
Chapter 5

Weak Interactions

Abstract: In this chapter, we first present a brief review of the weak interac-
tion theory. In particular, we discuss why the conserved vector current model had to
be modified to a new theory. After that, we clarify the physics of the spontaneous
symmetry breaking and then discuss the intrinsic problem of the Higgs mechanism
in the Weinberg-Salam model. In addition, we present the calculation of the vertex
correction due to the weak vector bosons and show that there is no logarithmic diver-
gence in this vertex corrections. Therefore, there is no need of the renormalization
procedure in the weak interaction models with massive vector bosons.
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5.1 Introduction

The physics of weak interactions started from the Fermi model of the four fermion inter-
action Hamiltonian. This model pointed to the essentially correct physics picture of the
weak decay processes. However, the four fermion interaction model has a quadratic di-
vergence in the second order perturbation calculations even with a very small coupling
constant. Therefore, the model cannot be accepted for a correct theory unless one makes
some modifications, even though this model is applied to physical processes with the first
order perturbation theory and has made a great success.

At the same time, there were several strong experimental evidences that the four fermion
interaction model should be mediated by very heavy bosons, and indeed, the experimental
discovery of the weak vector bosons (W±, Z0 ) was followed. In the mean time, Weinberg
and Salam proposed a weak interaction model which is based on theSU(2) ⊗ U(1) non-
abelian gauge theory. The reason why they employ the gauge theory is simply because they
believed that the gauge theory should be renormalizable, though without any foundations.

However, the problem is that this standard model has two serious mistakes. The first

87
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one is related to the non-abelian nature of gauge fields in the model Lagrangian density. As
we discuss in the previous chapter, the charges of the non-abelian gauge fields are gauge
dependent, and therefore they are not physical observables at all. This means that these
gauge fields cannot become free particles unless one makes mistakes somewhere within
the theoretical framework. The second mistake in the standard model is connected to their
treatment of the Higgs mechanism. There, the local gauge invariance is broken by hand
in order to give a finite mass to the gauge field at the Lagrangian density level, and this is
a wrong procedure. This is mainly based on the fact that the symmetry breaking physics
is completely misunderstood at the time of the construction of the theory, and indeed the
symmetry breaking physics is only concerned with the property of the interacting vacuum
state, and it cannot induce any change of the gauge field properties in the Hamiltonian since
the symmetry breaking has nothing to do with the field operators. In reality, the chiral
symmetry is never broken spontaneously, as we see below.

In this chapter, we review what is the basic problem of the standard model of the weak
interactions. In short, the problem of the Weinberg-Salam model is concerned with the
symmetry nature which should be kept at any time in the Lagrangian density, even though
the state (here the vacuum state of the interacting field theory model) can find the symmetry
property which is different from the one found in the free field theory model. There is
nothing surprising since the true vacuum of the interacting Hamiltonian may well have
a non-vanishing charge associated with the symmetry of the Hamiltonian while the free
field theory model may have zero charge of the symmetry group. On the other hand, the
Weinberg-Salam model had to break the symmetry itself at the Lagrangian density level
because it started from the local gauge theory whose fields must be always massless, and
this is more than a serious defect of the model Hamiltonian, but it is physically a wrong
procedure. This clearly indicates that, instead of the Weinberg-Salam model, one should
find a new model Hamiltonian with three massive vector bosons from the beginning, and it
turns out that this is indeed renormalizable. In fact, there is no logarithmic divergence in
the calculations of any physical observables in the new model, and thus one does not have
to worry about the renormalization procedure.

5.2 Critical Review of Weinberg-Salam Model

The Weinberg-Salam model has basically two important ingredients. The first one is con-
cerned with the fermion and vector field coupling that leads to the four fermion interaction
model in the second order perturbative calculations. This is a very reasonable assumption,
and indeed one sees that the model can reproduce almost all of the experimental observa-
tions. The second part is the Higgs mechanism which has, in fact, a serious problem in
connection with theunitary gaugefixing. In this mechanism, the condition ofφ = φ† is
imposed on the Higgs fields. However, this does not correspond to a proper gauge fixing.
Instead, this is simply a procedure for giving a finite but very large mass to a gauge field
by breaking the local gauge invariance by hand. This suggests that the starting Lagrangian
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density of the weak interactions should be reconsidered, and indeed we should start from
the three massive vector boson fields from the beginning. The massive vector fields should
couple to the fermion currents as the initial ingredients. Here, it is shown that the new
renormalization scheme with massive vector bosons has no intrinsic problem, and the mas-
sive vector boson fields do not give rise to any divergences for physical observables and
therefore we do not need any renormalization procedure.

5.2.1 Spontaneous Symmetry Breaking

Before going to the discussion of the Higgs mechanism, we should clarify the physics of
the spontaneous symmetry breaking. The whole idea of the symmetry breaking has been
critically examined in the recent textbook [31, 45, 46], and the physics of the spontaneous
symmetry breaking is, by now, well understood in terms of the standard knowledge of
quantum field theory. In particular, if one wishes to understand the vacuum state in a field
theory model of fermions, then one has to understand the structure of the negative energy
states of the corresponding field theory model.

The terminology of the spontaneous symmetry breaking is misleading, and one should
say that it is incorrectly used. It does not express the right physics of the symmetry breaking
[47, 48, 49]. This is simply because the breaking of the symmetry cannot, of course, occur
in the Hamiltonian of isolated system [50, 51]. If the symmetry breaking is concerned
with the comparison of the vacuum states between the free field theory and the interacting
field theory models, then we see that the chiral charge associated with the chiral symmetry
transformation in the interacting vacuum state may well have a finite but different charge
from the vacuum state of the free field theory which indeed has a zero chiral charge. For
the total HamiltonianH = H0 + HI , we have the vacuum state|vac〉exact which is an
eigenstate ofH, and the vacuum state may well have the eigenvalue of the chiral charge
operatorQ̂5 as [31]

eiαQ̂5 |vac〉exact = einα|vac〉exact

wheren is±1 for the Thirring model. On the other hand, the free vacuum state|vac〉free

which is an eigenstate ofH0 should have

eiαQ̂5 |vac〉free = |vac〉free.

Here, one can see that there is nothing special in this symmetry arguments. The most
important of all is that there is no symmetry breaking in the Hamiltonian ofH. Only the
exact vacuum state has a finite chiral charge, in contrast to the zero chiral charge of the free
vacuum state.

On the other hand, some people completely misunderstood this physics of symmetry
breaking and thought that the vacuum state of the interacting Hamiltonian itself broke the
chiral symmetry [49]. This should arise from the two kinds of misunderstanding in their
calculations. The first point is that they made use of the approximation scheme of Bogoli-
ubov transformation, and this approximation method happens to induce a deceptive term
which looks like a mass term though its mass is infinite [31]. The second misunderstanding
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is concerned with the concept of the cutoff momentum, and in fact, their result of the mass
term is expressed by the cutoff momentumΛ which should be set to infinity at the end of
the calculation. In this respect, it is clear that one cannot discuss its physics by rewriting
the Lagrangian density into a new shape. As one knows, the property of the vacuum state
should be determined from the eigenstate of the total Hamiltonian in the corresponding field
theory model.

In summary, the symmetry of the Hamiltonian can never be spontaneously broken, and
the eigenstate of the Hamiltonian should keep the symmetry property, unless the symmetry
breaking terms should be added to the Hamiltonian by hand. As we discuss below, the
physics of the Higgs mechanism has nothing to do with the property of the vacuum state,
and therefore it is not related to the symmetry breaking physics at all [52].

5.2.2 Higgs Mechanism

As we show below, the whole procedure of the Higgs mechanism cannot be justified at all.
This is mainly connected to the misunderstanding of the gauge fixing where one degree
of freedom of the gauge fields must be reduced in order to solve the equations of motion
of the gauge fields. Therefore, one cannot insert the condition of the gauge fixing into
the Lagrangian density. This is clear since the Lagrangian density only plays a role for
producing the equation of motions. Indeed, the Lagrangian density itself is not directly a
physical observable, and the Hamiltonian constructed from the Lagrangian density is most
important after the fields are quantized. For the field quantization, one has to make use
of the gauge fixing condition which can determine the gauge fieldAµ together with the
equation of motions. This means that only the final Hamiltonian density is relevant to the
description of physical observables, and thus the success of the Glashow-Weinberg-Salam
model [53, 54, 55] is entirely due to the final version of the weak Hamiltonian which is not
at all the gauge field theory but is a model field theory of the massive vector fields which
couple to the fermion currents. The success of the standard model is, of course, due to the
fact that it can be reduced to the theory of conserved vector current (CVC).

In this respect, it is very important to examine the renormalizability of the final version
of the weak Hamiltonian. Here, we show that the renormalizability of the model field
theory can be indeed justified. This is basically due to the fact that there is no divergence
in the vertex corrections of fermions due to the massive vector boson propagations once we
employ a proper propagator of the massive vector bosons. Here, we briefly review how we
can obtain the new propagator of the massive vector boson, and the correct shape of the
propagator of the massive vector bosons should be given as [56]

Dµν(k) = − gµν − kµkν

k2

k2 −M2 − iε
. (5.0)

This shape is determined by solving the equations of motion for the massive vector bosons.
As long as we employ the above propagator, we find that the anomalous magnetic moment
of electron due to weakZ0 bosons does not have any divergences and it is indeed very
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small number which is consistent with experiment. Thus, one can see that the physical
observables with the massive vector boson propagations are all finite and that there are
neither conceptual nor technical problems in the renormalization scheme of the massive
vector bosons interacting with fermions. Namely, there is no need of the wave function
renormalization.

