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Preface

There are many articles which make elementary explanations of the theory of
relativity since relativity may attract many people indeed. However, it should
not be very easy to understand in depth the theory of relativity in a correct
fashion. In particular, if authors may explain the theory of relativity following
the science history, then there should be a great danger that the interpretation
may well be made in the wrong direction.

In this short note, I should like to explain what is the theory of relativity
and why it is so important in physics. The essence of the relativity is simple.
Two inertial frames which are relatively moving with a constant velocity on
the straight line should be equivalent to each other. This means that there is
no special inertial system in physics, and therefore, any experiments which are
carried out at one inertial frame should produce the same results as those given
at the other inertial frame.

Among textbooks which explain the relativity, some of them might insist that
the time in the highly moving inertial frame should be delayed compared to the
rest frame. However, this is simply wrong, and later I should describe the reason
why there is no time delay in any of inertial frames.
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Chapter 1

Relativity

Since the invariance of light velocity is established, people realized that the trans-
formation of inertial frames must be the Lorentz transformation. This Lorentz
transformation is derived such that the Maxwell equation should be invariant
under the transformation among the inertial frames. Since the transformation
is kinematics, there should be no effect on the dynamics from the Lorentz trans-
formation.

1.1 Lorentz Transformation

We should prepare two inertial frames, R(¢,x,y,z) and S(t',2',y,2'). Now we
assume that the frame S is moving with respect to the rest frame R(¢,x,y,z) in
the r—axis with the velocity of v. In this case, the Lorentz transformation can
be written as

=~z +ot'), t:’y(t'—l—;x’), y=1vy, 2=2 (1.1)

where v is defined as

1
A

_ v

c2

(1.2)

The Lorentz transformation is derived such that the Maxwell equations must
have the same shape of differential equations. In eq.(1.1), if the velocity v is
much smaller than the light velocity ¢, then we have

r~ao o, tet, y=4v, 2=72 (1.3)

which is just the Galilei transformation.

1



CHAPTER 1. RELATIVITY 2

1.2 Lorentz Transformation of Differential Quantities

Here we should present the Lorentz transformation of differential quantities
concerning the coordinates

= +ot"), t =7 (t’ - :237’> (1.4)

and they can be written as

0 (o _woy o (0 0 )

ox ~ \ow  cor) o \Vow o) '
Since y, z should not be affected, we do not write them here. Now if we define

0 0
= —i— E=i— 1.
then we find
vE'

Pz =" (pw’ + 3 ) ,  E=v(E"+vp,) (1.7)

which is just the Lorentz transformation of energy and momentum. Therefore,
the scalar product of pxr = Et—p-r is invariant under the Lorentz transformation

pr=FEt—p-r=p2'=FEt—-p -r. (1.8)

1.3 Lorentz Invariance of Equation of Motions

The equation of motion should have the same shape of differential equations
in any of inertial frames. Therefore, we want to check as to how the Newton
equation and Maxwell equation should behave under the Lorentz transformation.

1.3.1 Newton Equation under Lorentz Transformation

As we see from the Lorentz transformation of = = (' +vt'), t =7~ (t’ + C%a:’), x, t
should be independent from each other. But here we assume that x should be a
function of time. Therefore, the differential of + with respect to time ¢t becomes

dx dx’ + vdt B %—i—v

At dU+ dr 14 59

(1.9)
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Further the second derivative should be given as

dx’ d2a’
dzl’ . 1 d( ar’ +v ) . A2 7& d2I/ (1 10)
- v vde! | T 2\ 3 2 :

C

which is totally different from the Newton equation. Thus, the Newton equation
cannot be invariant under the Lorentz transformation.

1.3.2 Maxwell Equation under Lorentz Transformation

The equation of motion for the electric field of E can be written when there is
no current

1 02
(@W_VZ)EZO' (1.11)

Under the Lorentz transformation, we can prove

19 _, 1 ,
aor YV @V 2

and therefore, the Maxwell equation is invariant under the Lorentz transforma-
tion.



Chapter 2

Relativistic Classical Mechanics

In old days, people discussed the relativistic classical mechanics. This is a model
which is the extension of classical mechanics to the kinematically relativistic
version of mechanics. In terms of science history, this extension should be un-
derstandable. However, this is physically a meaningless mechanics which has
never been applied to real physics.

2.1 Classical Mechanics

Here, there should be no point to explain any physical meaning of classical
mechanics, but it should be important to note that the coordinate x in Newton
equation is a function of time ¢t. This is quite strange from the point of view of
field theory since ¢t and z should be independent from each other. This is, in
fact, also true for the Lorentz transformation.

Then, a question may arise as to why the x should become a function of time
in the Newton equation. This can be understood if one looks into the Ehrenfest
theorem in detail. One sees that the time dependence of x should be a leftover
of time dependence in the state vector ¢ (r,t). In this sense, the = of a point
particle in classical mechanics is identified as the x in the coordinate system.

2.2 Relativistic Classical Mechanics

The Newton equation can be extended to the relativistic equation of motion by
making some modification of kinematics, and this mechanics is called relativistic
classical mechanics. Here, however, we do not write this equation of motion
since it has no physical meaning at all.
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It is clear that we cannot derive the original equation from the equation which
is obtained by some approximations. For example, if we take x as a small positive
number, we find

l+z)*=14ar+--- (2.1)

as an approximation. However, it is impossible to guess the l.h.s of equation
from the r.h.s. of equation. Thus, it is, of course, clear that the equation of
quantum mechanics cannot be obtained from the classical mechanics.

2.3 Definition of Velocity

In classical mechanics, the velocity of particle is defined as

o dr
Cdt
However, in the relativistic kinematics, we cannot define the velocity of particle
in terms of the derivative of coordinate . This is simply because t and r are
independent from each other in the relativistic kinematics as well as in the
Lorentz transformation. Therefore, the velocity in the relativistic kinematics
can be defined in terms of momentum as

v (2.2)

2
pc
vV ="—. 2.3
= (23)
In the nonrelativistic limit, we obtain, using £ ~ mc?
p
v~ —. 2.4
- (24)

This indicates that the velocity of particle in the relativistic kinematics should
not be a fundamental physical quantity. In this respect, we cannot define the
relativistic classical mechanics in a proper way.

2.3.1 Velocity in Quantum Mechanics

In quantum mechanics, the concept of velocity does not appear in fundamental
physical quantities, and the momentum of particle appears as a basic quantity.
If one wishes to know the velocity of particle, then one should calculate the
expectation value of momentum as

= [yl mputr)as (25)

where p is defined as p = —iAV which denotes the momentum operator.
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2.3.2 Velocity v in Lorentz Transformation

The velocity of particle is not related to a fundamental physical quantity, but
the velocity v of inertial frame appears in the relativity. However, its physical
meaning is not very clear yet.

2.4 Lorentz Contraction

People often discuss unphysical effects if they are based on the picture of rela-
tivistic classical mechanics. A typical example must be the Lorentz contraction.
This is a claim that the length ¢ of the moving frame should be viewed to be
contracted if one sees it in the rest frame. But people never explain how it is
related to any physical observables.

