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Preface

There are many articles which make elementary explanations of
the theory of relativity since relativity may attract many people
indeed. However, it should not be very easy to understand in
depth the theory of relativity in a correct fashion. In particular, if
authors may explain the theory of relativity following the science
history, then there should be a great danger that the interpretation
may well be made in the wrong direction.

In this short note, I should like to explain what is the theory of
relativity and why it is so important in physics. The essence of the
relativity is simple. Two inertial frames which are relatively moving
with a constant velocity on the straight line should be equivalent
to each other. This means that there is no special inertial system
in physics, and therefore, any experiments which are carried out at
one inertial frame should produce the same results as those given
at the other inertial frame.

Among textbooks which explain the relativity, some of them
might insist that the time in the highly moving inertial frame
should be delayed compared to the rest frame. However, this is
simply wrong, and later I should describe the reason why there is
no time delay in any of inertial frames.
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Chapter 1

Relativity

Since the invariance of light velocity is established, people real-
ized that the transformation of inertial frames must be the Lorentz
transformation. This Lorentz transformation is derived such that
the Maxwell equation should be invariant under the transformation
among the inertial frames. Since the transformation is kinematics,
there should be no effect on the dynamics from the Lorentz trans-
formation.

1.1 Lorentz Transformation

We should prepare two inertial frames, R(t, x, y, z) and S(t′, x′, y′, z′).
Now we assume that the frame S is moving with respect to the rest
frame R(t, x, y, z) in the x−axis with the velocity of v. In this case,
the Lorentz transformation can be written as

x = γ(x′ + vt′), t = γ

(
t′ +

v

c2x
′
)

, y = y′, z = z′ (1.1)

where γ is defined as

γ =
1√

1− v2

c2

. (1.2)
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CHAPTER 1. RELATIVITY 2

The Lorentz transformation is derived such that the Maxwell equa-
tions must have the same shape of differential equations. In eq.(1.1),
if the velocity v is much smaller than the light velocity c, then we
have

x ' x′ + vt′, t ' t′, y = y′, z = z′ (1.3)

which is just the Galilei transformation.

1.2 Lorentz Transformation of Differential Quantities

Here we should present the Lorentz transformation of differential
quantities concerning the coordinates

x = γ(x′ + vt′), t = γ

(
t′ +

v

c2x
′
)

(1.4)

and they can be written as

∂

∂x
= γ

(
∂

∂x′
− v

c2

∂

∂t′

)
,

∂

∂t
= γ

(
v

∂

∂x′
− ∂

∂t′

)
. (1.5)

Since y, z should not be affected, we do not write them here. Now
if we define

px = −i
∂

∂x
, E = i

∂

∂t
(1.6)

then we find

px = γ


px

′ +
vE ′

c2


 , E = γ (E ′ + vpx

′) (1.7)

which is just the Lorentz transformation of energy and momentum.
Therefore, the scalar product of px ≡ Et − p · r is invariant under
the Lorentz transformation

px = Et− p · r = p′x′ = E ′t′ − p′ · r′. (1.8)
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1.3 Lorentz Invariance of Equation of Motions

The equation of motion should have the same shape of differential
equations in any of inertial frames. Therefore, we want to check as
to how the Newton equation and Maxwell equation should behave
under the Lorentz transformation.

1.3.1 Newton Equation under Lorentz Transformation

As we see from the Lorentz transformation of x = γ(x′ + vt′), t =
γ

(
t′ + v

c2x
′), x, t should be independent from each other. But here

we assume that x should be a function of time. Therefore, the
differential of x with respect to time t becomes

dx

dt
=

dx′ + vdt′

dt′ + v
c2dx′

=
dx′
dt′ + v

1 + v
c2

dx′
dt′

. (1.9)

Further the second derivative should be given as

d2x

dt2
=

1

γ(dt′ + v
c2dx′)

d




dx′
dt′ + v

1 + v
c2

dx′
dt′


 =

d2x′

dt′2

γ3
(
1 +

v dx′
dt′
c2

)3 6=
d2x′

dt′2
(1.10)

which is totally different from the Newton equation. Thus, the
Newton equation cannot be invariant under the Lorentz transfor-
mation.