5.2.3 Gauge Fixing

Now we discuss the basic problem of the Higgs mechanism [46]. The Lagrangian density
of the Higgs mechanism is given as

L =
1
2
(Dµφ)†(Dµφ)− 1

4
u0

(|φ|2 − λ2
)2 − 1

4
FµνF

µν (5.1)

where

Dµ = ∂µ + igAµ, Fµν = ∂µAν − ∂νAµ. (5.2)

Here, we only consider the U(1) case since it is sufficient for the present discussions. The
above Lagrangian density is indeed gauge invariant, and in this respect, the scalar field
may interact with gauge fields in eq.(5.1). However, it should be noted that there is no
experimental indication that the fundamental scalar field can interact with any gauge fields
in terms of the Lagrangian density of eq.(5.1). In this sense, this is only a toy model. Now,
the equations of motion for the scalar fieldφ become

∂µ(∂µ + igAµ)φ = −u0φ
(|φ|2 − λ2

)− igAµ(∂µ + igAµ)φ (5.3)

∂µ(∂µ − igAµ)φ† = −u0φ
† (|φ|2 − λ2

)
+ igAµ(∂µ − igAµ)φ†. (5.4)

On the other hand, the equation of motion for the gauge fieldAµ can be written as

∂µFµν = gJν (5.5)

where

Jµ =
1
2
i
{

φ†(∂µ + igAµ)φ− φ(∂µ − igAµ)φ†
}

. (5.6)

One can also check that the currentJµ is conserved, that is

∂µJµ = 0. (5.7)

This Lagrangian density of eq.(5.1) has been employed for the discussion of the Higgs
mechanism.
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5.2.4 Gauge Freedom and Number of Independent Equations

Now, we should count the number of the degrees of freedom and the number of equations.
For the scalar field, we have two independent functionsφ andφ†. Concerning the gauge
fieldsAµ, we have four since there areA0, A1, A2, A3 fields. Thus, the number of the in-
dependent fields is six. On the other hand, the number of equation is five since the equation
for the scalar fields is two and the number of the gauge fields is three. This number of three
can be easily understood, even though it looks that the independent number of equations in
eq.(5.5) is four, but due to the current conservation the number of the independent equations
becomes three. This means that the number of the independent functions is six while the
number of equations is five, and they are not equal. This is the gauge freedom, and there-
fore in order to solve the equations of motion, one has to put an additional condition for the
gauge fieldAµ like the Coulomb gauge which means∇ ·A = 0. In this respect, the gauge
fixing is simply to reduce the redundant functional variable of the gauge fieldAµ to solve
the equations of motion, and nothing more than that.

5.2.5 Unitary Gauge Fixing

In the Higgs mechanism, the central role is played by the gauge fixing of the unitary gauge.
The unitary gauge means that one takes

φ = φ†. (5.8)

This is the constraint on the scalar fieldφ even though there is no gauge freedom in this
respect. For the scalar field, the phase can be changed, but this does not mean that one can
erase one degree of freedom. One should transform the scalar field in the gauge transfor-
mation as

φ′ = e−igχφ

but one must keep the number of degree of freedom after the gauge transformation. What-
ever one fixes the gaugeχ, one cannot change the shape of the scalar fieldφ since it is a
functional variable and must be determined from the equations of motion. The gauge free-
dom is, of course, found in the vector potentialAµ as we discussed above. In this sense,
one sees that the unitary gauge fixing is a simple mistake [57]. The basic reason why peo-
ple overlooked this simple-minded mistake must be due to their obscure presentation of
the Higgs mechanism. Also, it should be related to the fact that, at the time of present-
ing the Higgs mechanism, the spontaneous symmetry breaking physics was not understood
properly since the vacuum of the corresponding field theory was far beyond the proper un-
derstanding. Indeed, the Goldstone boson after the spontaneous symmetry breaking was
taken to be almost a mysterious object since there was no experiment which suggests any
existence of the Goldstone boson. Instead, a wrong theory prevailed among physicists.
Therefore, they could assume a very unphysical procedure of the Higgs mechanism and
people pretended that they could understand it all.
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5.2.6 Non-abelian Gauge Field

Now, one should be careful for the renormalizability of the non-abelian gauge field theory.
As one can easily convince oneself, the non-abelian gauge theory has an intrinsic problem
of the perturbation theory [58]. This is connected to the fact that the color charge in the
non-abelian gauge field depends on the gauge transformation, and therefore it cannot be
physical observables. This means that the free gauge field which has a color charge is
gauge dependent, and thus one cannot develop the perturbation theory in a normal way. In
QCD, this is exhibited as the experimental fact that both free quarks and free gluons are
not observed in nature. The absence of free fields is a kinematical constraint and thus it
is beyond any dynamics. Therefore, one cannot discuss the renormalizability of the non-
abelian gauge field theory models due to the lack of the perturbation scheme in this model
field theory [31, 58]. Therefore, the problem of the renormalizability in the non-abelian
field theory model is a meaningless subject since the perturbation theory is not defined in
this model field theory.

5.2.7 Summary of Higgs Mechanism

The intrinsic problem of the Higgs mechanism is discussed in terms of the gauge fixing con-
dition. This is also related to the misunderstanding of the spontaneous symmetry breaking
physics. Here, we have shown that the Higgs mechanism cannot be justified since the gauge
invariance of the Lagrangian density is violated by hand. However, we believe that the final
version of the weak Hamiltonian should be correct, and therefore we should discuss the
renormalization scheme of the massive vector bosons in detail. As we discuss above, the
basic reason why the standard model Hamiltonian becomes a reasonable model is due to the
fact that they make mistakes twice and thus it gets back to the right Hamiltonian which can
describe the nature. The first mistake is related to the non-abelian character of the gauge
field theory model while the second mistake is concerned with the breaking of the local
gauge invariance in terms of Higgs mechanism, and it is, of course, an incorrect treatment.
Therefore, if we remove the Higgs fields and the non-abelian nature of the massive vector
bosons from the Weinberg-Salam model, then the final Hamiltonian of the standard model
should be physically acceptable.

At this point, we should make a comment on the present status of the Higgs particle
search. At present (January, 2013), there is no indication of the existence of the Higgs
particle in spite of the fact that the total period of the experimental efforts of the Higgs
search must be almost more then three decades. The main difference between theW and
Z bosons and Higgs particle searches can be understood in the following way. The Higgs
particle search started from the theoretical requirements (though incorrect) without having
any firm experimental motivations of its existence, while the W-boson cases had many
experimental indications of their existence before they were discovered by the UA1 and
UA2 collaborations of the CERN-SPS experiments in 1983.
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5.3 Theory of Conserved Vector Current

It should be important to construct the Lagrangian density which can describe the weak
interaction processes. The basic starting point is, of course, the conserved vector current
(CVC) theory which can describe most of the observed weak decay processes quite well.
This CVC theory should be derived from the second order perturbation theory by exchang-
ing the weak vector bosons between corresponding fermions.

5.3.1 Lagrangian Density of CVC Theory

The theory of the weak interactions is developed in terms of the four fermion interaction
model [59] by Fermi and, after some time, Feynman and Gell-Mann extended it to the con-
served vector current (CVC) theory, which is quite successful for describing experiments
[60, 61, 62, 63]. The Lagrangian density of the CVC theory can be written as

L = −GF√
2
J†µJµ + h.c.

whereGF denotes the weak coupling constantGF ' 1.2×10−5 1
M2

p
. AlsoJµ is composed

of the leptonic and hadronic currents and is written as

Jµ = jµ
` + jµ

h

where both of the currents can be expressed as

jµ
` = ψ̄νeγ

µ(1− γ5)ψe + ψ̄νµγµ(1− γ5)ψµ + · · ·

jµ
h = cos θψ̄uγµ(1− γ5)ψd + sin θψ̄uγµ(1− γ5)ψs + · · · .

It should be important to note that the current-current interaction model can describe many
experimental data to a very high accuracy, and this is, indeed, a well-known fact before the
discovery of the weak vector bosons ofW±, Z0.

5.3.2 Renormalizability of CVC Theory

However, this model Hamiltonian of CVC theory should have a serious problem related to
the divergence in the second order perturbation theory. Since the coupling constantGF is
very small compared to the fine structure constant, one can expect that the second order
perturbation must be reliable. On the contrary, however, the second order calculation has
a quadratic divergence since the coupling constantGF has the dimension of the inverse
square of the energy. Therefore, it is clear that this theoretical framework should have an
intrinsic problem of the divergence, and thus it should be very important to construct a
theory which should not have any divergence.
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5.3.3 Renormalizability of Non-Abelian Gauge Theory

Now, in order to construct a theory which is renormalizable, it was believed that the gauge
field theory should be renormalizable at the time when people discovered the CVC theory.
Therefore, it is natural that the non-abelian gauge theory ofSU(2)⊗U(1) was proposed by
Weinberg-Salam. However, one sees by now that the non-abelian gauge field has a charge
associated with its gauge group, but the charge is not a physical observable since it is gauge
dependent. Therefore, there is no way to develop any perturbation theory in this non-abelian
gauge field theory. This means that the non-abelian gauge theory has an intrinsic problem
before going to the renormalization scheme. [64]

5.4 Lagrangian Density of Weak Interactions

Even though the Higgs mechanism itself has an intrinsic problem, the final Hamiltonian
density may well be physically meaningful. This is clear since, from this Hamiltonian
density, one can construct the CVC theory which describes the experimental observables
quite well.

5.4.1 Massive Vector Field Theory

In this respect, we may write the simplest Lagrangian density for two flavor leptons which
couple to the SU(2) vector fieldsW a

µ

L = Ψ̄`(i∂µγµ −m)Ψ` − gJa
µWµ,a +

1
2
M2W a

µWµ,a − 1
4
Ga

µνG
µν,a (5.9)

whereM denotes the mass of the vector boson. Here, we do not write the hadronic part, for
simplicity. The lepton wave functionΨ` has two components

Ψ` =
(

ψe

ψν

)
. (5.10)

Correspondingly, the mass matrix can be written as

m =
(

me 0
0 mν

)
. (5.11)

The fermion currentJa
µ and the field strengthGa

µν are defined as

Ja
µ = Ψ̄`γµ(1− γ5)τaΨ`, Ga

µν = ∂µW a
ν − ∂νW

a
µ . (5.12)

This Lagrangian density is almost the same as the standard model Lagrangian density, apart
from the Higgs fields and the abelien nature. In fact, there is no experiment in weak process
which cannot be described by the Lagrangian density of eq.(5.9). The only thing which,
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people thought, may be a defect in the above Lagrangian density is concerned with the
renormalization of the theory. As we see below, the problem of the renormalization is
completely solved by employing the right propagator of the massive vector bosons. This
means that we find that there is no logarithmic divergence in the evaluation of the vertex
corrections due to the propagations of the massive vector bosons. Therefore, we do not
need any renormalization procedure since all the physical observables are calculated to be
finite.

