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[4,5| 0000000000000 0O0OO0OO
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000000000000 mO0OO0O0O0O00000000000000000 (QED)
0 Lagrangian OO 0000
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1.2.1 Global DO O0OO0O
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1.2.2 Local DOOOOO
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0000000000000 00000000000 Lecal DOODOOO
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gboooobooboboobooboooooubd xoboooboooooooooog
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Ou(xj") = 7" Oux + (0ug")x (1.18)
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00000 (1.17) 000000
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000000000000 00D00000 SO0 (1.16)0 Local DODODOOOO
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P = e ") (1.20)
000000000000 0000000000
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;
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I A P9
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1.4.2 Lorentz [0
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1.5 Dirac OO0 QOO0
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1.5.1 Diracl O Lagrangian [ [
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000000000000000000000000000

1 0 0 o
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gbobobouoooon
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1.5.2 DiracD0OUOOOOOOO

DiracOO0OO ¢ 0DO00OO0O0ODOOO

1 ¢ 1
Wy(r, 1) = ul® —— emiBtIPT = _—_ miBttipT 1.41
(rt) =" NG (141)
DDDDDDQDCQDDDDDDDDDDDDDDDD(1.40)DDDDDD
B omeep ) G (1.42)
—o-p m-+F (o

0000000000000 000C00DDg|E=+xym?2+p?| 00000

e IO OU

0000 (1.42)00000000000000000
W 0o 0000

__9p
u(s) — M U?}SS , U(S) = M Ep+mXS (143)
p 2Ep Ep—i-mXS P 2EP XS

000000 oyl =0l =10000 p=2n (00 nOOD)
E,=+/PP+m?20000), 0000000000000s=+L0000

e JUOOOODOODOO

v,(,S)DDDDDDDDDD EFE=—-/m?+p?000000000000ODOODOOOO
obobooobooobooboobuob rpOODO0ODOODODbDODOODO
gboogobuogbbuodgbbogboooboobobbodboooboonn
gbobogobogoboooboobbuoobbooooobooobooooon
OO0000D000 DiracUOO0OO0OOOODODOODOOOOODODODOOOOO
OooboboboboboobobobobobouoboooboobO Panliong
gboboboogbboboooobn
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1.5.3 Dirac OO OOO

Oboooboobboooobuoobbooobuoobon Pani DOOODOODO
OOoboooboooooobooboboobODbirac 0000000 ODOOODOOO
OoooooooobooboobdbiracU0000O0OOooooboonooboonoOog
OOoboooobooboooooobooobooD Pdi0OOOOoOoOooooooOoO
U000 Pauli DO0OD0OOOODOOODOOOOODOODOODOOODDOODO
Dirac OODOO0OO0OO0OOODOODOODOOOOOOODOODODODOO

w(r,t) = Z (aﬁf)u,(f)em"'“m"t + bgf)v,(f)elp""’“E"t) : (1.44)

VL3

O0o000o0oooo«? 0 of 000000000 0Dirac 0000000000
00000% 06 000DDDDDOD0D0O00D00O0O000000000000
ooooooooosy oo ooooooooooooon

1.54 0O0OO0OOO

oooooooo % o o
{CL,SLS), OJT(S//)} == 55,3’(511,11/; {bs), bTS//)} = 53,3/511,11’ (145>

n

gooooooooooooooboooouooonooonoooooon
{a,a) =0, {006} =0, {a.65)} =0 (1.46)

n »Yn/ n - n/

ObOOo0obOOoboooboobod DiracODODOOOOODOO

1.5.5 Pauli 00O

000 Pauli 000000000000 ODODOOCOOOOOODO (1.46)00
al®al®) |n) =0 (1.47)

gbboodbbodgbooboobudobbuoobbooboooboooboboan
OO000Db0b0o000000O0oD0bob00D Padliononoonog
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1.6 0000000 OOOOOOOOOO

ooobboooobobobooobobobooboobobobobooobon
oboboboooobobboobooobooboboboboboobooonog
gboboboooboboboobobobobouobooboboboboboob
goobdobobooboooboboboooobobobuobooboboboboog
obobboboobooboobooboobb

1.6.1 ODOOOOOOOOOO

OoOOoo0o0boobobo0obuobbO Legobooboobonoooo
gbboodgbogobuoooboobbobobooboboobobuoobboonn
gboboogudgbobogbbuodgbbooboobboobbuooboboboonon
gbbogobogbobuoobobuoobbuoobbuobooboboboobboobn
O000000000000000000 (Renormalization Scheme) 000000
gboobooggn