In reality, however, only the center of mass of length ¢ should be transformed
into the other inertial frame, and the Lorentz transformation cannot give any
information on the internal structure of length /. In this respect, there is no way
to discuss the Lorentz contraction.

Further, the length ¢ should have a finite size, and this means that this ¢
should be a bound state of many atoms. However, in the quantum field theory,
there is no way to solve even two body problems in a rigorous fashion. This
means that we do not know how to solve the two body problem in the Dirac
equation. One may ask a question as to whether the hydrogen atom should
be solved in the Dirac equation. However, the hydrogen atom in the Dirac
equation is solved with the approximation that proton is sufficiently heavy and
thus it should be set to at rest.
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2.5 High Energy Heavy Ion Reaction

When a moving inertial frame collides with some targets in the rest frame, is
there any possible way to handle the reaction process? In fact, this is just the
experiment of high energy heavy ion reactions which were performed around
1980. The energy of heavy ion should amount to around 1 GeV per nucleon,
and this should indeed be treated relativistically. The projectile nucleus is *He,
and at Max-Planck Institute, Hiifner and I started to make up some model which
can analyze the data of heavy ion reactions.

However, we had some serious problems which are related to the treatment of
the projectile wave function of “He in the rest frame. As one knows, the Lorentz
transformation should be only for the center of mass system of ‘He, and thus
there is no way to obtain the internal wave function of *He in the rest frame
since “He is moving relativistically. The Lorentz transformation cannot tell us
anything about the wave function which has some distribution in space.

As a result, we decided to make analysis of the reaction process in the pro-
jectile frame in which the “He nucleus is at rest. In this way, we are successful in
obtaining some important information from the experimental data of this heavy
ion reaction.

O



Chapter 3

Quantum Field Theory

By now, it is established that the basic theoretical framework is quantum field
theory. In particular, the field theory of electron interacting with electromag-
netic fields and gravitational field should be the most basic theoretical scheme,
and the description of field theory can be found in detail in the textbooks [5, 6].

3.1 Lagrangian Density of QED and Gravity

Here we should write the basic Lagrangian density. This is the system of particle
state 1) with the mass m which should interact with electromagnetic field of A,
as well as the gravitational field G. This Lagrangian density can be written as

_ _ . 1 1
L= MZ}'YM ,ﬂﬁ - 6¢7MAM¢ - m(l + gg)¢¢ - Z /WFWW + iaug oG

where ¢ denotes a massless scalar field. F*” denotes the field strength and is
defined as

Fr = 9rAY — 0V A*.
It should not be very easy to prove that this Lagrangian density is invariant
under the Lorentz transformation. But one should examine it by oneself, and
this is the starting point of studying the quantum field theory in depth.
3.2 Calculations in Quantum Field Theory

In quantum field theory, all the calculations are based on the perturbation theory
since there is no chance to solve it exactly except free fields. Therefore, it should

8
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be important to construct the Dirac vacuum since the solution of Dirac equation
contains the negative energy states with the energy eigenvalues which should be
physical. However, if there should be negative energy states present, then all the
positive energy states should become unstable since the positive energy states
should eventually decay into negative energy states.

In order to avoid this difficulty, Dirac proposed and defined the physical
vacuum in which all the negative energy states should be occupied. In this
case, the vacuum state becomes stable and we have a well-defined quantum field
theory for fermions.

3.3 Two Body Problem in Quantum Field Theory

A hydrogen atom consists of proton and electron, and therefore, it is a real two
body problem. However, if one wishes to solve the two body Dirac equation,
one encounters the difficulty that there is no way to separate the center of mass
system from the relative coordinate. Thus, one does not know how to solve the
two body Dirac equation in the exact fashion.

Why is it so difficult to solve the Dirac equation for two body problems ?
It should not be very easy to find the answer for the above question, but one
thing must be clear that the difficulty should be related to the Dirac vacuum
state. In terms of quantum field theory, the problem of hydrogen atom may
not necessarily be the two body problem, but rather it should be a many body
problem. One may say that one sees an electron rotating around proton, but
in reality, there should be a small component of electron- positron pair state as
a virtual mixture. This is the essence of quantum field theory, and it should
naturally and always be a many body problem. Thus, there is no chance to
solve it exactly. In physics, we try to understand the behavior of nature with
simple equations of motion, and it must be true that physics has made a great
success. However, even for the classical mechanics, we cannot solve many body
problems. For example, the phenomena of turbulence should be too difficult to
understand with physics law. It is extremely interesting to study physics, but
we should also understand the limitation of physics application to nature.



Chapter 4

Is Time in Moving Frame Delayed?

From the Lorentz transformation eq.(1.1), it looks that time in the moving frame
deviates from the rest frame. However, ¢t and = are variables, and thus, they are
not directly related to physical observables. Below we examine whether the time
difference of At in the Gedanken experiment should be delayed or not.

4.1 Incorrect Gedanken Experiment

Here we first explain the time difference At in the Gedanken experiment which
is often discussed in the science history. First, we consider a train (moving
inertial frame) which is driving in the straight line with a constant velocity v.
We assume that there should be big mirror wall in parallel to the straight line
with its distance of /.

4.1.1 Time Difference of Moving Frame from Rest Frame

First, an observer in the train emits laser beams against mirror wall. In this
case, the observer in the train should not notice that the train is moving. Now
this observer should detect the reflected laser beam and should measure the time
difference (2A7). In this case, we see

(= cAT. (4.1)

On the other hand, an observer at the rest frame should detect the laser beam
which reflects and travels through the triangle trajectory. In this case, the time
difference (2At) should be

(cAt)? — 2 = vAt. (4.2)

10
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Therefore, we find
V2 —v? At = cAr (4.3)

which gives us the following relation between the time differences of A7 and At

as
02

This suggests that the time difference in the moving frame seems to be somewhat
smaller than that of the rest frame.

4.1.2 Time Difference of Rest Frame from Moving Frame

Now we should carry out the same type of Gedanken experiment from the ob-
server at the moving frame. In this case, the rest frame is moving with the
velocity of —v for the observer of the moving frame. This can be easily seen if
we solve the Lorentz transformation the other way around

=v(x—vt), t=xv (t — UQJJ> ., Y=y, =z (4.5)
¢

Here we see that the rest frame is moving with its velocity of (—v). But otherwise,
everything is just the same as in the previous case. In this case, the observer
in the rest frame emits laser beams against mirror wall, and the observer in
the train should detect the reflected laser beam and should measure the time
difference (2Act). Thus, we find

’U2
At=\/1- 5 A7 (4.6)

4.1.3 Inconsistency of Time Difference

What is going on? The results of eqs. (4.4) and (4.6) contradict with each other.
Since At and A7 should be observables in the Gedanken experiment, there must
be something wrong there.
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4.2 Where is Incorrect Process in Gedanken Experi-
ment?

What should be incorrect inductions in the Gedanken experiment? This can be
easily seen if we look into eq. (1.1). After ¢, we took the coordinate of the train
as ¢’ = x + vt, which is wrong. The correct coordinate after ¢ should be given by
the Lorentz transformation as

' = ~y(x + vt). (4.7)
Thus, we should replace in the following way
VAt = yvAt, cAt = ycAt. (4.8)

Therefore, eq. (4.4) becomes

2
Ar = (1= L x A
c v
At.

This shows that there is no time delay, and there is no inconsistency. This is
just all what we see from the relativity.