5.5 Propagator of Massive Vector Boson

Here, we briefly review the derivation of the new propagator of the massive vector boson
which has recently been evaluated properly in terms of the polarization vector [56]. The
correct shape of the boson propagator is found to be the one given as

Dµν(k) = − gµν − kµkν

k2

k2 −M2 − iε
. (5.13)

This is quite important since this does not generate any quadratic divergences in the self-
energy diagrams of fermions any more while the old propagator in the textbooks

Dµν
old(k) = − gµν − kµkν

M2

k2 −M2 − iε

gives rise to the quadratic divergence [31, 15]. This old propagator is obtained by making
use of the Green’s function method. However, the summation of the polarization vectors
cannot be connected to the Green’s function as we discuss below, and thus the employment
of the old propagator is incorrect if one should treat the physical processes which involve
the loop integral.

5.5.1 Lorentz Conditions ofkµε
µ = 0

Here, we briefly explain how we can obtain eq.(5.13). The free Lagrangian density for the
vector fieldZµ with its massM is written as

LZ = −1
4
GµνG

µν +
1
2
M2ZµZµ

with Gµν = ∂µZν − ∂νZµ. In this case, the equation of motion becomes

∂µ(∂µZν − ∂νZµ) + M2Zν = 0. (5.14)

Since the free massive vector boson field should have the following shape of the solution

Zµ(x) =
∑

k

3∑

λ=1

1√
2V ωk

εµ
k,λ

[
ck,λeikx + c†k,λe−ikx

]
(5.15)
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Here, we can insert this solution into eq.(5.14) and obtain the following equation for the
polarization vectorεµ

(k2 −M2)εµ − (kνε
ν)kµ = 0. (5.16)

The condition that there should exist a non-zero solution for theεµ requires that the deter-
minant of the matrix should be zero, namely

det{(k2 −M2)gµν − kµkν} = 0. (5.17)

This equation can be easily solved, and we find the following equation

k2 −M2 = 0 (5.18)

which is the only physical solution of eq.(5.17). Therefore we insert this solution into
eq.(5.16) and obtain the equation for the polarization vectorεµ

kµεµ = 0 (5.19)

which should always hold. Here, we should note that this process of determining the con-
dition on the wave function ofεµ is just the same as solving the free Dirac equation. Ob-
viously this is the most important process of determining the wave functions in quantum
mechanics, and surprisingly, this has been missing in the treatment of determining not only
the massive vector boson propagator but also the photon propagator as well. Also, one can
notice that the condition of eq.(5.19) is just the same as the Lorentz gauge fixing condition
in quantum electrodynamics (QED), and this is often employed as the gauge fixing. How-
ever, one sees by now that the Lorentz condition itself can be obtained from the equation of
motion, and therefore it is more fundamental than the gauge fixing, even though the theory
of massive bosons has no gauge freedom. This indicates that the Lorentz gauge fixing in
QED should not be a proper gauge fixing procedure since the Lorentz gauge fixing cannot
give a further constraint on the polarization vector in the perturbation theory of QED. In
addition, the number of degrees of freedom for the gauge fields can be understood properly
since photon must have the two degrees of freedom due to the two constraint equations (the
Lorentz condition and the gauge fixing condition).

5.5.2 Right Propagator of Massive Vector Boson

Now, we can evaluate the propagator of the massive vector field in the S-matrix expression.
The second order perturbation of the S-matrix for the bosonic part can be written in terms
of the T-product of the boson fields and it becomes

〈0|T{Zµ(x1)Zν(x2)}|0〉 = i
3∑

λ=1

∫
d4k

(2π)4
εµ
k,λεν

k,λ

eik(x1−x2)

k2 −M2 − iε
. (5.20)

After the summation over the polarization states, we find the following shape for∑3
λ=1 εµ

k,λεν
k,λ as

3∑

λ=1

εµ
k,λεν

k,λ = −
(

gµν − kµkν

k2

)
(5.21)
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which satisfies the Lorentz invariance and the condition of the polarization vectorkµεµ = 0.
One sees that this is the only possible solution. From eq.(5.21), one finds that the right
propagator of the massive vector boson should be the one given in eq.(5.13)

Dµν(k) = − gµν − kµkν

k2

k2 −M2 − iε
.

Here it may be important to note that the polarization vectorεµ
k,λ should depend only on the

four momentumkµ, and it cannot depend on the boson mass at this expression. Later, one
may replace thek2 term byM2 in case the vector boson is found at the external line. But
in the propagator, the replacement of thek2 term byM2 is forbidden.

5.5.3 Renormalization Scheme of Massive Vector Fields

In 1970’s, people found that some experiments indicate there might be heavy vector bosons
exchanged between leptons and baryons in the weak processes. Therefore, people wanted to
start from the massive vector bosons. However, it was somehow believed among educated
physicists that only gauge field theories must be renormalizable. We do not know where
this belief came from. In fact, there is no strong reason that only the gauge field theory is
renormalizable. On the contrary, we know by now that only QED may well have a strange
divergence in the vertex corrections.

5.6 Vertex Corrections by Weak Vector Bosons

Now we can calculate the vertex correctionΛρ(p′, p) of electromagnetic interaction due to
theZ0 boson. The Lagrangian density for theZ0 boson which couples to the electron field
ψe should be written as

LZ0 = −1
4
GµνG

µν +
1
2
M2ZµZµ − gzψ̄eγµ(1− γ5)ψeZ

µ (5.22)

where the free Lagrangian density part of electron is not written here for simplicity. This
vertex correction is a physical process which can be directly related to the physical observ-
ables, and therefore we should be concerned with its divergences. The vertex correction
Λρ(p′, p) can be written by evaluating the corresponding Feynman diagrams as [56]

Λρ(p′, p) = −ig2
ze

∫
d4k

(2π)4

(
gµν − kµkν

k2

k2 −M2 − iε

)
γµγ5 1

p/′ − k/−me
γρ 1

p/− k/−me
γνγ

5

(5.23)
where only the term corresponding to theγ5γµ is written for simplicity.
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5.6.1 No Divergences

First, we show that the apparent logarithmic divergent terms in eq.(5.23) vanish to zero, and
this can be easily proved since we can find

Λρ(p, p) = −ieg2
z

∫
d4k

(2π)4

∫ 1

0
2xdx

(
γµk/γρk/γµ − k/k/γρk/k/

k2

)

(k2 − s− iε)3
= 0 (5.24)

wheres = M2(1−x)+m2
ex

2. Therefore, there is no logarithmic divergence for the vertex
correction from the weak massive vector boson propagations. This is very important in
that the physical processes do not have any divergences when we make use of the proper
propagator of the massive vector boson.

5.6.2 Electrong − 2 by Z0 Boson

The finite part of the vertex correction due to theZ0 boson can be easily calculated and,
therefore, the electrong − 2 should be modified by the weak interaction to

g − 2
2

' 7αz

12π

(me

M

)2
' 2× 10−14 (5.25)

where

αz =
g2
z

4π
' 2.73× 10−3.

This is a very small effect, and therefore, it is consistent with the electrong−2 experiment.
We should note that, if we employed the standard propagator of the massive vector boson
as given in the field theory textbooks [15], then we would have obtained a very large effect
on the electrong − 2, even if we had successfully treated the problem of the quadratic and
logarithmic divergences in some way or the other, by renormalizing them into the fermion
self-energy contributions. This strongly suggests from the point of view of the renormal-
ization scheme that the propagator of the massive vector field should be the one given by
eq.(5.13).

5.6.3 Muong − 2 by Z0 Boson

Here, we should also give a calculated value of the muong − 2 due to theZ0 boson since
it is just the same formula as eq.(5.24) except the mass of lepton. The result becomes

(
g − 2

2

)

µ

' 7αz

12π

(mµ

M

)2
' 8.6× 10−10 (5.26)

which is much larger than the electron case. This is, however, still too small to be observed
by the muong − 2 experiments at the present stage.



Appendix C

Lorentz Conditions

Here, we clarify that the Lorentz condition ofkµεµ = 0 should be obtained from the equa-
tion of motion, and therefore it is more fundamental than the requirement of the gauge
fixing condition in QED. For the massive vector bosons, the Lorentz condition plays a fun-
damental role for determining the polarization sum of the vector boson.

C.1 Gauge Field of Photon

We write the Lagrangian density for the free gauge field as

Lem = −1
4
FµνF

µν (C.1)

with Fµν = ∂µAν − ∂νAµ. In this case, the equation of motion becomes

∂µ(∂µAν − ∂νAµ) = 0. (C.2)

Since the free photon field should have the following solution

Aµ(x) =
∑

k

2∑

λ=1

εµ(k, λ)√
2V ωk

[
c†k,λe−ikx + ck,λeikx

]
(C.3)

we can insert this solution into eq.(C.2) and obtain the following equation forεµ(k, λ)

k2εµ − (kνε
ν)kµ = 0. (C.4)

This equation can be written in terms of the matrix equation for the polarization vectorεµ

3∑

ν=0

{k2gµν − kµkν}εν = 0 (C.5)
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where we write the summation explicitly. In order that theεµ should have a non-zero
solution, the determinant of the matrix should vanish to zero

det{k2gµν − kµkν} = 0. (C.6)

Now it is easy to prove thatk2 = 0 is the only physical solution of eq.(C.6) since one finds

det{−kµkν} = 0.