OO0O000000b00b00 Dirac DODOO0ODOODOOOODOODODODO
gbbobobbooooooobbbbooooooobbobboooooobbobo
[Dirac, AIP Conference Proceedings 74, 129 (1981)] 0O O

1.6.2 LogUUOOON

gbbogdgboodgbobodgbbuobuobbuoobbooboboobobood
gouogboogdgboboobbodgbboobbobbuoobbuoobboonoon
gbboggboboogbooobuooobooboboobboobbaboann
gbobodbgobooobooobbooboobbuoobbuoooobuoonoon
gbbbuoodgobboooobbooodan

1.6.3 UO0O0OOOOO

0000000000000000000000000000000000000
000000000 (0]T{A*(z)A%(z5)}0) 000 000000000000000
00000000000000000000000000000000000000
00000000000000000000
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1.6.4 Feynman JUOUOOOOOOMO

00000000000000000000000000 Feynman 00000
00000000000000000000000000000000000000
00000000000000000000000000000 Feynman 000
0000000000000000000000000000([1,2]0000000
00000000000000000000000

DDD(Nﬂﬂ%mM%@mmDDDDDDDDDDDDDDDDDDD

(O[T{A*(z1)A"(22)}0) = —i/ (d4k e:;i : x Zek A€k (1.48)

O0000000000oo0oo0ooog D#(k) O

D™ (k) = A(k) x > _ € \€h» (1.49)
A=1
D0000000000000000000000 Feynman 000000
D#@»:—E§§E (1.50)
0000000000000
@Dﬁ%%:—m?¥€%0 (1.51)

DDDDDDDDDDDDDDDDDDqugm(LwnmlmmszDDD

kD" (k) = ZkemekA = (1.52)

DDDDDDDDDDDDDDFeynmanDDDDDDDDDDD(DDDDDDD
O000000000)0000ooooooo0ooooooooooooooo

1.6.5 0O0O0O0O0OOO0O Feynman JOOOOOOO!

oobobooooboboboooboboobobobobobdl Feynman O
Obooboooboobbooobd Feynman 0000000 OOO0DOOODOO
O0000 LegO0OOO0OODOODOODOODODODODODODODODODODODOO
gobbobbuoogogobbbbuooooooboboobbouooooooboboobo
gbobobogbooboboboboooooboboboobobobobg
gbbobooogbbbuooooboboooobooooon
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1.6.6 UU000OOOOOTOOO

Feynman U0 0000000 0OO0O0OODOOOOODODODOOOODOOOOODOO
oboobDbOo00oobb Feynman U000 0000O0O0O0O0O0OODOOOO TOO
gdddddododoououououotoguuuuoououoouoooooooobobo
Feynman U0 U 0000000000000 O0OO0OO0O0DOO0ODOOO

0000 Feynman D0 000000000000 O0OO0ODOOODOO0ODOOOO
gbboodboguoogbooobuooobuooboboobbuoobbaboonn
ggdddddoddooooooouououououoooooooooooobobbobn
gbbboooobbbooood

OO00000000GLUOODOOO0ODO0O0DOO00DU0OOFeynman OOQO0OO
000000000 TOO0DDODOO0OO0O0O0O0O0000 accidental (00)0000O
00000000000 on-shell (OOOOODOODOOOODOODO)O0O0OOOOO
oboooboobboobbooboooboooboooboooboTOO
oboboooboboboboobobooboobooboooobdgl on-shell O
oboboobooboboobdubol Feynman UODOODO00OO0O TO
gboobuooboobbobboobuoobooboobbono TODbOoOoDbDO
gboobooggn

1.6.7 UU00ooooooooboon

O00o0boobooooooboobobd Feynman OO0 O O0O0OOOOOOOO
gboboodbbogbbooboobbuoobbuoobbuooboobooboann
gboboboooobbbdoooobobboooobobboooobbboooon

O0000O0QEDO (g-2) U000 LogOODDOOODODODOOODOOOOOO
0000000000000000000000000000Z° 00000000
gbboodgbugbooobooobooobobboobboobboouonon
O00000000000O0Lorentz00 (0000000000 O0OCOOOOOO
00)00000000000000000000000O000000000000
gbboggbooobogobuogobuogobooboboobuoobboboonon
gbboggbogobuooooobooobuobooobooboboobboonn
gbodbogdgboggbogobogobooooboobboobbooboonon
gboboooaoboo
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20 0Ouodudoodogdg e
HRERERERERN