4.2.1 No Time Delay in Moving Frame!

From the Gedanken experiment, we see that there is no time delay in the moving
frame as compared to the rest frame. This is quite reasonable since the relativity
only states that any inertial frames should produce the same results of all physical
observables.



Chapter 5

Two Inertial Frames : Examples of
Relativity

Here we should discuss possible observables when two inertial frames are involved
in physical processes. It should be noted that this consideration is only related
to the kinematics, and therefore, we cannot learn anything about dynamics of
physical processes.

5.1 Doppler Effect of Light

When a star is moving away from the earth, then lights emitted from this star
should be affected by the Lorentz transformation, and this is known as the
Doppler effect. Let consider that a star is going away with its velocity v. The
momentum p of light emitted at the star should become p’ on the earth, and this
relation is given by the Lorentz transformation as

i) - e

This shows that the momentum of light is decreased. If we express the above
relation in terms of wave length, then we obtain

ol

ol

1+
1 —

[SHS]

N = A (5.2)

ol

Since the wave length of the observed light becomes longer, we call it “red shift”.
It should be noted that this naming has no physical meaning. It simply says that

13
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red light has a longer wave length than that of blue light. The physical reason of
the Doppler shift is because the energy and momentum make four dimensional
vector, and therefore this is affected by the Lorentz transformation.

5.2 Life Time of Muon Produced in Atmosphere

High energy cosmic ray (protons) may collide with atmospheric N; or other
molecule and may produce muons with the mass of m, = 105.6 MeV /c?. The life
time 7, of this lepton is around 7y ~ 2 x 107% s. Therefore, muon is unstable. Now
a question is as to whether the life time of muon may be affected by the Lorentz
transformation or not. This problem is often discussed in science history, but
here we should present a right description of muon as to how far it can travel in
the air.
Now the life time 75 can be written in terms of decay width I' as

h
T0 = f (53)
Here we note that I' is a Lorentz invariant quantity. Therefore, the life time is
also Lorentz invariant, and thus the life time of muon should be the same in any

inertial frame.

5.2.1 Travel Distance L of Muon

Now we should calculate the travel distance L of muon after it is created from
the collision of protons with atmosphere. This can be evaluated from the Lorentz
transformation = = (2’ + vt') as

L = yury. (5.4)

Here we take, as an example, muon with its energy of 1 GeV. In this case, the
velocity of muon can be approximated by light velocity of c. The Lorentz factor
v should be v ~ 10.6. Therefore, the value of L becomes

L=~v7y=10.6 x 3 x 10* x 2 x 107% ~ 6.3 km (5.5)

which is longer by 7 than v7y. This indicates that the muon produced in the
atmosphere may well have some chance to be observed on the earth.
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5.2.2 Accelerator Experiment

Unstable particles created by the large accelerator should travel the distance
which is given by eq. (5.4). This is longer by a factor of v than v7, but it has
nothing to do with the delay of life time of unstable particles. It is simply due
to the Lorentz transformation.



Chapter 6

Conclusions

In the theory of relativity, the transformation property among inertial frames
can be given by the Lorentz transformation, and this corresponds to the trans-
formation of a point particle. However, we find some incorrect description of
time delay or Lorentz contraction in quite a few text books or short notes. We
should stress that the Lorentz transformation is only concerned with the center
of mass system of any complex objects, and that is all we know.

In particular, we prove that the time delay of moving frame never occurs
in any inertial frames. The basic mistake should be originated from the fact
that the coordinate of the moving frame with the velocity of v should be ~uvt
after ¢ second. In the science history, people want to modify v or ¢ in order
to understand yvt. However, from the point of theoretical scheme, we should
understand vt by itself in terms of Lorentz transformation.

16
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6.1 Homework Problem

When a train (moving inertial frame) is running with its velocity of v, then the
position z of the train after At second can be given by the Lorentz transformation
as

1
by 3

Here we should consider a problem which is concerned with the emission of light
in the train. In this case, a question is as to where the light should be found
after At second in the rest frame.

In this short note, we give the reaching distance ¢ in the rest frame as

x = y(2' + vAt), where (6.1)

= ~cAt. (6.2)

Prove the result of eq.(6.2).

[Hints] :
The light velocity c is not changed when it is emitted from the running train.
But in order to understand the range of the light after the emission, we need to
consider the Lorentz transformation in a proper manner.

Now, we should take a long train as the moving frame and emit light and
observe it after At second in the train. In this case, the reaching distance in the
moving frame should be simply

x’ = cAt. (6.3)

Therefore, if we make the Lorentz transformation of eq.(6.1), then we find the
reaching distance ¢ [(6.2)] of light in the rest frame.



Appendix A

Why Is General Relativity
Meaningless?

The Einstein equation is a differential equation for the metric tensor of ¢g*”. This
metric tensor is defined when the Lorentz invariant quantity (ds)? is expressed
in terms of generalized formula as (ds)? = g, dz"dz”. However, there is no special
physical meaning in this generalization, and thus we cannot find any physics
related to the metric tensor of ¢*”. This problem of the general relativity has
nothing to do with physics, but it is important in the science history. Therefore,
we should explain why the general relativity was accepted to physicists for such
a long time, even though it is a meaningless theory in physics.

A.1 Relativity Principle

Relativity principle should require that equations of motion in any inertial sys-
tem should have the same form of differential equations, and, thus, all of the
physical observables must be the same in every inertial system. This is the
essence of the relativity, and nature can be understood in terms of four basic
Lagrangian densities of electromagnetic, weak, strong eand gravitational inter-
actions. Indeed, all the field theory models satisfy the relativistic invariance of
Lorentz transformation.

A.1.1 Lorentz Transformation

Let us consider the moving frame S(t', 2/, 1/, ') which is moving with linear motion
of constant velocity v along r—axis with respect to the rest frame R(t,x,y,z). In

18
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this case, the requirement that the equation of motion must be equivalent to
each other in both systems can be written in terms of Lorentz transformation

= ~y(z" 4+ vt'), t:7<t’—|—§2x'>, y=vy, z=2". (A1)

A.1.2 Lorentz Invariance

This Lorentz transformation is the necessary and sufficient condition for relativ-
ity principle. However, if we consider only the invariance of Lorentz transfor-
mation, then there should be many other physical quantities. Here, we should
discuss the small distance square of (ds)? in four dimensions, which is defined as

(ds)? = (cdt)? - (dx)® — (dy)? - (d=)".