1.3.2 Maxwell Equation under Lorentz Transformation

The equation of motion for the electric field of E can be written
when there is no current


 1

c2

∂2

∂t2
−∇2


 E = 0. (1.11)
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Under the Lorentz transformation, we can prove

1

c2

∂2

∂t2
−∇2 =

1

c2

∂2

∂t′2
−∇′2 (1.12)

and therefore, the Maxwell equation is invariant under the Lorentz
transformation.



Chapter 2

Relativistic Classical Mechanics

In old days, people discussed the relativistic classical mechanics.
This is a model which is the extension of classical mechanics to the
kinematically relativistic version of mechanics. In terms of science
history, this extension should be understandable. However, this is
physically a meaningless mechanics which has never been applied
to real physics.

2.1 Classical Mechanics

Here, there should be no point to explain any physical meaning of
classical mechanics, but it should be important to note that the
coordinate x in Newton equation is a function of time t. This is
quite strange from the point of view of field theory since t and x
should be independent from each other. This is, in fact, also true
for the Lorentz transformation.

Then, a question may arise as to why the x should become a
function of time in the Newton equation. This can be understood
if one looks into the Ehrenfest theorem in detail. One sees that the
time dependence of x should be a leftover of time dependence in
the state vector ψ(r, t). In this sense, the x of a point particle in
classical mechanics is identified as the x in the coordinate system.

5



CHAPTER 2. RELATIVISTIC CLASSICAL MECHANICS 6

2.2 Relativistic Classical Mechanics

The Newton equation can be extended to the relativistic equation
of motion by making some modification of kinematics, and this
mechanics is called relativistic classical mechanics. Here, however,
we do not write this equation of motion since it has no physical
meaning at all.

It is clear that we cannot derive the original equation from the
equation which is obtained by some approximations. For example,
if we take x as a small positive number, we find

(1 + x)α = 1 + αx + · · · (2.1)

as an approximation. However, it is impossible to guess the l.h.s
of equation from the r.h.s. of equation. Thus, it is, of course, clear
that the equation of quantum mechanics cannot be obtained from
the classical mechanics.

2.3 Definition of Velocity

In classical mechanics, the velocity of particle is defined as

v =
dr

dt
. (2.2)

However, in the relativistic kinematics, we cannot define the ve-
locity of particle in terms of the derivative of coordinate r. This
is simply because t and r are independent from each other in the
relativistic kinematics as well as in the Lorentz transformation.
Therefore, the velocity in the relativistic kinematics can be defined
in terms of momentum as

v =
pc2

E
. (2.3)
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In the nonrelativistic limit, we obtain, using E ' mc2

v ' p

m
. (2.4)

This indicates that the velocity of particle in the relativistic kine-
matics should not be a fundamental physical quantity. In this
respect, we cannot define the relativistic classical mechanics in a
proper way.

2.3.1 Velocity in Quantum Mechanics

In quantum mechanics, the concept of velocity does not appear
in fundamental physical quantities, and the momentum of particle
appears as a basic quantity. If one wishes to know the velocity
of particle, then one should calculate the expectation value of mo-
mentum as

v ≡ 1

m

∫
ψ†(r)p̂ψ(r)d3r (2.5)

where p̂ is defined as p̂ = −ih̄∇ which denotes the momentum
operator.

2.3.2 Velocity v in Lorentz Transformation

The velocity of particle is not related to a fundamental physical
quantity, but the velocity v of inertial frame appears in the rela-
tivity. However, its physical meaning is not very clear yet.
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2.4 Lorentz Contraction

People often discuss unphysical effects if they are based on the
picture of relativistic classical mechanics. A typical example must
be the Lorentz contraction. This is a claim that the length ` of the
moving frame should be viewed to be contracted if one sees it in
the rest frame. But people never explain how it is related to any
physical observables.

In reality, however, only the center of mass of length ` should be
transformed into the other inertial frame, and the Lorentz trans-
formation cannot give any information on the internal structure of
length `. In this respect, there is no way to discuss the Lorentz
contraction.