000000000000 000000000000Fermi 0000000 DOOO
00000000000 000000000000000D0O00DO0000o000o0o0n
000000000000 00O00DO00DO0O00O00 Conserved Vector Current
(cvC)0ooOo0oU0ooooOooUooooOo0ooooooooboooooooO
000000000000 000000D00D00000O000000DO00ogon eve
000000000 o0Oo000ooooon

2.1 O0OO0OOOO

gboboggbogoboboooboooboooboobobooooobood
gbooodbboodgbboobbogogobobogobooobooobobon
oooooboogooboooboooboo Jg~sOocCcvecooooooooooboooo

O J" = ji +Jjy (2.1)
ooooooo g, it o

O ]5 = @ug’}/”(l — 75)1% + 1/_1,/“7“(1 — 75)¢“ 4+ (2.2)
go= b (=) g+ by (1= 7)o + -+

gobobodgg
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211 000000

gobobboooboboooboobboobboobobuoobobuoobbuo
Lagrangian 0000 (2.1)00000 J, 00000000

0 ;C] = ngMWM (24)

obobooobobooooboo g, 00b0oobobobooowrnoooboog
gbobodgbbugbudobobdobuobbobbooobbobooobbobo
gbooboooooobooooboon

21.2 JO00OO0obOoobooood

gboogobuogbbogbbodbbooobooboboobbbboobood
OobooooboooooobooboooobooowrboOOODOOOODOO
gboboboooobbooooboboo

2
W(z) = Z Z ! e(k,\) [akAe’ik’” + aL/\eikx] (2.5)
A=1

o 2Vwk

;

0000000000 ay Oaf,, 0000000000000000000 aga
0 af,,0000

[akrs @l ] = OarOan, (2.6)

[ak,,\, ak/’)\/] = O, [CLL/\, CLL,)\/] =0 (27)

gboboodbbodgbbdabuooobooobbooboboobbobbooogo
gboogbooboobobbobbobboobooboooboobooboobo
gbbobuoooobbbuoobobbooodgbooboboood
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22 OJ0O00O0O0OO0OOOOOOOO

Weinberg-Salam 000 SU(2)@U(1) 00 0000000000000000
00000000000000000000000000000000000000
0000000000000000000000000000000000000
0000000000000 0Weinberg-Salam 0000000 Hamiltonian O
CVCOO000000000000000000000000000000000
O00O0O0Higgs 00 000000000000000000000000000
0000000000000

2.2.1 Lorentz 00O (k,e/=0) 000

obogobooobooobooobooobooobowsgobooono
gbobooggbogobgbogoogbooobooobooobooboboonon
0000000000000 D0OD [fJooOoOooOO Wr 0000 Lagrangian [
HEN

LW-——iGWGW“—%APW@WW (2.8)
Oooooogoon
GH = WY — Q"W (2.9)
0000 0oooooooooo
0, ("W — "W + M2W" =0 (2.10)

gbbbuoodgobbodoad

3
1 A ,
Wh(z) = Z Z e (k,\) |apre™* + al e (2.11)
E oA=1 VY 2V,

D000D0DDDD «#+ 0000000000000
(k* — M*)e" — (k,e")k"* =0 (2.12)

gobobobobboddes D000 oooonobbbbbboooooooobooon
gboboboooobboood

det{(k* — M*)g" — k"k"} =0 (2.13)
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gooooooooon
kK> —M?=0 (2.14)
gooddoooobbbbooooooooboobobobon
ke =0, (Lorentz O 0) (2.15)

OO0D0000000QED OO Lorentz OO O0OOODOOOOOOOODOO
OOobooooboooboobooQeEDOOOOOOOO0OOOOOOODbLOODOO
gboogoobboobbogbooobuoobbuoobbodoboooboonon
gobboooobboboooobbbooo

00000000000000 (210)0000000000000O00OO0O0O
gboooobobOoDbiracO00OODOOoOoooobobOOobOobDOoobonDon
gobobooodn

det{a-k+mpB —E} =0
goddoooobbbboooooooooooobbobb
E =+VEk?+m?