A.1.3 Minkowski Space

This (ds)? is introduced by Minkowski as a Lorentz invariant quantity
(ds)?* = (cdt)* — (dz)* — (dy)* — (dz)* (A.2)
which is indeed invariant under the Lorentz transformation of
r=v("+ot"), t=~ <t’ + CUQx'> o oy=y, =z2=2. (A.3)
Minkowski extended mathematically (ds)? to
(ds)? = (cdt)® — (dz)* — (dy)® — (dz)* = ¢"dx,dz, (A.4)

even though there is no physical reason for this generalization. In this case, dz*
and dz, are introduced as

dat = (cdt,dx,dy,dz), dz, = (cdt,—dx,—dy, —dz). (A.5)

Further, the metric tensor ¢*” is defined as

1 0 0 0
w |0 =1 0 o0
9 =10 0o -1 o0

00 0 -1

This extension of (ds)? is not incorrect. However, the naming of ¢g*¥ as metric
tensor is wrong since it is a dimensionless quantity and, therefore, it cannot be
taken as any measure of space and time.
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A.2 Risk of Generalization

It indeed makes sense that (ds)? can be taken as a test of Lorentz invariance, and
it is also understandable that (ds)? is expressed in terms of eq.(A.4). However, it
should be important to realize that this generalization is physically meaningless
since (ds)? itself is far from any essential quantity in physics.

A.2.1 Invariance of (ds)?

Here, we should explain some important point of (ds)?. This (ds)? is certainly
Lorentz invariant, but it is the result of the Lorentz transformation, and not
the condition. In fact, there should be many other transformations that can
make (ds)? invariant. This point is quite important since it is related to the
essence of relativity. The theory of relativity is a theoretical frame work in
which any equation of motion must be the same in any inertial system. The
Lorentz transformation satisfies this necessary and sufficient conditions. On the
other hand, (ds)? can serve as a sufficient condition of the relativity requirement,
but it is not necessary.

A.2.2 Generalized Expression of (ds)?

For a long time, people believed that the generalized expression of (ds)?
(ds)? = g"dx,dx, (A.6)

must be basic and essential for (ds)®. This is, of course, an illusion. However,
most of physicists may well have been trapped for a long time in a blind state,
and this is quite unfortunate.

A.2.3 Physical Meaning of g"”

In physics, the expression of (A.2) is essential, and it is impossible to find any
physical meaning for the metric tensor of ¢g*. Indeed, ¢ must be mathemati-
cally all right, but it has no physical meaning, and it is just useless.
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A.3 General Relativity

The Einstein equation is the differential equation for this useless metric tensor
g" [7], and therefore, we cannot find any physical meaning in this equation.

In fact, even if the metric tensor ¢"¥ becomes some function of space and
time, there is no effect on the relativity. In case the (ds)? which is expressed by
g™ in eq.(A.6) has lost the Lorentz invariance, we should make use of (ds)? as
expressed in eq.(A.2). Therefore, there is no physical effect of ¢*” in nature at
all.

This clearly shows that the Einstein equation has nothing to do with physics,
and it is simply a mathematical equation which may help young people learn
geometrical differential equation as an exercise problem.

A.4 Negative Legacy

It is a shame that we could not clarify 30 years ago, for example, that the Einstein
equation has nothing to do with physics. Many young people wasted their time
by learning this general relativity which is completely meaningless in physics.
This is quite unfortunate and serious.

Incidentally, there was a claim at one point that the Mercury perihelion shifts
could be described by the metric tensor which is, by hand, connected to gravity.
However, this shift is identified by the discontinuity of Mercury orbit, and,
therefore, this prediction is both physically and mathematically meaningless. In
this sense, this claim may well be one of the worst theoretical predictions in
physics.



Appendix B

New Gravity Model

Quantum field theory is based on the free Dirac fields and four fundamental
interactions. These are electromagnetic, weak, strong and gravitational interac-
tions. In terms of coupling constant, the electromagnetic interaction must be
a standard, and the strength of the coupling constant which is dimensionless is
found to be

1

= = (B.1)

!
On the other hand, the strong interaction should be stronger by two orders of
magnitude than the electromagnetic interaction while weak interaction must be
weaker by a few orders of magnitude than the electromagnetic interaction. In
this respect, the gravity is, by far, the weakest force among the four interactions.
In fact, the gravity is by the order of ~ 1073° smaller than the electromagnetic
interaction.

B.1 Introduction

Nevertheless, the gravity is very important in the universe for the formation
of stars and galaxies since the force has a very long range, and it is always
attractive. In fact, apart from strong interactions that should responsible for
nuclear fusion in stars, the basic ingredients of forming stars and galaxies in the
universe should be the gravitational interaction.

22
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B.1.1 Why Gravity Has Large Effects on Star Formation?

The gravity is crucially important for the formation of stars even though the
interaction strength is quite weak. There are two important aspects in the
gravity when the stars should be formed. The first point is connected to the
interaction range which is very long since it has the shape of 1/r. The other
point is that the gravity is always attractive and the strength of the force should
be proportional to the masses of interacting objects. Therefore, as long as the
corresponding body is massive, there should exist the attractive interactions
from all other massive objects even though they are far away from each other.
Because of the attractive nature, there should be no shielding in contrast to the
electromagnetic cases.

B.1.2 Dirac Equation with Gravitational Potential

When the energy of a particle becomes as high as its mass, then we have to
consider the relativistic equation of motion under the gravitational potential. In
this case, the Newton equation is not appropriate for describing a relativistic
motion, and thus, we have to find a new equation of motion. Since we know that
the classical mechanics is derived from the Schrodinger equation, we should start
from the relativistic equation in quantum mechanics. This is the Dirac equation,
and therefore, we have to consider the Dirac equation with the gravitational
interaction.

However, the Dirac equation with the gravitational potential has not been de-
termined properly for a long time. This problem is connected to the ambiguity as
to whether the gravitational potential should be taken as the fourth component
of the vector type interaction or the mass term of scalar type interaction. This
problem was not settled until recently, and thus, we should consider the gravi-
tational field theory in some way or other. As will be discussed later, the new
gravity model is, indeed, constructed in terms of a massless scalar field theory.
Therefore, the corresponding Dirac equation with the gravitational potential is
well established by now [6, 5].
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B.2 Dirac Equation and Gravity

The Newton equation works very well under the gravitational potential, and
indeed, the Kepler problem is best understood by solving the Newton equation.

e Ehrenfest Theorem :

This Newton equation itself is obtained from the Schrodinger equation by making
some approximation such as Ehrenfest theorem. In this case, the time devel-
opment of the expectation values of r and p in quantum mechanics lead to the
Newton equation.

e Foldy-Wouthuysen Transformation :

The Schrodinger equation can be derived from the Dirac equation by making the
Foldy-Wouthuysen transformation which is a unitary transformation. Therefore,
the Dirac equation must be the starting point from which the Newton equation
can be derived.

B.2.1 Dirac Equation and Gravitational Potential

As can be seen from the present discussion, it should be crucially important to
have the Dirac equation with the gravitational potential properly taken into ac-
count. Otherwise, we cannot obtain the Newton equation with the gravitational
potential. In other words, we should not start from the Newton equation with
the gravitational potential since it is obtained only after some series of approxi-
mations should be properly made for quantum mechanics.

e Dirac Equation with Coulomb Potential :

Before going to the discussion of the Dirac equation with the gravity, we should
first discuss the Dirac equation with the Coulomb potential of V,.(r) = —ZTGQ. This
is well-known and can be written as

(—iv ca+mb— Zf) U =EU. (B.2)

On the other hand, we should be careful in which way we put the gravitational
potential of V(r) = —Gme into the Dirac equation since there are two different
ways, either the same way as the Coulomb case or putting the gravitational
potential into the mass term.
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e Dirac Equation with Gravitational Potential :
In fact, the right Dirac equation with the gravitational potential of
V(r)= —Gme can be written by putting it into the scalar term as

GomM
[—z‘V-a—i—(m— 0 )5}@:]3\11. (B.3)
r
This is obtained from the field theoretical construction of the gravity model.
By now, we see that the scalar type potential of gravity must be the right
gravitational potential, and we should discuss it more in detail below.