Therefore, putting the solution ofk2 = 0 into eq.(C.4), we obtain

kµεµ = 0 (C.7)

which becomes the solution for the polarization vector. Here, we should note that this pro-
cess of determining the condition on the wave function ofεµ is just the same as solving the
free Dirac equation. Obviously this is the most important process of determining the wave
functions in quantum mechanics, and surprisingly, this has been missing in the treatment of
determining not only the massive vector boson propagator but also the photon propagator
as well.

This constraint equation of eq.(C.7) is obtained from the equation of motion, even
though it is just the same equation as Lorentz gauge fixing condition. As can be seen
by now, the gauge fixing condition is still left for use. In fact, if we take the Coulomb
gauge fixing of∇ ·A = 0, then we findk · ε = 0 which leads to the condition ofε0 = 0.
Therefore, we now see that the photon field has only two degrees of freedom which can be
naturally obtained from the equation of motion and the gauge fixing condition.

In addition, one realizes that the Lorentz gauge fixing is not allowed in the free field
gauge theory since the same equation of the Lorentz gauge fixing is already obtained from
the equation of motion. Namely, it cannot give a further constraint on the polarization
vector. In this respect, one sees that the Coulomb gauge fixing gives a proper condition on
the polarization vector.

C.2 Massive Vector Fields

The massive vector field can be treated just in the same manner as above. We first write the
free Lagrangian density for the vector boson fieldZµ with its massM

LW = −1
4
GµνG

µν +
1
2
M2ZµZµ (C.8)

with Gµν = ∂µZν − ∂νZµ. In this case, the equation of motion becomes

∂µ(∂µZν − ∂νZµ) + M2Zν = 0. (C.9)

Since the free massive boson field should have the following shape of the solution

Zµ(x) =
∑

k

3∑

λ=1

εµ(k, λ)√
2V ωk

[
ck,λeikx + c†k,λe−ikx

]
(C.10)



C.2. Massive Vector Fields 151

we can insert this solution into eq.(C.9) and obtain the following equation for the polariza-
tion vectorεµ

(k2 −M2)εµ − (kνε
ν)kµ = 0. (C.11)

In the same way as above, we can prove that

k2 −M2 = 0

should hold, and this is the only physical solution of eq.(C.11). Therefore we obtain the
following equation for the polarization vectorεµ

kµεµ = 0 (C.12)

which should always hold. This is just the same equation as Lorentz gauge fixing condition
in QED. However, there is no gauge freedom for the massive vector boson, and therefore
the degrees of freedom of the polarization vectorεµ for the massive vector boson is three,
in contrast to the gauge field. Now, we understand that the massive vector field should have
a spin ofs = 1 which has indeed three components as we saw above. In this sense, the
photon field is special in that it has a spin ofs = 1 with only two degrees of freedom. This
should be directly related to the massless nature of photon which is required from the gauge
invariance of the Lagrangian density of the vector field.





Appendix D

Basic Notations in Field Theory

In field theory, one often employs special notations which are by now commonly used. In
this Appendix, we explain some of the notations which are particularly useful in field theory
calculations.

D.1 Natural Units and Constants

Here, we employ the natural units because of its simplicity

c = 1, ~ = 1. (D.1.1)

If one wishes to get the right dimensions out, one should use

~c = 197.33 MeV · fm. (D.1.2)

For example, pion mass ismπ ' 140 MeV/c2. Its Compton wave length is

1
mπ

=
~c

mπc2
=

197 MeV · fm
140 MeV

' 1.4 fm.

Fine structure constant: α = e2 =
e2

~c
=

e2

4π
=

e2

4π~c
=

1
137.036

.

Some constants:




Electron mass: me = 0.511 MeV/c2

Muon mass: mµ = 105.66 MeV/c2

Proton mass: Mp = 938.28 MeV/c2

Bohr radius: a0 =
1

mee2
= 0.529× 10−8 cm
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Gravitational constant: G = 5.906× 10−39 1
M2

p

Weak coupling Constant: GF = 1.166× 10−5 (GeV)−2

Magnetic moments:




Electron: µe = 1.00115965219
e~

2mec

Muon : µµ = 1.001165920
e~

2mµc

Weak bosons :





W± − boson: MW = 80.4 GeV/c2, αW ' 4.3× 10−3

Z0 − boson : Mz = 91.2 GeV/c2, αZ ' 2.73× 10−3

D.2 Hermite Conjugate and Complex Conjugate

For a complex c-numberA
A = a + bi (a, b : real). (D.2.1)

Its complex conjugateA∗ is defined as

A∗ = a− bi. (D.2.2)

Matrix A

If A is a matrix, one defines the hermite conjugateA†

(A†)ij = A∗ji. (D.2.3)

Differential Operator Â

If Â is a differential operator, then the hermite conjugate can be defined only when the
Hilbert space and its scalar product are defined. For example, supposeÂ is written as

Â = i
∂

∂x
. (D.2.4)

In this case, its hermite conjugatêA† becomes

Â† = −i

(
∂

∂x

)T

= i
∂

∂x
= Â (D.2.5)

which meansÂ is Hermitian. This can be easily seen in a concrete fashion since

〈ψ|Âψ〉 =

∞∫

−∞
ψ†(x)i

∂

∂x
ψ(x) dx = −i

∞∫

−∞

(
∂

∂x
ψ†(x)

)
ψ(x) dx = 〈Âψ|ψ〉, (D.2.6)
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whereψ(±∞) = 0 is assumed. The complex conjugate ofÂ is simply

Â∗ = −i
∂

∂x
6= Â. (D.2.7)

Field ψ

If the ψ(x) is a c-number field, then the hermite conjugateψ†(x) is just the same as the
complex conjugateψ∗(x). However, when the fieldψ(x) is quantized, then one should
always take the hermite conjugateψ†(x). When one takes the complex conjugate of the
field asψ∗(x), one may examine the time reversal invariance.

D.3 Scalar and Vector Products (Three Dimensions) :

Scalar Product

For two vectors in three dimensions

r = (x, y, z) ≡ (x1, x2, x3), p = (px, py, pz) ≡ (p1, p2, p3) (D.3.1)

the scalar product is defined

r · p =
3∑

k=1

xkpk ≡ xkpk, (D.3.2)

where, in the last step, we omit the summation notation if the indexk is repeated twice.

Vector Product

The vector product is defined as

r × p ≡ (x2p3 − x3p2, x3p1 − x1p3, x1p2 − x2p1). (D.3.3)

This can be rewritten in terms of components,

(r × p)i = εijkxjpk, (D.3.4)

whereεijk denotes anti-symmetric symbol with

ε123 = ε231 = ε312 = 1, ε132 = ε213 = ε321 = −1, otherwise = 0.
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D.4 Scalar Product (Four Dimensions)

For two vectors in four dimensions,

xµ ≡ (t, x, y, z) = (x0, r), pµ ≡ (E, px, py, pz) = (p0,p) (D.4.1)

the scalar product is defined

x · p ≡ Et− r · p = x0p0 − xkpk. (D.4.2)

This can be also written as

xµpµ ≡ x0p
0 + x1p

1 + x2p
2 + x3p

3 = Et− r · p = x · p, (D.4.3)

wherexµ andpµ are defined as

xµ ≡ (x0,−r), pµ ≡ (p0,−p). (D.4.4)

Here, the repeated indices of the Greek letters mean the four dimensional summationµ =
0, 1, 2, 3. The repeated indices of the roman letters always denote the three dimensional
summation throughout the text.

Metric Tensor

It is sometimes convenient to introduce the metric tensorgµν which has the following prop-
erties

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (D.4.5)

In this case, the scalar product can be rewritten as

x · p = xµpνgµν = Et− r · p. (D.4.6)

D.5 Four Dimensional Derivatives∂µ

The derivative∂µ is introduced for convenience

∂µ ≡ ∂

∂xµ
=

(
∂

∂x0
,

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
=

(
∂

∂t
,

∂

∂x
,

∂

∂y
,

∂

∂z

)
=

(
∂

∂t
, ∇

)
, (D.5.1)

where the lower index has the positive space part. Therefore, the derivative∂µ becomes

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
=

(
∂

∂t
,−∇

)
. (D.5.2)
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D.5.1 p̂µ and Differential Operator

Since the operator̂pµ becomes a differential operator as

p̂µ = (Ê, p̂) =
(

i
∂

∂t
, −i∇

)
= i∂µ

the negative sign, therefore, appears in the space part. For example, if one defines the
currentjµ in four dimension as

jµ = (ρ, j),

then the current conservation is written as

∂µjµ =
∂ρ

∂t
+ ∇ · j =

1
i

p̂µjµ = 0. (D.5.3)

D.5.2 Laplacian and d’Alembertian Operators

The Laplacian and d’Alembertian operators,∆ and2 are defined as

∆ ≡ ∇ ·∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

2 ≡ ∂µ∂µ =
∂2

∂t2
−∆.

D.6 γ-Matrix

Here, we present explicit expressions of theγ-matrices in two and four dimensions. Before
presenting the representation of theγ-matrices, we first give the explicit representation of
Pauli matrices.

D.6.1 Pauli Matrix

Pauli matrices are given as

σx = σ1 =
(

0 1
1 0

)
, σy = σ2 =

(
0 −i
i 0

)
, σz = σ3 =

(
1 0
0 −1

)
. (D.6.1)

Below we write some properties of the Pauli matrices.

Hermiticity

σ†1 = σ1, σ†2 = σ2, σ†3 = σ3.

Complex Conjugate

σ∗1 = σ1, σ∗2 = −σ2, σ∗3 = σ3.



158 Appendix D. Basic Notations in Field Theory

Transposed

σT
1 = σ1, σT

2 = −σ2, σT
3 = σ3 (σT

k = σ∗k).

Useful Relations

σiσj = δij + iεijkσk, (D.6.2)

[σi, σj ] = 2iεijkσk. (D.6.3)

D.6.2 Representation ofγ-matrix

(a) Two dimensional representations ofγ-matrices

Dirac : γ0 =
(

1 0
0 −1

)
, γ1 =

(
0 1
−1 0

)
, γ5 = γ0γ1 =

(
0 1
1 0

)
,

Chiral : γ0 =
(

0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
, γ5 = γ0γ1 =

(
1 0
0 −1

)
.