000000 DiracO0O0OO0O0OO0OO DiracOOODOOOOOOODOODO

222 0O0O0O0O0ooowrnooOoDDOO

ooooo wrODObOOODOOODOOOOOODOOODbOoObLOOODDbOoOoD
Oobooboobobooobooboooooooobboboboow Oooobooooo
O000000000000000000000 (2.15)0 Lorentz OO O OOOOO
OOOoQEDOOOO0OO0O0O0ODbOOOOObOOObOobDOObOOobDOoobOobOobo
gboobooooboood
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23 UO0OO0OOoOoOooboobobooon

oooobobobooooboboboboobooboboboboooboobon
OOoboobooooobobooboobbooboo soooooboooobooooo
oboboboob T-00booboobuoobuooboobob T-00

. . 3 d4k , eik(xl—xg)
A=1

0000000 Y%, e (k,\)e(k,A\) 000 Lorentz 00000000000

>, ) B KR

D ek e (kA = — (g™ — " (2.17)
A=1

gdodououooooooooooad

v _ kMR
9" =

PR =~ e e

(2.18)

gbooboogooobooaobon

2.3.1 Green 0O0QOQOQOOO0O0O

0000000000000000000000000000000000 &2 0
00 M*00000000000000000 LorentzOOOOOODOOOOOO
gbogbbuogoboogbboobbuoobbuobbouooobooobonbn
OO000DO0b0bO0o0o0o0b0ooOobDob0obobo0obooooooog Green
gbboodbbogbboobboobbuoobboboobooobobboobn
OO0000D0000 Green JO0OO0D0O0OO0OOODOOODOOODOODOOODOODOO
gobooo
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24 O00O0O0OO0OOOOOOODOOOOOO

ooobobobobobooobobobobobobobooobobobob
000000000z’ 0000000000000000000000O0

24.1 Z°000000000g¢g-2

00000¢g-20000Z2°000000000000000000000

2 127 \ M.
©
0000000000 M, O Z°000000000000 .0 2Z2°00000

gbboodgbogobuoooboobboouoobobobooboboobboann
goodgobboboogaoboo

24.2 Z°000000000000¢g-2

000000000 g¢g—-20000 Z2°000000000000000000

2
9=2) 1% (M) Lg6x10
( 2 )M 127T(Mz) .
N00000000000000 FermilabO000000000 ¢—2000000
N0000000000000000000000000000000000000

goobobbogboobbuoooboooboboooooboboobboonoo
gboobooooobooo



32 20 0O0O00O00o0goo - googod

2.5 0000000 Lagrangian [ [

cvCcOoooooooooooOobooooooOOoboOooOobooboOooobooDo
O0000000000000000 Weinberg 0 Salam 00 SU(2) DO0OOO
O00000O0O0bO00bO00ooO0oobO0oooobobO0obbObOOobOO0DbOOOoDOO
OO00D0D0OO000O0ooono

0000000 SU(2) 0000000 bOo0O0o0D0oooOoooooooOooO
O000000000000000000000 Lagrangian 0000000000
00000 Lagrangian 0 00

TS a a a 1 a a 1 a v,a
L=V (i0" —m*) ¥, — gJTWH" 4 §M2WuW“’ - GG (2.19)
goooououooao WﬁDSU(2)DDDDDDDDDDDDDDD
a __ + 0 —
Wu_(WwZ’Wu) (2.20)

0000OMOO00000000000000000 WOOOO000O M ~80GeV/c?
00002°0000 M~91GeV/ 0000000 (2.19)0000000000
00000000000000000000 ¥,00000000000

U, = (i) (2.21)

OOobooooboo ¢ 0 ¢, 0000000000000 0O0O0O0DO0O0ODO0ODOO
gooboboood m* 0

me = (me O) (2.22)
0 m,
0000000000000000000 JeO000000000000000
J8 =Wy (1 —5)7°0y, G, =9, W — oWy (2.23)

gboooboobo

251 0OO0OO0OOOO

gboogbobodbooobuoobbooboobbooboobbuooboon
gbboggbogobuoboooboooboobobooooboboobboann
OOoo0O00 cvCcouooooooooobooooooooooooobooboooo
0000000000 SU(2)000000oooooo0ooooooooo
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30 uuuudoggn
] [

gboogobogbbudgbbodgboooboougbbodboooboonon
gboboggboobobogobogobooobooboooboooboooboonon
OO0O0000b0o0ob0o0bD0o0bD0obob0d massless OO0 OOO0OO0OO0OO0O
00000000 1/r000000000000000O0DO000COO00ODOO0O
OO00OD0 massless DODOOOOO0 gOOOOOOO