Further, the length ` should have a finite size, and this means
that this ` should be a bound state of many atoms. However, in
the quantum field theory, there is no way to solve even two body
problems in a rigorous fashion. This means that we do not know
how to solve the two body problem in the Dirac equation. One may
ask a question as to whether the hydrogen atom should be solved
in the Dirac equation. However, the hydrogen atom in the Dirac
equation is solved with the approximation that proton is sufficiently
heavy and thus it should be set to at rest.



CHAPTER 2. RELATIVISTIC CLASSICAL MECHANICS 9

2.5 High Energy Heavy Ion Reaction

When a moving inertial frame collides with some targets in the rest
frame, is there any possible way to handle the reaction process? In
fact, this is just the experiment of high energy heavy ion reactions
which were performed around 1980. The energy of heavy ion should
amount to around 1 GeV per nucleon, and this should indeed be
treated relativistically. The projectile nucleus is 4He, and at Max-
Planck Institute, Hüfner and I started to make up some model
which can analyze the data of heavy ion reactions.

However, we had some serious problems which are related to the
treatment of the projectile wave function of 4He in the rest frame.
As one knows, the Lorentz transformation should be only for the
center of mass system of 4He, and thus there is no way to obtain
the internal wave function of 4He in the rest frame since 4He is
moving relativistically. The Lorentz transformation cannot tell us
anything about the wave function which has some distribution in
space.

As a result, we decided to make analysis of the reaction process
in the projectile frame in which the 4He nucleus is at rest. In this
way, we are successful in obtaining some important information
from the experimental data of this heavy ion reaction.
．



Chapter 3

Quantum Field Theory

By now, it is established that the basic theoretical framework is
quantum field theory. In particular, the field theory of electron in-
teracting with electromagnetic fields and gravitational field should
be the most basic theoretical scheme, and the description of field
theory can be found in detail in the textbooks [5, 6].

3.1 Lagrangian Density of QED and Gravity

Here we should write the basic Lagrangian density. This is the
system of particle state ψ with the mass m which should interact
with electromagnetic field of Aµ as well as the gravitational field G.
This Lagrangian density can be written as

L = iψ̄γµ∂µψ − eψ̄γµAµψ −m(1 + gG)ψ̄ψ − 1

4
FµνF

vµν +
1

2
∂µG ∂µG

where G denotes a massless scalar field. F µν denotes the field
strength and is defined as

F µν = ∂µAν − ∂νAµ.

It should not be very easy to prove that this Lagrangian density
is invariant under the Lorentz transformation. But one should
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CHAPTER 3. QUANTUM FIELD THEORY 11

examine it by oneself, and this is the starting point of studying the
quantum field theory in depth.

3.2 Calculations in Quantum Field Theory

In quantum field theory, all the calculations are based on the per-
turbation theory since there is no chance to solve it exactly except
free fields. Therefore, it should be important to construct the Dirac
vacuum since the solution of Dirac equation contains the negative
energy states with the energy eigenvalues which should be phys-
ical. However, if there should be negative energy states present,
then all the positive energy states should become unstable since the
positive energy states should eventually decay into negative energy
states.

In order to avoid this difficulty, Dirac proposed and defined the
physical vacuum in which all the negative energy states should be
occupied. In this case, the vacuum state becomes stable and we
have a well-defined quantum field theory for fermions.

3.3 Two Body Problem in Quantum Field Theory

A hydrogen atom consists of proton and electron, and therefore, it
is a real two body problem. However, if one wishes to solve the
two body Dirac equation, one encounters the difficulty that there
is no way to separate the center of mass system from the relative
coordinate. Thus, one does not know how to solve the two body
Dirac equation in the exact fashion.

Why is it so difficult to solve the Dirac equation for two body
problems ? It should not be very easy to find the answer for the
above question, but one thing must be clear that the difficulty
should be related to the Dirac vacuum state. In terms of quan-
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tum field theory, the problem of hydrogen atom may not neces-
sarily be the two body problem, but rather it should be a many
body problem. One may say that one sees an electron rotating
around proton, but in reality, there should be a small component
of electron- positron pair state as a virtual mixture. This is the
essence of quantum field theory, and it should naturally and al-
ways be a many body problem. Thus, there is no chance to solve
it exactly. In physics, we try to understand the behavior of na-
ture with simple equations of motion, and it must be true that
physics has made a great success. However, even for the classical
mechanics, we cannot solve many body problems. For example,
the phenomena of turbulence should be too difficult to understand
with physics law. It is extremely interesting to study physics, but
we should also understand the limitation of physics application to
nature.