(b) Four dimensional representations of gamma matrices

Dirac : γ0 = β =
(
1 0
0 −1

)
, γ =

(
0 σ
−σ 0

)
,

γ5 = iγ0γ1γ2γ3 =
(
0 1
1 0

)
, α =

(
0 σ
σ 0

)
,

Chiral : γ0 = β =
(
0 1
1 0

)
, γ =

(
0 −σ
σ 0

)
,

γ5 = iγ0γ1γ2γ3 =
(
1 0
0 −1

)
, α =

(
σ 0
0 −σ

)
.

where 0 ≡
(

0 0
0 0

)
, 1 ≡

(
1 0
0 1

)
.

D.6.3 Useful Relations ofγ-Matrix

Here, we summarize some useful relations of theγ-matrices.

Anti-commutation relations

{γµ, γν} = 2gµν , {γ5, γν} = 0. (D.6.4)

Hermiticity

γ†µ = γ0γµγ0 (γ†0 = γ0, γ†k = −γk), γ†5 = γ5. (D.6.5)
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Complex Conjugate

γ∗0 = γ0, γ∗1 = γ1, γ∗2 = −γ2, γ∗3 = γ3, γ∗5 = γ5. (D.6.6)

Transposed

γT
µ = γ0γ†µγ0, γT

5 = γ5. (D.6.7)

D.7 Transformation of State and Operator

When one transforms a quantum state|ψ〉 by a unitary transformationU which satisfies

U †U = 1

one writes the transformed state as

|ψ′〉 = U |ψ〉. (D.7.1)

The unitarity is important since the norm must be conserved, that is,

〈ψ′|ψ′〉 = 〈ψ|U †U |ψ〉 = 1.

In this case, an arbitrary operatorO is transformed as

O′ = UOU−1. (D.7.2)

This can be obtained since the expectation value of the operatorO must be the same be-
tween two systems, that is,

〈ψ|O|ψ〉 = 〈ψ′|O′|ψ′〉. (D.7.3)

Since

〈ψ′|O′|ψ′〉 = 〈ψ|U †O′U |ψ〉 = 〈ψ|O|ψ〉
one finds

U †O′U = O
which is just eq.(D.7.2).

D.8 Fermion Current

We summarize the fermion currents and their properties of the Lorentz transformation. We
also give their nonrelativistic expressions since the basic behaviors must be kept in the
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nonrelativistic expressions. Here, the approximate expressions are obtained by making use
of the plane wave solutions for the Dirac wave function.

Fermion currents :




Scalar : ψ̄ψ ' 1

Pseudoscalar : ψ̄γ5ψ ' �·p
m

Vector : ψ̄γµψ '
(
1,

p

m

)

Axialvector : ψ̄γµγ5ψ '
(σ · p

m
,σ

)

(D.8.1)

Therefore, under the paritŷP and time reversal̂T transformation, the currents behave

Parity P̂ :




ψ̄′ψ′ = ψ̄P̂−1P̂ψ = ψ̄ψ

ψ̄′γ5ψ
′ = ψ̄P̂−1γ5P̂ψ = −ψ̄γ5ψ

ψ̄′γkψ
′ = ψ̄P̂−1γkP̂ψ = −ψ̄γkψ

ψ̄′γkγ5ψ
′ = ψ̄P̂−1γkγ5P̂ψ = ψ̄γkγ5ψ

(D.8.2)

Time Reversal T̂ :




ψ̄′ψ′ = ψ̄T̂−1T̂ψ = ψ̄ψ

ψ̄′γ5ψ
′ = ψ̄T̂−1γ5T̂ψ = ψ̄γ5ψ

ψ̄′γkψ
′ = ψ̄T̂−1γkT̂ψ = −ψ̄γkψ

ψ̄′γkγ5ψ
′ = ψ̄T̂−1γkγ5T̂ψ = −ψ̄γkγ5ψ

(D.8.3)

D.9 Trace in Physics

D.9.1 Definition

The trace ofN ×N matrixA is defined as

Tr[A] =
N∑

i=1

Aii. (D.9.1)

It is easy to prove
Tr[AB] = Tr[BA]. (D.9.2)

D.9.2 Trace in Quantum Mechanics

The trace of the HamiltonianH becomes

Tr[H] = Tr[UHU−1] =
∑

n=1

En, (D.9.3)

whereU is a unitary operator, andEn denotes the energy eigenvalue of the Hamiltonian.
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D.9.3 Trace inSU(N)

In SU(N), the elementUa can be described in terms of the generatorT a

Ua = eiαT a
(D.9.4)

where the generator must be hermitian and traceless since

detUa = exp
(
Tr [lnUa]

)
= exp

(
iα Tr [T a]

)
= 1 (D.9.5a)

Tr [T a] = 0. (D.9.5b)

The generators ofSU(N) group satisfy the following commutation relations

[T a, T b] = iCabcT c, (D.9.6)

whereCabc denotes a structure constant. The generators are normalized such that

Tr [T aT b] =
1
2

δab. (D.9.7)

D.9.4 Trace ofγ-Matrices and p/

Trace ofγ-matrices :

Tr [1] = 4, Tr [γµ] = 0, Tr [γ5] = 0. (D.9.8)

Symbolp/ : p/ ≡ pµγµ

Useful Relations:

γµp/γµ = −2p/ (D.9.9)

p/q/ = p · q − iσµνp
µqν (D.9.10)

Tr [p/q/] = 4p · q (D.9.11)

Tr [γ5p/q/] = 0 (D.9.12)

Tr [p/1p/2p/3p/4] = 4
{

(p1 · p2)(p3 · p4)− (p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)
}

(D.9.13)

Tr [γ5p/1p/2p/3p/4] = −4iεαβγδ pα
1 pβ

2 pγ
3 pδ

4

(D.9.14)
Tr [γ5γµ1γµ2γµ3γµ4γµ5γµ6 ] = −4i [gµ1µ2εµ3µ4µ5µ6 − gµ1µ3εµ2µ4µ5µ6

+gµ2µ3εµ1µ4µ5µ6 + gµ4µ5εµ1µ2µ3µ6 − gµ4µ6εµ1µ2µ3µ5 + gµ5µ6εµ1µ2µ3µ4 ] (D.9.15)
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εµναβεµ′ν′α′β′ = −

∣∣∣∣∣∣∣∣∣

δµ
µ′ δµ

ν′ δµ
α′ δµ

β′

δν
µ′ δν

ν′ δν
α′ δν

β′

δα
µ′ δα

ν′ δα
α′ δα

β′

δβ
µ′ δβ

ν′ δβ
α′ δβ

β′

∣∣∣∣∣∣∣∣∣
(D.9.16)

εµναβεµν′α′β′ = −

∣∣∣∣∣∣∣

δν
ν′ δν

α′ δν
β′

δα
ν′ δα

α′ δα
β′

δβ
ν′ δβ

α′ δβ
β′

∣∣∣∣∣∣∣
(D.9.17)

εµναβεµνα′β′ = −2

∣∣∣∣∣
δα

α′ δα
β′

δβ
α′ δβ

β′

∣∣∣∣∣ (D.9.18)

εµναβεµναβ′ = −6δβ
β′ (D.9.19)

εµναβεµναβ = −24 (D.9.20)

D.10 Lagrange Equation

In classical field theory, the equation of motion is most important, and it is derived from the
Lagrange equation. Therefore, we review briefly how we can obtain the equation of motion
from the Lagrangian density.

D.10.1 Lagrange Equation in Classical Mechanics

Before going to the field theory treatment, we first discuss the Lagrange equation (Newton
equation) in classical mechanics. In order to obtain the Lagrange equation by the variational
principle in classical mechanics, one starts from the actionS as defined

S =
∫

L(q, q̇) dt, (D.10.1)

where the LagrangianL(q, q̇) depends on the general coordinateq and its velocityq̇. At the
time of deriving equation of motion by the variational principle,q andq̇ are independent as
the function oft. This is clear since, in the actionS, the functional dependence ofq(t) is
unknown and therefore one cannot make any derivative ofq(t) with respect to timet. Once
the equation of motion is established, then one can obtainq̇ by time differentiation ofq(t)
which is a solution of the equation of motion. The Lagrange equation can be obtained by
requiring that the actionS should be a minimum with respect to the variation ofq andq̇.