3.1 00O

OO00000D0DO0DO0000000000n0d masslessOOO0OOO g O
gboodbbobuoobbuoobobooobooboooboboobodobboan
gboooggbogobogoboooboouoooooboooboonoboonon
gbbboooobbbooodobbboooob

3.1.1 000 gOoOoooono

OO00D0000000 QED O Lagrangian 000000000

L = ihd, " — ey, p A* — mabnh — 411 F,F*™ (3.1)

00 Lagrangian 0000000000 gO0O000OOOO0ODOO0OOOODOO
OooooobooboboboboobooooooooooboD goobobOooo
gbbboooobbbooodobbboooob
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3.1.2 000000 Lagrangian U [

00000000 Lagrangian OO0 0000000000 mO0000 ¢ OO
00 A, 0000 ¢gO0O00000O0O0O Lagrangian( 00

_ - - 1 1
L = ipy"0uh — ey Ay — m(1 + gG)ibp — ZFWFUW + 58“9 "G (3.2)

gbobogobogbogobogoboooboooboobobooboboonoban
OO0oOoQEDUOOOOODOODOOODOODOOOOODOOLOOODOObObOODODO
gboboboogobooooooon

3.2 OOOO0OO

OO00000000o0bo0oobDQEDODOODOOND Hamiltonian OO OO0
OOodoobooo0ooboobbbobo0b0o0obo0oboboUobbLagrangian 0000
Oobooooboobo0obob0oobooobob0obobo0oob0odnb Hamiltonian 00
oboboboobooboobooong

a / Jo(r")jo(r)dPrd3r’

2 |r’ — 7|

d3r+% / [(g—f)Q+(vg)2] Fro (33)

H:/{w(—i'y-V+m(1+gg))@/J—ej-A}d37“—|—

+%/ <8A)2+ (V x A)?

ot
000 j*=yy*p 0000

3.2.1 0U0O0ooon

gbobogobooobuooobbooboboobobooobboobooobood
000000000000 Gy(r) O

Go(r) = @/ Po(r) s (3.4)

dw | =

ooodaodo p, dO00ooaooadn
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3.22 00000O0O00O0OODOOO

ooooooboooboobuoob HeOOoobooooboooo

1 ye !
HE = mg/pggod37“ +3 /(Vgo)2d37’ = _m2 /pg|(;; )_'Oi(r)d?’rdgr' (3.5)

gboogoooood Gz%DDDDDDDDDDDDDDDDDDDDDDDD
oboboobooboboobobooboobobuobboboobobb He
gbbobooooooobbbuoooobobod

«Q j0<T/>jO<’ )d3rd37”
C 2 / |'f'/ 7" ( )

obobboobooboobgooboobobbobooboobooboob

3.3 Uouoooon

O0000000000 Lagrange DO O0OU00OO0O00O0DOODOODODOODO
gbobgdbuogbooooubboobboobboobbuooboboboonoon
oobooboboobooooooboboboonog goooobobooo

V2Gy = mgp, (3.7)

Oo0000000000mp, 0O0O000O0O0O0O0O0O00O0OCOO0 gOO0OO0OOO
Gz% OJ0000000000b00d00o0bobo0o00oO0oooDboOd Poisson OO
0000000000000 00000000000000o0o0

000000 mO00O000D0DOO0OD0DOO0OO00ODODODO0O0OO0DOOO0O DiracOO0O0O
000000000000 000000 MOOODOOOOOOOoOoooOoOoooo
Dirac OO QOO

[—iV-a—k(m—GTnTM)B—ZTeT\I/:E\P (3.8)

OOo00bOobOobo0oooobooboobobOoooon DiracOOOOOO
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3.4 Foldy-Wouthuysen [ [

00000000000 Dirac000D
M
[—iV-a—i— (m—GmT> 5} U= BT (3.9)

0000000000000 ooooooo
00 DiracO 0O 0O O Hamiltonian O

H:—z’V-a+<m—GmTM)ﬁ (3.10)

O000O0000D0O0 Hamiltonian [0 Foldy-Wouthuysen 00O OO0 OO
000 Hamiltonian 0000000 O Foldy-Wouthuysen 0000 O0OO0OOO
OO0o0Do0ooooboooboobooboooooooo

I +p2 GmM+ 1 GmM , 1 GMm
= m —_— —_

2m r 2m?2 r p 2m?2 3
oo ooooooooooooooooooog
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD[l]D

(s- L) (3.11)

