quantize
the metric tensor and therefore, there is no chance that the gravitational wave propagates in
vacuum.
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E.6.1 General relativity

Since we treat the gravitational wave, we should make a comment on the general relativity.
Einstein invented the general relativity which is the second order differential equation for
the metric tensorgµν . A question may arise as to why the general relativity can be related to
the gravitational theory. This reason is simply because Einstein claimed that he had proved
the gravitational Poisson equation should be derived from the general relativity at the weak
gravitational limit. However, in his proof, he assumed the following strange equation

g00 ' 1 + 2φ (E.35)

whereφ denotes the gravitational field. Because of this equation (E.35), he could derive the
gravitational Poisson equation

∇2φ(r) = 4πGρ(r) (E.36)

whereG andρ denote the gravitational constant and the density, respectively.

• Eq.(E.35) is correct ? : Here, we show that eq.(E.35) is not only strange but simply
incorrect. In order to do so, we should examine the physical meaning of the equation
g00 ' 1 + 2φ. We should notice that 1 (unity) in the right hand side of eq.(E.35) is a
simple number. This is clear since the metric tensor is just the coordinate system itself.
However, the gravitational fieldφ is a dynamical variable, and therefore this summation of
two different categories is simply meaningless.

• No connection between general relativity and gravity : By now it should be clear that
the general relativity has nothing to do with gravity. It is a theory for the coordinate system
(metric tensor), but it is not a theory for nature.

Note :
The new gravitational theory is explained in detail in Chapter 6 in the text book of
“Fundamental problems in quantum field theory” .

Reference :
Fundamental Problems in Quantum Field Theory
T. Fujita and N. Kanda, Bentham Publishers, 2013