δS =
∫

δL(q, q̇) dt =
∫ (

∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt

=
∫ (

∂L

∂q
− d

dt

∂L

∂q̇

)
δq dt = 0, (D.10.2)
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where the surface terms should vanish. Thus one obtains the Lagrange equation

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (D.10.3)

Hamiltonian in Classical Mechanics

The Lagrangian must be invariant under the infinitesimal time displacementε of q(t) as

q(t + ε) → q(t) + q̇ε, q̇(t + ε) → q̇(t) + q̈ε + q̇
dε

dt
. (D.10.4)

Therefore, one finds

δL(q, q̇) = L(q(t + ε), q̇(t + ε))− L(q, q̇) =
∂L

∂q
q̇ε +

∂L

∂q̇
q̈ε +

∂L

∂q̇
q̇
dε

dt
= 0. (D.10.5)

Since the surface term vanishes, one obtains

δL(q, q̇) =
[
∂L

∂q
q̇ +

∂L

∂q̇
q̈ − d

dt

(
∂L

∂q̇
q̇

)]
ε =

[
d

dt

(
L− ∂L

∂q̇
q̇

)]
ε = 0 (D.10.6)

where the term in bracket is a conserved quantity, and thus the HamiltonianH is defined as

H ≡ ∂L

∂q̇
q̇ − L. (D.10.7)

D.10.2 Lagrange Equation for Fields

The Lagrange equation for fields can be obtained almost in the same way as the particle
case. For fields, we should start from the Lagrangian densityL and the action is written as

S =
∫
L

(
ψ, ψ̇,

∂ψ

∂xk

)
d3r dt, (D.10.8)

whereψ(x), ∂ψ
∂t and ∂ψ

∂xk
are independent functional variables. Hereafter, we use the nota-

tion of ψ̇(x) ≡ ∂ψ
∂t . The Lagrange equation can be obtained by requiring that the actionS

should be a minimum with respect to the variation ofψ, ψ̇ and ∂ψ
∂xk

,

δS =
∫

δL
(

ψ, ψ̇,
∂ψ

∂xk

)
d3r dt =

∫ (
∂L
∂ψ

δψ +
∂L
∂ψ̇

δψ̇ +
∂L

∂( ∂ψ
∂xk

)
δ

(
∂ψ

∂xk

))
d3r dt

=
∫ (

∂L
∂ψ

− ∂

∂t

∂L
∂ψ̇

− ∂

∂xk

∂L
∂( ∂ψ

∂xk
)

)
δψ d3r dt = 0, (D.10.9)

where the surface terms are assumed to vanish. Therefore, one obtains

∂L
∂ψ

=
∂

∂t

∂L
∂ψ̇

+
∂

∂xk

∂L
∂( ∂ψ

∂xk
)
, (D.10.10)
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which can be expressed in the relativistic covariant way as

∂L
∂ψ

= ∂µ

(
∂L

∂(∂µψ)

)
. (D.10.11)

D.11 Noether Current

If the Lagrangian density is invariant under the transformation of the field with a continuous
variable, then there is always a conserved current associated with this symmetry. This is
calledNoether currentand can be derived from the invariance of the Lagrangian density
and the Lagrange equation.

D.11.1 Global Gauge Symmetry

The Lagrangian density which is discussed in this textbook should have the following func-
tional dependence in general

L = iψ̄γµ∂µψ −mψ̄ψ + LI

{
ψ̄ψ, ψ̄γ5ψ, ψ̄γµψ

}

which is obviously invariant under the global gauge transformation

ψ′ = eiαψ, ψ′† = e−iαψ†, (D.11.1)

whereα ia a real constant. Therefore, the Noether current is conserved in this system.
To derive the Noether current conservation for the global gauge transformation, one can
consider the infinitesimal global transformation, that is,|α| ¿ 1

ψ′ = ψ + δψ, δψ = iαψ. (D.11.2a)

ψ′† = ψ† + δψ†, δψ† = −iαψ†. (D.11.2b)

Invariance of Lagrangian Density

Now, it is easy to find

δL = L(ψ′, ψ′†, ∂µψ′, ∂µψ′†)− L(ψ, ψ†, ∂µψ, ∂µψ†) = 0 (D.11.3a)

which becomes

δL =
∂L
∂ψ

δψ +
∂L

∂(∂µψ)
δ (∂µψ) +

∂L
∂ψ†

δψ† +
∂L

∂(∂µψ†)
δ
(
∂µψ†

)

= iα

[(
∂µ

∂L
∂(∂µψ)

)
ψ +

∂L
∂(∂µψ)

∂µψ −
(

∂µ
∂L

∂(∂µψ†)

)
ψ† − ∂L

∂(∂µψ†)
∂µψ†

]

= iα∂µ

[
∂L

∂(∂µψ)
ψ − ∂L

∂(∂µψ†)
ψ†

]
= 0 (D.11.3b)

where the equation of motion forψ is employed.
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Current Conservation

Therefore, one defines the currentjµ as

jµ ≡ −i

[
∂L

∂(∂µψ)
ψ − ∂L

∂(∂µψ†)
ψ†

]
(D.11.4)

and one has the current conservation

∂µjµ = 0. (D.11.5)

For Dirac fields, one finds the conserved current

jµ = ψ̄γµψ. (D.11.6)

D.11.2 Chiral Symmetry

When the Lagrangian density is invariant under the chiral transformation,

ψ′ = eiαγ5ψ (D.11.7)

then there is another Noether current. Here,δψ as defined in eq.(D.11.2) becomes

δψ = iαγ5ψ. (D.11.8)

Therefore, a corresponding conserved current for massless Dirac fields becomes

jµ
5 = −i

∂L
∂(∂µψ)

γ5ψ = ψ̄γµγ5ψ (D.11.9)

and we have

∂µjµ
5 = 0. (D.11.10)

The conservation of the axial vector current holds for massless field theory models.

D.12 Hamiltonian Density

The Hamiltonian densityH is constructed from the Lagrangian densityL. If the Lagrangian
density is invariant under the translationaµ, then there is a conserved quantity which is the
energy momentum tensorT µν . The Hamiltonian density is constructed from the energy
momentum tensor ofT 00.
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D.12.1 Hamiltonian Density from Energy Momentum Tensor

Now, the Lagrangian density is given asL
(
ψi, ∂0ψi,

∂ψi
∂xk

)
. If one considers the following

infinitesimal translationaµ of the fieldψi andψ†i

ψ′i = ψi + δψi, δψi = (∂νψi)aν ,

ψ†i
′
= ψ†i + δψ†i , δψ†i = (∂νψ

†
i )a

ν ,

then the Lagrangian density should be invariant

δL ≡ L(ψ′i, ∂µψ′i)− L(ψi, ∂µψi)

=
∑

i

[
∂L
∂ψi

δψi +
∂L

∂(∂µψi)
δ(∂µψi) +

∂L
∂ψ†i

δψ†i +
∂L

∂(∂µψ†i )
δ(∂µψ†i )

]
= 0. (D.12.1)

Making use of the Lagrange equation, one obtains

δL =
∑

i

[
∂L
∂ψi

(∂νψi) +
∂L

∂(∂µψi)
(∂µ∂νψi)− ∂µ

(
∂L

∂(∂µψi)
∂νψi

)]
aν

+
∑

i

[
∂L
∂ψ†i

(∂νψ
†
i ) +

∂L
∂(∂µψ†i )

(∂µ∂νψ
†
i )− ∂µ

(
∂L

∂(∂µψ†i )
∂νψ

†
i

)]
aν

= ∂µ

[
Lgµν −

∑

i

(
∂L

∂(∂µψi)
∂νψi +

∂L
∂(∂µψ†i )

∂νψ†i

)]
aν = 0. (D.12.2)

Energy Momentum TensorT µν

Therefore, if one defines the energy momentum tensorT µν by

T µν ≡
∑

i

(
∂L

∂(∂µψi)
∂νψi +

∂L
∂(∂µψ†i )

∂νψ†i

)
− Lgµν (D.12.3)

then,T µν is a conserved quantity, that is

∂µT µν = 0.

This leads to the definition of the Hamiltonian densityH in terms ofT 00

H ≡ T 00 =
∑

i

(
∂L

∂(∂0ψi)
∂0ψi +

∂L
∂(∂0ψ

†
i )

∂0ψ†i

)
− L. (D.12.4)
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D.12.2 Hamiltonian Density for Free Dirac Fields

For a free Dirac field with its massm, the Lagrangian density becomes

L = ψ†i ψ̇i + ψ†i
[
iγ0γ ·∇−mγ0

]
ij

ψj . (D.12.5)

Therefore, we find the Hamiltonian density as

H= T 00 = ψ̄i [−iγk∂k+m]ij ψj = ψ̄ [−iγ ·∇+m]ψ. (D.12.6)

Hamiltonian for Free Dirac Fields

The HamiltonianH is obtained by integrating the Hamiltonian density over all space

H =
∫
H d3r =

∫
ψ̄ [−iγ ·∇ + m] ψ d3r. (D.12.7)

In classical field theory, this Hamiltonian is not an operator but is just the field energy itself.
However, this field energy cannot be evaluated unless one knows the shape of the field
ψ(x) itself. Therefore, one should determine the shape of the fieldψ(x) by the equation of
motion in the classical field theory.

D.12.3 Role of Hamiltonian

The classical field Hamiltonian itself is not useful. This is similar to the classical mechanics
case in which one has to derive the Hamilton equations in order to calculate physical prop-
erties of the system, and the Hamilton equations are equivalent to the Lagrange equations
in classical mechanics.

Classical Field Theory

In classical field theory, the situation is just the same as the classical mechanics case. If
one stays in the classical field theory, then one should derive the field equation from the
Hamiltonian by the functional variational principle.

Quantized Field Theory

The Hamiltonian of the field theory becomes important when the fields are quantized. In
this case, the Hamiltonian becomes an operator, and thus one has to solve the eigenvalue
problem for the quantized Hamiltonian̂H

Ĥ|Ψ〉 = E|Ψ〉, (D.12.8)

where|Ψ〉 is calledFock stateand should be written in terms of the creation and annihilation
operators of fermion and anti-fermion. The space spanned by the Fock states is calledFock
space. In normal circumstances of the field theory models such as QED and QCD, it is



168 Appendix D. Basic Notations in Field Theory

practically impossible to find the eigenstate of the quantized Hamiltonian. The difficulty of
the quantized field theory comes mainly from two reasons. Firstly, one has to construct the
vacuum state which is composed of infinite many negative energy particles interacting with
each other. The vacuum state should be the eigenstate of the Hamiltonian

Ĥ|Ω〉 = EΩ|Ω〉,

whereEΩ denotes the energy of the vacuum and it is in general infinity with the negative
sign. The vacuum state|Ω〉 is composed of infinitely many negative energy particles

|Ω〉 =
∏
p,s

b†
(s)
p |0〉〉,

where|0〉〉 denotes the null vacuum state. In the realistic calculations, the number of the
negative energy particles must be set to a finite value, and this should be reasonable since
physical observables should not depend on the deep negative energy particles.

D.13 Variational Principle in Hamiltonian

Now, one can derive the equation of motion by requiring that the Hamiltonian should be
minimized with respect to the functional variation of the stateψ(r).

D.13.1 Schr̈odinger Field

When one minimizes the Hamiltonian

H =
∫ [

− 1
2m

ψ†∇2ψ + ψ†Uψ

]
d3r (D.13.1)

with respect toψ(r), then one can obtain the static Schrödinger equation.