B.3 New Gravity Model

When we wish to construct the theory of gravity, the first thing we should
work out should be to find the framework in which the gravitational potential
can be properly taken into account in the Dirac equation. Without doing this
procedure, there should be no way to consider the theory of gravity. In fact, the
Dirac equation for a particle with its mass m in the gravitational potential can
be written as

GmM
r

{—N ot <m _ ) ﬁ} V= EU (B.4)
where M denotes the mass of the gravity center. In addition, if we make the
non-relativistic reduction using the Foldy-Wouthuysen transformation, then we
find the gravitational potential in classical mechanics

Vi) = ~GmM N 1 (

(B.5)

T 2mc? r

GmM >2
where the second term of the right hand side should be the additional potential
which appears as the relativistic effect. This additional potential of gravity
is a new gravitational potential, and this must be a new discovery ever since
nineteenth century. It turns out that this new potential can explain the problem
of leap second of the earth revolution period which will be discussed later.
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e Rough Estimation of Relativistic Effect :

Historically, the first check of the relativistic effect was done by Michelson-
Morley using the velocity of the earth revolution which should be the fastest
object relevant to the observed speed on the earth. The result of Michelson-
Morley experiment showed that the speed of light is not affected by the earth
revolution, and this leads to the concept of the relativity principle. The rela-
tivistic effect in this case is

0\ 2
(c) ~1.0x107® (B.6)
where c and v denote the velocities of light and the earth revolution, respectively.
It should be interesting to note that the leap second of the earth revolution
period is found to be (AT/T ~ 2x10~®) which is just the same order of magnitude
as the relativistic effect.

B.3.1 Lagrangian Density

When we consider the theory of gravity, we should start from the scalar field
theory since it gives always attractive interactions.

e Lagrangian Density of Gravity :
Here, we should write the Lagrangian density of a fermion field ¢ interacting
with the electromagnetic field A, and the gravitational field G

L =iy 0, — ey Ao — m(1 + gG) ) — i Y+ ;@Q o'g (B.7)
where m denotes the fermion mass. The gravitational field § is a massless scalar
field. The reason why people did not consider the scalar field for the gravity
should be mainly because the scalar field should not be renormalizable. However,
there is no necessity of the field quantization of the gravitational field, and thus,
there is no divergence at all.

e Gravity Cannot Be Gauge Theory :

For a long time, people believed that the basic field theory must be a gauge
theory, even though there is no foundation for this belief. Indeed, the gauge
theory has both attractive and repulsive interactions, and therefore, it is clear
that this model of gauge field theory should not be suitable for the gravity.
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By now, it is known that only the gauge theory of quantum electrodynam-
ics using the Feynman propagator should give rise to some divergences in the
calculation of physical observables such as vertex corrections. In fact, there is
no divergence for the vertex corrections which are calculated from the massive
vector field theory [6].

B.3.2 Equation for Gravitational Field

From the Lagrangian density, we can obtain the equation for the gravitational
field from the Lagrange equation. Here, we can safely make the static approxi-
mation for the equation of motion, and obtain the equation for the gravitational

field G, as
V3G = mgp, (B.8)

where mp, corresponds to the matter density. The coupling constant g is related
to the gravitational constant G as

This equation eq.(B.8) is indeed the Poisson equation for gravity.

B.3.3 Dirac Equation with Gravitational Potential

From the Lagrangian density with gravity and electromagnetic interactions, we
can derive the Dirac equation

7Ze?

[—N ca+mB(1+gG) — T] U = EV. (B.9)

Further, in case the gravitational force is produced by nucleus with its mass of
M, the Dirac equation becomes

[—z’V-a%—(m—W)B—ZeT\IJ:E\P (B.10)
T r

which is just the equation discussed in the previous section.
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B.3.4 Foldy-Wouthuysen Transformation of
Dirac Hamiltonian

The Dirac equation with the gravitational interaction

[—N.a+(m—GT:M>ﬁ

U= EV (B.11)

can be reduced to the non-relativistic equation in quantum mechanics. This
can be done in terms of Foldy-Wouthuysen transformation which is a unitary
transformation. Therefore, the transformation procedure is very reliable indeed.

e Foldy-Wouthuysen Transformation :
Here, we start from the Hamiltonian with the gravitational potential

(B.12)

H:—N-a+<m—GmM>5.

r

This Hamiltonian can be rewritten in terms of the Foldy-Wouthuysen transfor-
mation which is somewhat a complicated and tedious procedure involved, though
it can be done in a straightforward way [?]. In this case, the non-relativistic
Hamiltonian should be obtained as

p*  GmM 1 GmM , 1 GMm
+

H = — — — - L B.13
me 2m r 2m2  r om2 3 (S ) ( )
2GM
which is kept only up to the order of (p) o
m r
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B.3.5 Classical Limit of Hamiltonian with Gravity

Here, we should calculate the classical equation of motion from the non-relativistic
Hamiltonian in quantum mechanics. In this case, the Hamiltonian which is only
relevant to the present discussion can be written as

2 M 1 GmM
P GmM QGm P (B.14)

T om r 2m

r

This can be reduced to the Newton equation by making the expectation values
of operators in quantum theory in terms of the Ehrenfest theorem. In this case,
we approximate the products by the factorization in the following way

< 1 GmMp2> _ <1GmM> (p*) (B.15)

2m2 r 2m? r

which must be a good approximation in the classical mechanics application. In
addition, we make use of the Virial theorem

<pQ> = — (V). (B.16)

Therefore, we finally obtain the following additional potential

2
GmM+ 1 (GmM) (B.17)

r 2mc? r

which is a new gravitational potential in classical mechanics. The derivation of
the additional potential is similar to the Zeeman effects in that both interactions
appear in the non-relativistic reduction as the higher order terms of coupling
constant.
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B.4 Predictions of New Gravity Model

By now, a new gravity model is constructed, and as a byproduct, there appears
the additional gravitational potential. This is a very small term, but its effect
can be measurable. Indeed, this is the relativistic effect which becomes

0\ 2
() ~1.0x107® (B.18)
c
for the earth revolution around the sun. On the other hand, the leap second of
the earth revolution is found to be

(ATT> ~2x107® (B.19)

which is just the same order of magnitude as the relativistic effect. Therefore,
as we see later, it is natural that the leap second value can be understood by
the additional potential of the new gravity model.