Chapter 4

Is Time in Moving Frame Delayed?

From the Lorentz transformation eq.(1.1), it looks that time in
the moving frame deviates from the rest frame. However, t and
x are variables, and thus, they are not directly related to physical
observables. Below we examine whether the time difference of ∆t
in the Gedanken experiment should be delayed or not.

4.1 Incorrect Gedanken Experiment

Here we first explain the time difference ∆t in the Gedanken ex-
periment which is often discussed in the science history. First, we
consider a train (moving inertial frame) which is driving in the
straight line with a constant velocity v. We assume that there
should be big mirror wall in parallel to the straight line with its
distance of `.

4.1.1 Time Difference of Moving Frame from Rest Frame

First, an observer in the train emits laser beams against mirror
wall. In this case, the observer in the train should not notice that
the train is moving. Now this observer should detect the reflected
laser beam and should measure the time difference (2∆τ). In this

13
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case, we see

` = c∆τ. (4.1)

On the other hand, an observer at the rest frame should detect the
laser beam which reflects and travels through the triangle trajec-
tory. In this case, the time difference (2∆t) should be

√
(c∆t)2 − `2 = v∆t. (4.2)

Therefore, we find
√

c2 − v2 ∆t = c∆τ (4.3)

which gives us the following relation between the time differences
of ∆τ and ∆t as

∆τ =

√√√√1− v2

c2 ∆t. (4.4)

This suggests that the time difference in the moving frame seems
to be somewhat smaller than that of the rest frame.

4.1.2 Time Difference of Rest Frame from Moving Frame

Now we should carry out the same type of Gedanken experiment
from the observer at the moving frame. In this case, the rest
frame is moving with the velocity of −v for the observer of the
moving frame. This can be easily seen if we solve the Lorentz
transformation the other way around

x′ = γ(x− vt), t′ = γ

(
t− v

c2x

)
, y′ = y, z′ = z. (4.5)

Here we see that the rest frame is moving with its velocity of (−v).
But otherwise, everything is just the same as in the previous case.
In this case, the observer in the rest frame emits laser beams against
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mirror wall, and the observer in the train should detect the re-
flected laser beam and should measure the time difference (2∆ct).
Thus, we find

∆t =

√√√√1− v2

c2 ∆τ . (4.6)

4.1.3 Inconsistency of Time Difference

What is going on? The results of eqs. (4.4) and (4.6) contradict
with each other. Since ∆t and ∆τ should be observables in the
Gedanken experiment, there must be something wrong there.

4.2 Where is Incorrect Process in Gedanken Experi-

ment?

What should be incorrect inductions in the Gedanken experiment?
This can be easily seen if we look into eq. (1.1). After t, we took the
coordinate of the train as x′ = x + vt, which is wrong. The correct
coordinate after t should be given by the Lorentz transformation
as

x′ = γ(x + vt). (4.7)

Thus, we should replace in the following way

v∆t =⇒ γv∆t, c∆t =⇒ γc∆t. (4.8)

Therefore, eq. (4.4) becomes

∆τ =

√√√√1− v2

c2 × 1√
1− v2

c2

∆t

= ∆t.

This shows that there is no time delay, and there is no inconsistency.
This is just all what we see from the relativity.
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4.2.1 No Time Delay in Moving Frame!

From the Gedanken experiment, we see that there is no time delay
in the moving frame as compared to the rest frame. This is quite
reasonable since the relativity only states that any inertial frames
should produce the same results of all physical observables.



Chapter 5

Two Inertial Frames : Examples of
Relativity

Here we should discuss possible observables when two inertial frames
are involved in physical processes. It should be noted that this
consideration is only related to the kinematics, and therefore, we
cannot learn anything about dynamics of physical processes.