Functional Derivative

First, one defines the functional derivative for an arbitrary functionψi(r) by

δψi(r′)
δψj(r)

= δijδ(r − r′). (D.13.2)

This is the most important equation for the functional derivative, and once one accepts this
definition of the functional derivative, then one can evaluate the functional variation just in
the same way as normal derivative of the functionψi(r).
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Functional Variation of Hamiltonian

For the condition onψ(r), one requires that it should be normalized according to
∫

ψ†(r)ψ(r) d3r = 1. (D.13.3)

In order to minimize the Hamiltonian with the above condition, one can make use of the
Lagrange multiplier and make a functional derivative of the following quantity with respect
to ψ†(r)

H[ψ] =
∫ [

− 1
2m

ψ†(r′)∇02ψ(r′) + ψ†(r′)Uψ(r′)
]

d3r′

−E

(∫
ψ†(r′)ψ(r′) d3r′ − 1

)
, (D.13.4)

whereE denotes a Lagrange multiplier and just a constant. In this case, one obtains

δH[ψ]
δψ†(r)

=
∫

δ(r − r′)
[
− 1

2m
∇02ψ(r′) + Uψ(r′)− Eψ(r′)

]
d3r′ = 0. (D.13.5)

Therefore, one finds

− 1
2m

∇2ψ(r) + Uψ(r) = Eψ(r) (D.13.6)

which is just the static Schrödinger equation.

D.13.2 Dirac Field

The Dirac equation for free field can be obtained by the variational principle of the Hamil-
tonian eq.(D.12.7). Below, we derive the static Dirac equation in a concrete fashion by the
functional variation of the Hamiltonian.

Functional Variation of Hamiltonian

For the condition onψi(r), one requires that it should be normalized according to
∫

ψ†i ψi(r) d3r = 1. (D.13.7)

Now, the Hamiltonian should be minimized with the condition of eq.(D.13.7)

H[ψi] =
∫

ψ†i (r)
[−i(γ0γ ·∇)ij + m(γ0)ij

]
ψj(r) d3r

−E

(∫
ψ†i (r)ψi(r) d3r − 1

)
, (D.13.8)

whereE is just a constant of the Lagrange multiplier. By minimizing the Hamiltonian with
respect toψ†i (r), one obtains

(−iα ·∇ + mβ) ψ(r)− Eψ(r) = 0 (D.13.9)

which is just the static Dirac equation for free field.





Appendix E

Wave Propagations in medium and
vacuum

The classical wave such as sound can propagate through medium. However, it cannot prop-
agate in vacuum as is well known. This is, of course, clear since the classical wave is the
chain of the oscillations of the medium due to the pressure on the density.

On the other hand, quantum wave including photon can propagate in vacuum since it
is a particle. Here, we clarify the difference in propagations between the classical wave
and quantum wave. The most important point is that the classical wave should be always
written in terms of real functions while photon or quantum wave should be described by the
complex wave function of the shapeeikx since it should be an eigenstate of the momentum.

This part is written as Appendix to the field theory text book “Fundamental problems
in quantum field theory” published in Bentham publishers in 2013.

E.1 What is wave ?

The sound can propagate through medium such as air or water. The wave can be described
in terms of the amplitudeφ in one dimension

φ(x, t) = A0 sin(ωt− kx) (E.1)

whereω andk denote the frequency and wave number, respectively. The dispersion relation
of this wave can be written as

ω = vk. (E.2)

Here, it is important to note that the amplitude is written as the real function, in contrast to
the free wave function of electron in quantum mechanics. In fact, the free wave of electron
can be described in one dimension as

ψ(x, t) =
1√
V

ei(ωt−kx) (E.3)

171
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which is a complex function. The electron can propagate by itself and there is no medium
necessary for the electron motion.

What is the difference between the real wave amplitude and the complex wave function?
Here, we clarify this point in a simple way though this does not contain any new physics.

E.1.1 A real wave function: Classical wave

If the amplitude is real such as (E.1), then it can only propagate in medium. This can
be clearly seen since the energy of the wave can be transported in terms of the density
oscillation which is a real as the physical quantity. In addition, the amplitude becomes
zero at some point, and this is only possible when it corresponds to the oscillation of the
medium. This means that the wave function of (E.1) has nothing to do with the probability
of wave object. Instead, if it is the oscillation of the medium, then it is easy to understand
why one finds the point where the amplitude vanishes to zero. The real amplitude is called
a classical wave since it is indeed seen in the world of the classical physics.

E.1.2 A complex wave function: Quantum wave

On the other hand, the free wave function of electron is a complex function, and there is
no point where it can vanish to zero. Since this is just the wave function of electron, its
probability of finding the wave is always a constant1

V at any space point of volumeV .

E.2 Classical wave

The sound propagates in the air, and its propagation should be transported in terms of den-
sity wave. The amplitude of this wave can be written in terms of the real function as given
in eq.(E.1). This is quite reasonable since the density wave should be described by the real
physical quantity. Instead, this requires the existence of the medium (air), and the wave
can propagate as long as the air exists. Here, we first write the basic wave equation in one
dimension

1
v2

∂2φ

∂t2
=

∂2φ

∂x2
(E.4)

which is similar to the wave equation in quantum mechanics, though it is a real differential
equation. Here,v denotes the speed of wave.

E.2.1 Classical waves carry their energy ?

In this case, a question may arise as to what is a physical quantity which is carried by the
classical wave like sound. It seems natural that the wave carries its energy (or wave length).
In fact, the transportation of the energy should be carried out by the compression of the
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density and successive oscillations of the medium. Therefore this is called compression
wave.

E.2.2 Longitudinal and transverse waves

Here, we discuss the terminology of the longitudinal and transverse waves, even though one
should not stress its physics too much since there is no special physical meaning.

• Longitudinal wave : The sound propagates as the compressional wave, and the os-
cillations should be always in the direction of the wave motion. In this case, it is called
longitudinal wave. This wave can be easily understood since one can make a picture of the
density wave.

• Transverse wave : On the other hand, if the motion of the oscillations is in the perpen-
dicular to the direction of the wave motion, then it is called transverse wave. The tidal wave
may be the transverse wave, but its description may not be very simple since the density
change may not directly be related to the wave itself.

E.3 Quantum wave

Photon and quantum wave are quite different from the classical wave, and the quantum
wave is a particle motion itself. No medium oscillation is involved. For example, a free
electron moves with the velocityv in vacuum, and this motion is also called ”wave”. The
reason why we call it wave is due to the fact that the equation of motion that describes
electrons looks similar to the classical wave equation of motion. Further, the solution of the
wave equation can be described aseikx, and thus it is the same as the wave behavior in terms
of mathematics. But the physical meaning is completely different from the classical wave,
and quantum wave is just the particle motion which behaves as the probabilistic motion.

E.3.1 Quantum wave (electron motion)

The wave function of a free electron in one dimension can be described as

ψ(x, t) =
1√
V

ei(ωt−k·r) (E.5)

which is a solution of the Schrödinger equation of a free electron,

i
∂ψ

∂t
= − 1

2m
∇2ψ (E.6)

wherek =
√

2mω, andV denotes the corresponding volume. Since the Schrödinger equa-
tion is quite similar to the wave equation in a classical sense, one calls the solution of the
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Schr̈odinger equation as a wave. However, the physics of the quantum wave should be un-
derstood in terms of the quantum mechanics, and the relation to the classical wave should
not be stressed. That is, the quantum wave is completely different from the classical wave,
and one should treat the quantum wave as it is. In addition, the behavior and physics of
the classical wave are very complicated and it is clear that we do not fully understand the
behavior of the classical wave since it involves many body problems in physics.

E.3.2 Photon

The electromagnetic wave is called photon which behaves like a particle and also like a
wave. This photon can propagate in vacuum and thus it should be considered to be a parti-
cle. Photon can be described by the vector potentialA.

•A is real ! : However, thisA is obviously a real function, and therefore, it cannot propa-
gate like a particle. This can be easily seen since the free Hamiltonian of photon commutes
with the momentum operator̂p = −i∇, and therefore it can be a simultaneous eigenstate
of the Hamiltonian. Thus, theA should be an eigenstate of the momentum operator since
the free state must be an eigenstate of momentum. However, any real function cannot be an
eigenstate of the momentum operator, and thus the vector field in its present shape cannot
describe the free particle state.

• Free solution of vector field : What should we do ? The only way of solving this puzzle
is to quantize a photon field. First, the solution ofA can be written as

A(x) =
∑

k,λ

1√
2ωkV

εk,λ

(
c†k,λe−ikx + ck,λeikx

)
(E.7)

with kx ≡ ωkt− k · r. Here,εk,λ denotes the polarization vector which will be discussed
later more in detail. As one sees, the vector field is indeed a real function.

• Quantization of vector field : Now we impose the following quantization conditions
on c†k,λ andck,λ

[ck,λ, c†k′,λ′ ] = δk,k′δλ,λ′ , (E.8)
[ck,λ, ck′,λ′ ] = 0, [c†k,λ, c†k′,λ′ ] = 0. (E.9)

In this case,c†k,λ, ck,λ become operators. Therefore, one should now consider the Fock
space on which they can operate. This can be defined as

ck,λ|0〉 = 0 (E.10)

c†k,λ|0〉 = |k, λ〉 (E.11)

where|0〉 denotes the vacuum state of the photon field. Therefore, if one operates the vector
field on the vacuum state, then one obtains

〈k, λ|A(x)|0〉 =
1√

2ωkV
εk,λe−ikx. (E.12)
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As one sees, this new state is indeed the eigenstate of the momentum operator and should
correspond to the observables. Therefore, photon can be described only after the vector
field is quantized. Thus, photon is a particle whose dispersion relation becomes

ωk = |k|. (E.13)

E.4 Polarization vector of photon

Until recently, there is a serious misunderstanding for the polarization vectorεµ
k,λ. This is

related to the fact that the equation of motion for the polarization vector is not solved, and
thus there is one condition missing in the determination of the polarization vector.