3.4.1 0O0O0OO

1 GmM
OO00000 Hamiltonian OO0 O0O00OO0OO0OO (— m p2) gobooo

2m? r
Jdoodoodoodooogoonooogoobogoobuogoobuouogog
dododoonoobooogod

1 GmM , 1 GmM 9
— ={( — 3.12
<2m2 r p> <2m2 r ><p> ( )
Ododogoooooooooggooooogooooooogoooooooog
O0000000O0O00O0O00O0OO0O0oOoooOvirial 00O

<i>:—@q (3.13)

(3.14)
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gbobobooooboobobooboboobuobUb Zeeman OO OO0
gboboggbbogbodbbuodguguobuooobobobuoonobuoonobooon
gbobogbbodgbbugboboodgbbuoobbboooooobboobboob
ObOo0ooobobooobOon Zeeman DO OO0OOO0OO0OOOOOODOOOOOO
gbodbbodgbboobbuobbodobobobuoobboobbuoobboonn
gboboboooobboobooon

3.4.2 UU0O0OOOOOOOOOO

OO0D0000000D0000 Dirac 0 Hamiltonian D0 O0O0O0OO0OOO0OODO
goobodbbogbbobooboooobboobbuoobbuoboobuoonoon
gboboobuogoboobbuoobbobbuoobboobbuoobbobboonn
gobboooobboboooobobobooo

gboogobuogbbogbbodbboooboobbuoouobbooboon
gboboboogobbobobobobbooooboboboooobobboobogo

E=\/m?+ p? (3.15)

000000000000 o000 goOoooooDooOoooobD AODODOO
gooboooooooon

E — FE—eo
m — m+mgg

p — p—cA (3.16)

gbobobooogbbbuooooboboboooon

E —e¢=+/(m+mgG)? + (p — cA)? (3.17)
Odo0ooooooooood mOodooooooooooooooooon

2 _ 2
E—ep=m 1+gg+(gg) —i-(p 654)
2 2m

4o (3.18)

gbbboooobbbuooobbboooobbobbb

¢ = —ﬁ, G= M (3.19)
r r
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DDDDDDDD(3.18)DDDDDDDD FO HOOOO
Ze2 GmM 1 <GmM>2 1

H=m-—-— — +—(p—ecA)?+--- (3.20)

T T 2m 2m

00000000000 G=¢? 00000 4 000000000O0O0OO0OOO
00 o=200000000000000000000000000000000
gboobodgbbodgbbogbbogoooboboboooboobooooboonon
gbbodbodgbbuoobobooboodobbuoobbuooobouooooanbn
gboobuoooobbbooogbboboooobbboooobobod

r

3.5 Uoouoouoood

gboboggboggbogbodgbbobobooboboobooboooboon
gbodbodgoboogtoboobbobbodobobooboooboobboonn
gboboogboggbooggbogobooooobooobooobooboboonon
gbboodgbobboobbuoobbuoobboobbdobboooobboann
gboooog (1—6’)2~1.0><10_8DDDDDDDDDDDDDDDDDDDDDDD
00 cO00000O0O0O (v~107%) 0000000000000 DOOOOOOO
000000000 (AT/T ~2x10°8)000000000000O000O00OO
gbobobgoobobobobobobobobbooboboboobobobog
gbobobuoooobbbuooboboboooobobuoooobboao

3.5.1 UU00O0OOoooooooooboon

googobogobtooooobooobuooboobboobbooboon
gbobboogobbbuoooobbooooobooo

2
V(r):—GmM+ 1 (Gr:M)

3.21
r 2mc? ( )

0000000 [b|000000000000ooo00oo0o00oooo0GEOed
oobooboboMOOO0OODOODOO,000mO00000DO0ODOOO
O0000O Newton DD OODOO0OO0OOD0OOODOOOOOODOODOODOOODO
gbobobooobobobooooboboboboboboboboboobog
gbobogobogobuogobuoobbuoobboobbobbogboogboogan
gbooboboboboobobboboooobooboboobobobobg
gbobobooggbobuoooobbodao
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3.5.2 0O0OO0OO0OO0O0O0OO0OOOOOOO0OO0O0

obhobooboobooobooboobuoobooboboboboo o

wT ~ 2m{1 + 2n} (3.22)
goodooo nd
G*M?
= 2pi2 (3.23)

O0O000O00b0O00b0 ROODODUODODDUOUOwOODOO Newton OO T O
w:%” ggobbobboogoobbooobbobobooooobobobbuoooan
gboboboogobood