B.4.1 Period Shifts in Additional Potential

In the new gravity model, there appears the additional potential in addition to
the normal gravitational potential. In the case of the earth revolution around
the sun, this potential is written as

Vir) = _ GmM N 1 (

(B.20)

r 2mc? r

GmM > 2
where the second term is the additional potential [6]. Here, G and ¢ denote the
gravitational constant and the velocity of light, respectively. m and M corre-

spond to the masses of the earth and the sun, respectively.

e Non-integrable Potential :

It should be important to note that the additional potential should be a non-
integrable, and therefore, the treatment should be done in terms of the perturba-
tion theory. In this case, the Newton equation with the perturbative procedure
of the additional potential can be solved, and the period T of the revolution is
written as

wT ~27(1 4+ 2n) (B.21)
where 7 is given as

G*M?

i (B.22)

17:
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Here, R is the average radius of the earth orbit. The angular velocity w is related
to the period T by

2T
= —. B.23
w= (5.23)
The period shift due to the additional potential becomes
AT
— =2 B.24
T =20 (B.24)

which is the delay of the period of the revolution [6, 5|0

B.4.2 Period Shifts of Earth Revolution (Leap Second)

In the earth revolution, the orbit radius, the mass of the sun and the angular
velocity can be written as

R=1.496 x 10" m, M =1.989 x 10*° kg, w=1.991 x 107" (B.25)
In this case, the period shift becomes
AT
=27~ 1.981 1078, (B.26)
Therefore, the period of the earth revolution per year amounts to
ATy = 0.621 [s/year] (B.27)

which is a delay. This suggests that the corrections must be necessary in terms
of the leap second.

e Leap Second :

In fact, the leap second corrections have been made for more than 40 years. The
first leap second correction started from June 1972, and for 40 years, people
made corrections of 25 second. Therefore, the average leap second per year
becomes

ATR% ~0.625 4 0.013 [s/year] (B.28)
which agrees perfectly with the prediction of eq.(B.27).

e Definition of Newcomb Time :

Newcomb defined the time series of second in terms of the earth revolution
period. However, the recent measurement of time in terms of atomic clock
turns out to deviate from the Newcomb time [8]. This deviation should be due
to the relativistic effects, and indeed this deviation can be understood by the
additional potential of gravity.
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B.4.3 Mercury Perihelion Shifts

For a long time, people believed that the Mercury perihelion shifts can be un-
derstood by the higher order effects of general relativity. However, it is proved
that there should be no perihelion shifts for one period of the earth revolution.

Instead, there should be the Mercury perihelion shifts which may arise from
the effects of other planets such as Jupiter if we can measure the perihelion shifts
for some long period of revolutions. Concerning the Mercury perihelion shifts,
however, the measurements as well as the calculations of the effects from other
planets should be carried out more carefully. After the calculation of Newcomb
in the 19 century, no careful calculation on the perihelion shifts has been done
until now.

B.4.4 Retreat of Moon

The moon is also affected by the additional potential of gravity from the earth.
The shifts of the moon orbit can be expressed just in the same way as the earth
revolution. In this case, n can be written as

G?M?
2 R4w?’
Here, R is the radius of the moon orbit. M and w denote the mass of the earth
and the angular velocity, respectively. They are written as

n= (B.29)

R=3844x 10> m, M =5.974x 10* kg, w=2725x10"° (B.30)
Therefore, the period shift becomes
AT
— =214 % 1071, (B.31)

Now, we should carry out the calculation as to how the orbit can be shifted, and
the shift of the angle can be written as

A = 4. (B.32)
Thus, the orbit shift A/,, can be written as
Al,, = RAO ~0.052 m (B.33)
and therefore, the shift per year becomes
3.156 x 107
Alyy (one year) = Aly x 2222~ 695 cm., (B.34)

2.36 x 106
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e Calculated Results of Retreat of Moon :
Since the orbit of the moon is ellipse, the orbit shift can be seen as if it were
retreated [9]. The orbit is described by

R

= B.35
" 1+ ecosb ( )

In addition, the eccentricity is quite small (¢ = 0.055) and therefore, we can
rewrite the above equation as

r~ R(1 —ecos?). (B.36)

Thus, the orbit shift Ar at § ~ Z becomes per year
Ar ~ RAO € ~ Alp, (one year) € =~ 3.8 cm (B.37)
On the other hand, the observed value of the retreat shift of the moon orbit is
Ar®® ~ 38 cm (B.38)

which agrees very well with the prediction.

e Retreat Shift is not Real! :

It should be noted that this observation is only possible by making use of the
Doppler shift measurement. This is not a direct measurement of the moon orbit
distance which is not possible due to the uncertainty of the accuracy of light
velocity

¢ = (2.99792458 =+ 0.000000012) x 10° cm/s. (B.39)

The accuracy of the orbit shift Ar® ~ 3.8 cm is at the order of 107!° while the
light velocity is measured only up to 10~® accuracy. This means that the shift of
the orbit radius is just the instantaneous and apparent effect.
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B.5 Summary

The new gravity theory of eq.(B.7)) can naturally lead to the Dirac equation
of eq.(B.3). This is very important in modern physics since we have now the
Dirac equation with the gravitational potential properly taken into account. This
Dirac equation can be reduced to the non-relativistic Hamiltonian which then
gives rise to the Newton equation with the gravitational potential, and this new
equation should contain a new gravitational potential as the additional potential.

e Massless Scalar Field :

The fact that the gravity is described by the massless scalar field can give rise
to some important effects on the non-relativistic reduction. This is in contrast
to the Coulomb case, but rather similar to the non-relativistic reduction of the
vector potential case. In the non-relativistic reduction of the vector potential
term in the Hamiltonian, we find new terms such as Zeeman effects or spin-orbit
interactions. In the same way, in the non-relativistic reduction of the scalar
potential term in the Hamiltonian, we find the new additional potential. In
fact, this new additional potential can reproduce the leap second of the earth
revolution.

e Inertial Mass and Gravitational Mass :

From experiments, it is known that the inertial mass and gravitational mass are
just the same. This equivalence of two masses is taken to be one of the grounds
in constructing the general relativity. On the other hand, this equivalence is
derived as a natural consequence in the new gravity model. This is one of the
strong reasons why this new gravity model is a correct theory of gravity.
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Non-integrable Potential

When the non-integrable potential appears as the small perturbation on the
Newton equation, what should be the best way to take into account this small
potential effect?

C.1 Non-integrable Potential

Here we discuss the physical effects of the non-integrable potential. The addi-
tional potential from the new gravity model has the shape of %, and, therefore,
we can write the non-integrable potentials into the simple shape in the following

way

Vy(r) = 2 (GmM)2 (C.1)

2mc? r
where

—6 for General Relativit
q :{ Yo (C.2)

1 for New Gravity

In this case, the differential equation for the orbit with the additional potential
becomes

do 2 e ter TR pe

This equation can be solved exactly and the effect due to the correction appears
in cosp term and is written as

' 2mE 2 1 MY
dr T 2\/m mo q (Gm > (C.3)

r

A
1+¢€ cosg(L;go) (C4)

r =

35
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where A, and L, are given as

L? qG?M?*m? 1
A, = g LE\/EQ —— =1//1 2€<1 ) .
9 GMm?’ g + c? I +277 (C.5)
Here, the 7 is defined as
_ qG*M?
= 2R4w? (C.6)

which is a very small number. It is around 10~® for the planet motion such as
the earth or Mercury.