5.1 Doppler Effect of Light

When a star is moving away from the earth, then lights emitted
from this star should be affected by the Lorentz transformation,
and this is known as the Doppler effect. Let consider that a star is
going away with its velocity v. The momentum p of light emitted
at the star should become p′ on the earth, and this relation is given
by the Lorentz transformation as

p′ = γ

(
p− vE

c2

)
= γ

(
p− vp

c

)
=

p
(
1− v

c

)
√

(1− v2

c2 )
= p

√√√√√
1− v

c

1 + v
c

. (5.1)
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This shows that the momentum of light is decreased. If we express
the above relation in terms of wave length, then we obtain

λ′ =

√√√√√
1 + v

c

1− v
c

λ. (5.2)

Since the wave length of the observed light becomes longer, we call
it “red shift”. It should be noted that this naming has no physical
meaning. It simply says that red light has a longer wave length
than that of blue light. The physical reason of the Doppler shift is
because the energy and momentum make four dimensional vector,
and therefore this is affected by the Lorentz transformation.

5.2 Life Time of Muon Produced in Atmosphere

High energy cosmic ray (protons) may collide with atmospheric N2

or other molecule and may produce muons with the mass of mµ =
105.6 MeV/c2. The life time τ0 of this lepton is around τ0 ' 2×10−6 s.
Therefore, muon is unstable. Now a question is as to whether the
life time of muon may be affected by the Lorentz transformation
or not. This problem is often discussed in science history, but here
we should present a right description of muon as to how far it can
travel in the air.

Now the life time τ0 can be written in terms of decay width Γ as

τ0 =
h̄

Γ
. (5.3)

Here we note that Γ is a Lorentz invariant quantity. Therefore, the
life time is also Lorentz invariant, and thus the life time of muon
should be the same in any inertial frame.
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5.2.1 Travel Distance L of Muon

Now we should calculate the travel distance L of muon after it is
created from the collision of protons with atmosphere. This can be
evaluated from the Lorentz transformation x = γ(x′ + vt′) as

L = γvτ0. (5.4)

Here we take, as an example, muon with its energy of 1 GeV. In this
case, the velocity of muon can be approximated by light velocity of
c. The Lorentz factor γ should be γ ' 10.6. Therefore, the value of
L becomes

L = γvτ0 = 10.6× 3× 108 × 2× 10−6 ' 6.3 km (5.5)

which is longer by γ than vτ0. This indicates that the muon pro-
duced in the atmosphere may well have some chance to be observed
on the earth.

5.2.2 Accelerator Experiment

Unstable particles created by the large accelerator should travel
the distance which is given by eq. (5.4). This is longer by a factor
of γ than vτ0, but it has nothing to do with the delay of life time of
unstable particles. It is simply due to the Lorentz transformation.



Chapter 6

Conclusions

In the theory of relativity, the transformation property among in-
ertial frames can be given by the Lorentz transformation, and this
corresponds to the transformation of a point particle. However, we
find some incorrect description of time delay or Lorentz contraction
in quite a few text books or short notes. We should stress that the
Lorentz transformation is only concerned with the center of mass
system of any complex objects, and that is all we know.

In particular, we prove that the time delay of moving frame never
occurs in any inertial frames. The basic mistake should be origi-
nated from the fact that the coordinate of the moving frame with
the velocity of v should be γvt after t second. In the science history,
people want to modify v or t in order to understand γvt. However,
from the point of theoretical scheme, we should understand γvt by
itself in terms of Lorentz transformation.

20
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6.1 Homework Problem

When a train (moving inertial frame) is running with its velocity
of v, then the position x of the train after ∆t second can be given
by the Lorentz transformation as

x = γ(x′ + v∆t), where γ =
1√

1− v2

c2

. (6.1)

Here we should consider a problem which is concerned with the
emission of light in the train. In this case, a question is as to where
the light should be found after ∆t second in the rest frame.

In this short note, we give the reaching distance ` in the rest
frame as

` = γc∆t. (6.2)

Prove the result of eq.(6.2).