AT

- =
000 [4,5]00 (3.24) 00000000 TONewton 00000000000
OO00000D00000000 Newton DO0OOD0OOO0O0OOOOOODOODOODOO
gboboogoooboooobon

2n (3.24)

3.5.3 UUOUouououououod

000000000000 ROOODDODO MODOODOOO «w 00000
R=1.496 x 10" m, M =1.989 x 10* kg, w=1.991x 107" (3.25)

0000000000000000000

AT B

gbdoououotuououououoouo
AZZ—’Orbital Motion = 0.621 S/yeal" (326)

gbobodbogobtbogouogobooobboobuooooobuobboonon
gboboggbogobooobooboboboouooobooobooboboonon
gobboooobbbooobboboooobobobuoooobbboooon

ATt Motion == 0.625 £0.013 s /year (3.27)
O0000000 (3.26)00000000000000O0
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0000000000000 000000000O0O0O0O0O000000OOO0 [16]0
U000 NewtonianO OO QODUOOOOoooooooboobooooooooog
gbbbuoogobbbuoooobbbooodaoboo
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4.1.1 000000 Lagrangian [ [

0000000000000 000000 (QCh)UooooooooooooOd
O000o000oo0o su@)uooobooooooooooopoooooooo
OoO0O0O0O000000000000000000C0C0oc0ooooooooooo
0000000000000 LOo0o0oD [pJUbo00boOo0booOoUbLoOoOO
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O000000D0000000000 LagrangianO0OO0O0O000000O0D0OO0O
O000000QCDUO LagrangianO OO SU(N,) OD0OOO0OO

_ 1 ,

£=¢@W%—9W&rﬂww—§ﬂﬂhﬁ“} (4.1)
00000000 G, 0000000000000

Gw,zauA,,—a,,Au+ig[Au,Ay] (4.2)

Oo0o0oooooooooooono A, O

N2-1
Ay = AgT = Y AT (4.3)

a=1

0000000 70 SUN,) 00000000
[T, T = iCbeT* (4.4)

00000000000 C* 00000000000000000 Lagrangian [
gboboboogobboooobobod

Vo= (1—idgx)y = (1 —igT"x*)Y, with x =T"" (4.5)
A = AL - gC“bCAZXC + 9 x”

0000 xOOx=x(r) 00OOODODOOOOOOOOOODODOOOOO
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4.2 O0O0O0OO0OOOOOO

Lagrangian 00 [0 (4.1)] 0000000000000 0O0O0OOOOOOOO
000y 00000000 A, 000000000000O00O0O00O0O00000
gbooobooobo sz

jh =T (4.7)

gbobobooooboboboooogbon jZDDDDDDDDD

V' = (1 —igT*x")y (4.8)

oooo
5 = T = (1 4 igTox )Y T (1 — igTx" ) (4.9)
£ T (4.10)
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4.2.1 0O0O0O0OOOOOO

gboboboboodbbuobbooobuoobboobooobbuoobboon
goboogbbogobobbuobuogobuoobooobuooobuooboboonoon
gbbodbogboboogbboobbuoobobooobboobbabaonn
gobboooobbboooboboooobobuoooobboooon



44 040 0OO0O0O0O0OO0OODOO - 000000 (QCD)

4.3 00 Lagrangian 00 OO0O0O0OO0O0O

oobobooboboboboobobobobobobobobobobob
OO0000000000 LagrangianO O OO 00000000 OOODOOOOO
gbobooboobobobobooboboboobbobobobobobd
O0000000ooo0o0ooooooooooooooooon (2007 0)00
O00 Lagrangian U0 OO0 0000000000000 O0OO00OO0O0O00O0O0ODOOO
gbboboooobbbooobboboooobbobouooobon

4.3.1 O0O0O0O0OOOoOooOn

gbgbobooobooobooobbooobboobboobbuooboooo
gdddooooooouououooooooobbboboobbbbbbobbbbn
OO0 HamiltonianO O OO OOO0OOO0OO0OO0OO0O00OO00O0OOOO0O0O0O0O0OO
goo

4.3.2 QCDOOOO

QEDUOI0O0O0O0OODOO0OO0OOOODOOOOODLDObDbOODObOODOODO
gboboggboogobouobogobogoooooboooboobooboonon
gboboboggboogbooobuooobuoobobuoobbuoobboobbon
OO0QEDOO0O0ODO0OODOODOOOOODOObOOODOOLODbODODODODbDOODbOODO
OoboobooooobooQQecboboooooogbooooboboobooboboooDo
OoboQCboOuoooobooboobooboobooboobobooboobboooDo
gbogtobobbobobboboobooboobooboobobbobobobo
gboogobodbogobuogbboobuoobbooboobboobooon
gbuodgbgobboobuodoboobbbbobuooboobboooobooabo
QCboOooOoboboobooooooboboboboobooooooo