C.1.1 Effects of Non-integrable Potential on Solution

The solution of eq.(C.4) has a serious problem in that the orbit is not closed.
This is quite well known that the potential with the non-integrable shape such
as V.(r) = T% gives rise to the orbit which is not closed. It is, of course, clear that
this type of orbits should not happen in nature.

The abnormal behavior of the solution eq.(C.4) can also be seen from the
following term

L 1
Cos (;w) ~ cos(p + 57}@). (C.7)

It should be interesting to see that this term cannot be described in terms of the
cartesian coordinates of = = rcosy, y = rsinp. In fact, cos(p+ %ngp) term becomes

1 T 1 y .1
cos(p + 277<p) = - Co8 S — s gip (C.8)
and there is no way to transform the cos %ngp term into x, y coordinates even
though we started from this cartesian coordinate. This is very serious since
the solution expressed by polar coordinates cannot be written any more in the
cartesian coordinates. This is related to the fact that the orbit is not closed due
to the non-integrable potential effects.

C.1.2 Discontinuity of Orbit

The effect of the non-integral potential can be further seen as the discontinuity of
the orbit trajectory since the orbit is not closed. In order to see this discontinuity
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of the orbit, we first start from the orbit solution with the non-integral potential,
which is eq.(C.4)
Ay

" 1+€cos(1—0—%7])90'

In this case, we find the radius r at ¢y =0 and ¢ =27 as

Ay
— =0 C.9
' 1+¢’ 7 (C.9)
Ay
" 1+ecosmn’ L (C.10)

Therefore the difference Ar becomes
1
AT = T(pmom) = T(p=0) §A97T2772€ ~ (.15 cm (C.11)

for the Mercury orbit case of the general relativity as an example. This means
that the orbit is discontinuous when ¢ becomes 27. This is not acceptable for the
classical mechanics, and indeed it disagrees with the observation. In addition,
eq.(C.4) cannot generate the perihelion shift, and this can be easily seen from
the orbit trajectory of eq.(C.4).
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C.2 Perturbative Treatment of Non-integrable Poten-
tial
Here we should present a perturbative treatment of the non-integrable potential.

This must be the only way to reliably treat the non-integrability in classical
mechanics.

C.2.1 Integrable Expression

The equation for the orbit determination becomes

dr r 2\/2mE . 2ma 1 q (Gm]\/[)2
- — =7
dy " 2 Cro r2 22

2mE 2mao 1
= r%/1 S 12
VT B e o

Therefore, we can rewrite the above equation as

dr
1+ nde = 7“2\/ — — =. (C.13)

02(1+m) + Z2{1+n)r 2

Here we note that n = ;5 (Gm]%)2 is a very small number which is of the order
n ~ 1078, Now in order to keep the effect of the non-integrable potential in terms
of integrable expression, we should make an approximation as

1+ ndp ~dp. (C.14)

The reason why we should make this approximation is because we should con-
sider the dynamical effect as the perturbation while the 7 in the right hand side
of eq.(C.13) should only change the value of constants such as F or « in the
differential equation. In this way, the equation to determine the orbit becomes

dr 2mE 2ma 1
- 7"2\/62 (C.15)

dp (tn)  PAinpr 2

which gives the right orbit solution. Now the orbit is closed, and the solution
can be written as

Ay
— C.16
" 1+ecosp ( )
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where A, is given as

gQ

A (C.17)

Note that the ¢ is also changed due to the 1 term, but here we can safely neglect
this effect since it does not play any role for physical observables. Therefore,
the effect of the additional potential is to change the radius A, of the orbit even
though this change is very small indeed. Now eq.(C.16) clearly shows that there
is no perihelion shift, and this is very reasonable since the additional potential
cannot shift the main axis of the orbit.

C.2.2 Higher Order Effect of Perturbation

Here we should estimate the higher order effect of the perturbation in eq.(C.13).
Denoting the solution of eq.(C.16) by r(©

0) Ay

rO=__"9
1+ecosp

and the perturbative part of the radius by 7' (r = r(® 4+ ¢'), we can write the
equation for " as

dr’ 1 2mE 2ma 1
= — Zp(r0)2 — 1
g~ 210 \/62(1 s R TG SO R RO (C.18)

where the right side depends only on ¢. Here, we should make a rough estimation
and only consider the case in which the eccentricity ¢ is zero. In this case, the
right side does not depend on the variable ¢, and thus we can prove that the right
side is zero. Therefore, the higher order correction of ' should be proportional
to the eccentricity ¢ and can be written as

'~ Cone A, (C.19)

where () should be some numerical constant. For the earth revolution, the value
of ¢ is very small (¢ ~ 0.0167) and thus we can safely ignore this higher order
perturbative effect.
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Planet Effects on Mercury Perihelion

In this Appendix, we discuss the Mercury perihelion shifts which should come
from the gravitational interactions between Mercury and other planets such as
Jupiter or Saturn. This calculation can be carried out in the perturbation theory
of the Newton dynamics, which is rather new to the classical mechanics. Here,
we should compare the numerical results with those calculated by Newcomb in
1898.

D.1 Planet Effects on Mercury Perihelion

The motion of the other planets should affect on the Mercury orbits. However,
this is the three body problems, and thus it is not easy to solve the equation of
motion in an exact fashion. Here, we develop the perturbative treatment of the
other planet motions. Suppose Mercury and the planet (Jupiter) are orbiting
around the sun, and in this case, the Lagrangian can be written as

1 ., GmM 1 .o Gmy,M  Gmm,
L=_—mr + My Ty + +
2 r 2 Tw lr — 7yl

(D.1)

where (m, r) and (m,, 7,) denote the mass and coordinate of Mercury and the
planet, respectively. The last term in the right side of eq.(D.1) is the gravita-
tional potential between Mercury and the planet, and therefore, it should be
much smaller than the gravitational force from the sun.

40
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D.1.1 The Same Plane of Planet Motions
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Here, we assume that the motion of Mercury and the planet must be in the same
plane, and therefore we rewrite the Lagrangian in terms of polar coordinates in

two dimensions

GmM 1 . . Gm,M
+ imw(rlf + T?y@w2) +

1
L = (2 4 22
2m(r +r°9%) + -

Gmmy,,

\/7"2 + 72 — 2rry, cos(p — <pw).

+

In this case, the Lagrange equation for Mercury can be written as

mi = mrg? GmM B Gmmy, (r — ry, cos(p — gow))‘
72 (r2 4+ 12 — 2rry, cos(¢ — pw))

3
2

i(mr%b) _ GmMrry, sin(e — ¢y))
dt (r2 +r2 — 2rr, cos(p — cpw))%
_— o GmyuM Gmmy,(ry, — 7 cos(e — pu))
MyTw = Myl — ) - 9 9 . 3
rs (r2 4+ 12 — 2rry, cos(p — py))?2
L p) = — Gmy, Mrr,, sin(p, — ¢)) -
dt (r2 412 — 2rry, cos(p — @u))?