[Hints] :
The light velocity c is not changed when it is emitted from the
running train. But in order to understand the range of the light
after the emission, we need to consider the Lorentz transformation
in a proper manner.

Now, we should take a long train as the moving frame and emit
light and observe it after ∆t second in the train. In this case, the
reaching distance in the moving frame should be simply

x′ = c∆t. (6.3)

Therefore, if we make the Lorentz transformation of eq.(6.1), then
we find the reaching distance ` [(6.2)] of light in the rest frame.



Appendix A

General Relativity

Here, we should make a brief comment on the general relativity.
The general relativity is intended to determine the metric tensor
gµν from the second order differential equation, and this means that
it is an equation for the coordinate system. However, physics is to
understand the motion of particle in the coordinate system which is
chosen and set up by the observer. Therefore, the equation for the
metric tensor does not mean anything in physics, which is beyond
our understanding. In this respect, the Einstein equation is not
an equation of motion in physics, even though it is mathematically
well defined.

A.1 General Relativity Has No Relation with Gravity

Nevertheless, the general relativity seems to be accepted by quite
a few physicists for a long time. What should be reasons for that?
We believe that there should be one particular reason why people
accepted the general relativity. That must be due to the claim of
Einstein that the general relativity should be related to the grav-
itational theory. Indeed, if we postulate the following equation
between the metric tensor g(0 0) and the gravitational field φ

g(0 0) ' 1 + 2φ (A.1)

22
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then we find that the general relativity can be related to the gravity.
However, this assumption of eq.(A.1) cannot be justified at all.

First, the metric tensor gµν are unknown functions which should be
determined by solving the Einstein equation. Therefore, there is
no way to find the shape of metric tensor g(0 0) in advance. Further,
the metric tensor gµν should be functions of coordinate system,
and therefore, there should be no way to relate the gµν to any
dynamical variables like gravitational field φ. In this sense, eq.(A.1)
is obviously a meaningless equation in physics.

A.2 No Relation of General Relativity to Gravity

It is even simpler to prove that the metric tensor gµν should have
nothing to do with the gravitational field. This can be easily seen if
we carefully examine the Einstein equation. The Einstein equation

Rµν − 1

2
gµνR = 8πG0T

µν (A.2)

shows that the l.h.s of the equation can be written in terms of
Ricci tensor (Rµν ) which can be described in terms of metric tensor
gµν. Therefore, this metric tensor gµν should be unknown functions
which should be determined by solving the Einstein equation.

A.2.1 Who Decided Metric of Right Hand Side?

Firstly, a problem arises as to how the metric of right hand side in
the Einstein equation (A.2) should be determined. Probably, the
metric must have been assumed to be Minkowski metric. There-
fore, the Einstein equation means that the metric tensor gµν can be
determined if the distribution function of stars should be given.
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A.2.2 How Can T µν Be Calculated?

Now the serious problem must be related to a question as to how
physical quantities of T µν can be calculated. The energy-momentum
tensor of T µν can be constructed from the star distributions which
should be determined only when the equation of motion of stars
under the gravitational field should be properly solved. Therefore,
the gravitational field must be assumed there in advance, and thus
the metric tensor gµν has nothing to do with the gravity. This is a
clear proof that the general relativity has nothing to do with the
gravity as expected.

A.3 No Application of General Relativity to Physics!

Since the general relativity has no relation with the gravity, there
is, by now, no way to find and understand any physical meaning
of this theory. However, the general relativity has never been used
or applied to any area of physics, and thus it has not given rise to
any serious problems in physics until now.

A.3.1 Problem of Gravitational Wave

However, sometimes we find a fraction of physicists who make some
meaningless claims such as “gravitational wave” or “Black Hole”.
This is indeed a serious problem since these physicists did find and
get a large amount of science budget. Unfortunately, however, we
do not know what we can do for that.
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T. Fujita and J. Hüfner, Nucl. Phys. A343 (1980) 493

[5] Symmetry and Its Breaking in Quantum Field Theory
T. Fujita, Nova Science Publishers, 2011 (2nd edition)

[6] Fundamental Problems in Quantum Field Theory
T. Fujita and N. Kanda, Bentham Publishers, 2013

25