E.4.1 Equation of motion for polarization vector

Now the equation of motion forAµ = (A0, A) without any source terms can be written
from the Lagrange equation as

∂µFµν = 0 (E.14)

whereFµν = ∂µAν − ∂νAµ. This can be rewritten as

∂µ∂µAν − ∂ν∂µAµ = 0. (E.15)

Now, the shape of the solution of this equation can be given as

Aµ(x) =
∑

k

∑

λ

1√
2V ωk

εµ
k,λ

[
ck,λe−ikx + c†k,λeikx

]
(E.16)

and thus we insert it into eq.(E.15) and obtain

k2εµ − (kνε
ν)kµ = 0. (E.17)

Now the condition that there should exist non-zero solution ofεµ
k,λ is obviously that the

determinant of the matrix in the above equation should vanish to zero, namely

det{k2gµν − kµkν} = 0. (E.18)

This leads tok2 = 0, which meansk0 ≡ ωk = |k|. This is indeed a proper dispersion
relation for photon.

E.4.2 Condition from equation of motion

Now we insert the condition ofk2 = 0 into eq.(E.17), and obtain

kµεµ = 0 (E.19)
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which is a new constraint equation obtained from the basic equation of motion. Therefore,
this condition (we call it “Lorentz condition”) is most fundamental. It should be noted that
the Lorentz gauge fixing is just the same as eq.(E.19). This means that the Lorentz gauge
fixing is improper and forbidden for the case of no source term. In this sense, the best gauge
fixing should be the Coulomb gauge fixing

k · ε = 0 (E.20)

from which one findsε0 = 0, and this is indeed consistent with experiment.

• Number of freedom of polarization vector : Now we can understand the number of
degree of freedom of the polarization vector. The Lorentz conditionkµεµ = 0 should give
one constraint on the polarization vector, and the Coulomb gauge fixingk · ε = 0 gives
another constraint. Therefore, the polarization vector has only two degrees of freedom,
which is indeed an experimental fact.

• State vector of photon : The state vector of photon is already discussed. But here we
should rewrite it again. This is written as

〈k, λ|A(x)|0〉 =
εk,λ√
2ωkV

e−ikx. (E.21)

In this case, the polarization vectorεk,λ has two components, and satisfies the following
conditions

εk,λ · εk,λ′ = δλ,λ′ , k · εk,λ = 0. (E.22)

E.4.3 Photon is a transverse wave ?

People often use the terminology of transverse photon. Is it a correct expression ? By now,
one can understand that the quantum wave is a particle motion, and thus it has nothing to
do with the oscillation of the medium. Therefore, it is meaningless to claim that photon
is a transverse wave. The reason of this terminology may well come from the polarization
vectorεk,λ which is orthogonal to the direction of photon momentum. However, as one
can see, the polarization vector is an intrinsic property of photon, and it does not depend on
space coordinates.

• No rest frame of photon ! : In addition, there is no rest frame of photon, and therefore,
one cannot discuss its intrinsic property unless one fixes the frame. Even if one says that
the polarization vector is orthogonal to the direction of the photon momentum, one has to
be careful in which frame one discusses this property.

In this respect, it should be difficult to claim that photon behaves like a transverse wave.
Therefore, one sees that photon should be described as a massless particle which has two
degrees of freedom with the behavior of a boson. There is no correspondence between
classical waves and photon, and even more, there is no necessity of making analogy of
photon with the classical waves.
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E.5 Poynting vector and radiation

We have clarified that the propagation of the real function requires some medium which
can make oscillations. Here, we discuss the Poynting vector how it appears in physics, and
show that it cannot propagate in vacuum at all. Also, we present a brief description of the
basic radiation mechanism how photon can be emitted.

E.5.1 Field energy and radiation of photon

Before discussing the propagation of the Poynting vector, we should first discuss the mech-
anism of the radiation of photon in terms of classical electrodynamics. The interaction
Hamiltonian can be written as

HI = −
∫

j ·A d3r (E.23)

which should be a starting point of all the discussions. Now, we make a time derivative of
the interaction Hamiltonian and obtain

W ≡ dHI

dt
= −

∫ [
∂j

∂t
·A + j · ∂A

∂t

]
d3r. (E.24)

Since we can safely setA0 = 0 in this treatment, we find

E = −∂A

∂t
. (E.25)

Therefore, we can rewrite eq.(E.24) as

W =
∫

j ·E d3r −
∫

∂j

∂t
·A d3r. (E.26)

Defining the first term of eq.(E.24) asWE , we can rewriteWE as

WE ≡
∫

j ·E d3r = − d

dt

[∫ (
1

2µ0
|B|2 +

ε0

2
|E|2

)
d3r

]
−

∫
∇ · S d3r (E.27)

which is just the energy of electromagnetic fields.

E.5.2 Poynting vector

Here, the last term of eq.(E.27) is Poynting vectorS as defined by

S = E ×B (E.28)

which is connected to the energy flow of the electromagnetic field. This Poynting vector
is a conserved quantity, and thus it has nothing to do with the electromagnetic wave. In
addition, it is a real quantity, and thus there is no way that it can propagate in vacuum.
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In addition, the Poynting vector cannot be a target of the field quantization, and thus it
always remains classical since it is written in terms ofE andB. However, there is still
some misunderstanding in some of the textbooks on Electromagnetism, and therefore, one
should be careful for the treatment of the Poynting vector.

•Exercise problem: Here, we present a simple exercise problem of circuit with condenser
with C (disk radius ofa and distance ofd) and resistance withR. The electric potential
differenceV is set on the circuit. In this case, the equation for the circuit can be written as

V = R
dQ

dt
+

Q

C
.

This can be easily solved with the initial condition ofQ = 0 at t = 0, and the solution
becomes

Q = CV
(
1− e−

t
RC

)
.

Therefore, the electric currentJ becomes

J =
dQ

dt
=

V

R
e−

t
RC .

In this case, we find the electric fieldE and the displacement currentjd

E =
Q

πa2
ez =

V C

ε0πa2

(
1− e−

t
RC

)
ez (E.29)

jd =
∂E

∂t
=

V

Rπa2
e−

t
RC ez. (E.30)

Thus, the magnetic fieldB becomes

B =
id r

2
eθ =

r

2πa2R
e−

t
RC eθ

where
∫
C B · dr = µ0idπr2 is used. Therefore, the Poynting vector at the surface (with

r = a ) of the cylindrical space of the disk condenser becomes

S = E ×B = − V 2

2πaRd
e−

t
RC

(
1− e−

t
RC

)
er.

It should be noted that the energy in the Poynting vector is always flowing into the cylin-
drical space. Therefore, the electric field energy is now accumlated in the cylindrical space.
There is, of course, no electromagnetic wave radiation, and in fact, the Poynting vector is
the flow of field energy, and has nothing to do with the electromagnetic wave.
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E.5.3 Emission of photon

The emission of photon should come from the second term of eq.(E.26) which can be de-
fined asWR and thus

WR = −
∫

∂j

∂t
·A d3r. (E.31)

In this case, we can calculate the∂j
∂t term by employing the Zeeman effect Hamiltonian

with a uniform magnetic field ofB0

HZ = − e

2me
σ ·B0. (E.32)

The relevant Schrödinger equation for electron with its massme becomes

i
∂ψ

∂t
= − e

2me
σ ·B0 ψ. (E.33)

Therefore, we find

∂j

∂t
=

e

me

[
∂ψ†

∂t
p̂ψ + ψ†p̂

∂ψ

∂t

]
= − e2

2m2
e

∇B0(r). (E.34)

In order to obtain the photon emission, one should quantize the fieldA in eq.(E.31).

• Field quantization : The field quantization in electromagnetic interactions can be done
only for the vector potentialA. The electric fieldE and the magnetic fieldB are classical
quantities which are defined before the field quantization.

E.6 Gravitational wave

People often discuss the gravitational wave which is supposed to come from the Einstein
equation. In this case, one sees that the equation for the metric tensor is all real, and thus
the solution of this equation must be also real. Therefore, the gravitational wave, if at all
exists, is a real function, and thus it cannot propagate in vacuum unless one believes the
aether hypothesis.

• No quantization of gravity : In addition, there is no physical meaning to quantize
the metric tensor and therefore, there is no chance that the gravitational wave propagates in
vacuum.



180 Appendix E. Wave Propagations in medium and vacuum

E.6.1 General relativity

Since we treat the gravitational wave, we should make a comment on the general relativity.
Einstein invented the general relativity which is the second order differential equation for
the metric tensorgµν . A question may arise as to why the general relativity can be related to
the gravitational theory. This reason is simply because Einstein claimed that he had proved
the gravitational Poisson equation should be derived from the general relativity at the weak
gravitational limit. However, in his proof, he assumed the following strange equation

g00 ' 1 + 2φ (E.35)

whereφ denotes the gravitational field. Because of this equation (E.35), he could derive the
gravitational Poisson equation

∇2φ(r) = 4πGρ(r) (E.36)

whereG andρ denote the gravitational constant and the density, respectively.

• Eq.(E.35) is correct ? : Here, we show that eq.(E.35) is not only strange but simply
incorrect. In order to do so, we should examine the physical meaning of the equation
g00 ' 1 + 2φ. We should notice that 1 (unity) in the right hand side of eq.(E.35) is a
simple number. This is clear since the metric tensor is just the coordinate system itself.
However, the gravitational fieldφ is a dynamical variable, and therefore this summation of
two different categories is simply meaningless.

• No connection between general relativity and gravity : By now it should be clear that
the general relativity has nothing to do with gravity. It is a theory for the coordinate system
(metric tensor), but it is not a theory for nature.

Note :
The new gravitational theory is explained in detail in Chapter 6 in the text book of
“Fundamental problems in quantum field theory” .

Reference :
Fundamental Problems in Quantum Field Theory
T. Fujita and N. Kanda, Bentham Publishers, 2013
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