D.1.2 Motion of Mercury

(D.2)

If we ignore the interaction between Mercury and the planet, then the Mercury
orbit is just given as the Kepler problem, and the equations of motion become

mit = mro® — —
,
d
a(rmﬂ(p) = 0.
Here, the solution of the orbit trajectory is given as
A
r=--—-—-m
1+ecosp
where A and ¢ are written as
(> 2102
A=— e=4/1+ with a=GMm

mo mao?

(D.7)

(D.8)

(D.9)

(D.10)

which should be taken as the unperturbed solution of the revolution orbit.
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D.2 Approximate Estimation of Planet Effects

Now we should make a perturbative calculation of the many body Kepler prob-
lem by assuming that the interaction between Mercury and the planet is suf-
ficiently small. In this case, we can estimate the effects of other planets on
the Mercury orbit. Here we write again the equation of motion for Mercury
including the gravity from the other planet

?  GM Gy (r — 1w v
o £ G Gm (r = rwcos(p = pu)) (D.11)
mer r (7“2 + 7"12u — 2771y COS(SO - ‘Pw)ﬁ

Now we replace r, r, by the average orbit radius R, R, in the last term of the
right side, and thus, the equation becomes

2 — —
GM G Y=
; 62 ! . mw(R Rw COS( w)) _. (D.12)
m2r r (R?2+ R% —2RR,, cos(¢ — ¢pu))?

Below we present some approximate solution of eq.(D.12).

D.2.1 Legendre Expansion
First we define the last term of eq.(D.12) by F as

Gmy(R — Ryx)
(R? + R2 — 2RR,x))?’

F(z) = - with = = cos(¢ — ¢u) (D.13)

and we make the Legendre expansion

Gmy,R Gmy, Ry (R% — 2R?)

F(x)=— + 4. D.14
(=) (R + R2)3 (R? + R2)3 (D14
Therefore we obtain the equation of motion
2 GM  GmyR,(R? — 2R?
7= - il fu (R, = 217 cos(¢ — puw) (D.15)

m2r3 r2 (R + Rfu)g

where the constant term is irrelevant and thus we do not write it above.
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D.2.2 Iteration Method

Now we employ the iteration method in order to solve eq.(D.15). First we make
use of the solution of the Kepler problem

o = O 1wt (D.16)
Vo = OO 4wyt (D.17)

and thus eq.(D.15) becomes

.2 GM  GmyRu(R: —2R?)
=T s + (1 R cos(b + ft) (D.18)

where b and [ should be given as

(0) (0)

b=V —,), B=w—wy. (D.19)

D.2.3 Particular Solution

In order to solve eq.(D.18), we assume that the last term is sufficiently small
and therefore r may be written in the following shape as

©0) 4 KGmew(R?u —2R?)

r=r = cos(b+ ft D.20
el 2 cont -+ ) (0.20)
where r(*) denotes the Kepler solution of ¥ = - +€‘20w. Now we insert the solution

of eq.(D.20) into eq.(D.18), and we find the solution of K as

1
K = 5 (D.21)
Therefore, we obtain the approximate solution as
2 _op2
p = 0 _ GMwllu(By, — 277) cos(b+ ). (D.22)

(R + R2)3 67
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D.3 Effects of Other Planets on Mercury
Perihelion

Therefore we should put the Kepler solution for #(© and thus the Mercury orbit
can be written as
A Gmy R, (R% — 2R?
r o= _ Gmulu(R, - )cos(b+ﬂt)
1+ecosyp (R? + R2)3 32
A

G R (R%,—2R2)
1+ecosp+ R 12)F (o )? cos(b + ft)

12

(D.23)

where we take A ~ R and also = w — w,. Here as for ¢,, we take

Gm, (1= %)
RR2 (w — wy)? (1+%)%

Ew (D.24)

and using b + Gt = ¢ — ¢,,, we obtain

A

N _ D.25
" 1+ ecosp + gy, cos(p — pu) ( )

This equation suggests that the Mercury perihelion may well be affected by the
planet motions.

D.3.1 Numerical Evaluations

Now we calculate the Mercury perihelion shifts due to the planet motions such
as Jupiter or Venus. In order to do so, we first rewrite
£cosp + &, co8(p — ¢,) terms as

£COS P + €4 COS(P — Q) = €1 €O8 P + Casinp = \/cF + 3 cos(p + I) (D.26)

where ¢; and ¢, are defined as

€1 = €+ €y COS Yy (D.27)

Cy = €SN Py. (D.28)
Here cosd can be written as

oy (D.29)

\/ 2+ c3



APPENDIX D. PLANET EFFECTS ON MERCURY PERIHELION 45

Further, ¢, is much smaller than ¢ and thus eq.(D.29) becomes
¥ w0y ~1-— 5 (6) sin? . (D.30)
€

cosd =
\/(5 + €4 COS )% + (€4 SN )

D.3.2 Average over One Period of Planet Motion

Now we should make the average over one period of planet motion and therefore

we find
1 27 .9 1
— wdpy = —=. D.31
27T/0 sin” iy dipw = 5 (D.31)
Thus, § becomes
5~ Ew 1 GM 1 (mw> ( —%)
- - 2 _ 2\ A1 5
V2e  V2e R2 R(w—wy,)? \ M (1_'_1%)2
R2
N Ry, w2, (mw> (1_21%%;)5 (D.32)
~ - 5 : )
V2ER (W —wy)? \ M (1+%)

where the planet orbits are taken to be just the circle, for simplicity
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D.3.3 Numerical Results

In order to calculate the effects of the planet motions on the 9, we first write the
properties of planets in Table 1. Here, numbers are shown in units of the earth.

Table 1
’ H Mercury \ Venus \ Mars \ Jupiter \ Saturn H Earth \ Sun ‘
Orbit Radius 0.387 0.723 | 1.524 | 5.203 9.55 1.0
Mass 0.055 0.815 | 0.107 | 317.8 95.2 1.0 | 332946.0
Period 0.241 0.615 | 1.881 | 11.86 29.5 1.0
w 4.15 1.626 | 0.532 | 0.0843 | 0.0339 1.0

In Table 2, we present the calculations of the values § for one hundred years
of averaging and the calculations are compared with the calculated results by
Newcomb.

Table 2 The values of § for one hundred years

’ Planets H Venus \ Earth \ Mars \ Jupiter \ Saturn H Sum of Planets ‘
d by eq.(D.32) 49.7 27.4 | 0.77 32.1 1.14 111.1
0 by Newcomb || 56.8 18.8 | 0.51 31.7 1.5 109.3

As one sees, the agreement between the present calculation and Newcomb
results is surprisingly good [8]. Here we do not verify the calculation of Newcomb
for the other planet effects on the Mercury perihelion shifts, and instead we
simply employ his calculated results.

D.3.4 Comparison with Experiments

The observed values of the Mercury perihelion shifts are often quoted in some
of the old textbooks. However, it should be very difficult to find some reliable
numbers of the Mercury perihelion shifts since these values are determined for
100 years of observation period in 19 century. In this respect, the comparison
between the calculation and observation should be a homework problem for
readers.
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