44. QCDOOOOOOO 45

4.4 QCDOOOOOOO
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Hp = Hos  Hn = —gHo (4.12)
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(@> = —15, <&) = —1.46 (4.13)
Hn theory Hn exp
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[0 OB Notations in Field Theory

In field theory, we often employ special notations which are by now com-
monly used. In this Appendix, we explain some of the notations which
are particularly useful in field theory.

B.1 Natural Units

We employ the natural units because of its simplicity
ec=1 h=1. (B.1)
To get the right dimensions out, we should make use of
® hic =197.33 MeV - fm. (B.2)
For example, pion mass and its Compton wave length become

e m, ~ 140 MeV/c?
(B.3)

1 __ _hc __ 197 MeV: fm
b mx  mexc2 140 MeV ~ 1.4 fm.

The fine structure constant « is expressed by the coupling constant e which

is defined in some different ways :

, 2 € e? 1

O Y =€ = —

he  An Anhe  137.036°
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e Masses of electron, muon and proton :
Electron mass: m, =0.511  MeV/c?
Muon mass : m, =105.66 MeV/c?

Proton mass: M, =938.28 MeV/c?

1
e Bohr radius: ag = 5 = 0.529 x 107 cm
mee
eh
Electron : p. = 1.00115965219
meC
. eh
e Magnetic moments: | Muon : = 1.001165920 o
o
Prot 27098473446 <"
roton : = 2.
He 2M,c

p

B.2 Hermite Conjugate and Complex Conjugate

For a complex c-number A
A=a+0bi (a,b: real). (B.4)
e Complex conjugate A* :

A" =a—bi. (B.5)

e Matrix A

If A is a matrix, we define the hermite conjugate Af

(A1) = A% (B.6)

e Differential Operator A

If A is a differential operator, then the hermite conjugate can be de-
fined only when the Hilbert space and its scalar product are defined. For
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example, suppose A is written as

. 0
A=i—. B.
Zax (B.7)

In this case, its hermite conjugate A becomes

R o\’ 0 .
T = —9 B — -7 — =
A i (6:1:) 5 A (B.8)

which means A is Hermitian. This can be easily seen in a concrete fashion

wlav) = [ wit@i g v o =i [ (G i@)) vte)do = tulo). (B9

where ¢)(£00) = 0 is assumed. The complex conjugate of Ais simply

N 0 "
Af = —j — +£ A. B.1
U # (B.10)

e Field v :

If the (z) is a c-number field, then the hermite conjugate ¢'(x) is just
the same as the complex conjugate ©*(z). However, when the field ¢(z) is
quantized, then one should always take the hermite conjugate ¢'(x). For
the complex conjugate of the field ¢¥*(x), we may examine the time reversal

invariance later.

B.3 Scalar and Vector Products (Three Dimen-
sions) :
e Scalar Product

For two vectors in three dimensions

r=(z,y,2) = (x1,22,23), P = PusDy,D:) = (p1,P2,03) (B.11)
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the scalar product is defined

3

T-p= Z TPk = TiPk, (B.12)
k=1

where, in the last step, we omit the summation notation if k£ is repeated
twice.

e Vector Product
The vector product is defined as
r X p = (xop3 — T3pa, T3P1 — T1P3, T1P2 — TaP1). (B.13)
This can be rewritten in terms of components,
(r X p)i = €kT;Pk, (B.14)
where ¢;;; denotes anti-symmetric symbol with

€123 — €231 — €319 — 1, €132 — €913 — €321 — —1, otherwise = 0. <B15)

B.4 Scalar Product (Four Dimensions)
For two vectors in four dimensions,
' = (tx,y,z) = (xo,7), P = (E,pe,py,p:) = (Po; D) (B.16)
the scalar product is defined
x-p=FEt—1r- -p=2x9py — TPk (B.17)
This can be also written as
zup" = xop’ + 11p' 4 xop” +asp’ =Et —r-p=1x-p, (B.18)
where z, and p, are defined as
z, = (2o, —7), pu = (Po, —D)- (B.19)

Here, the repeated indices of the Greek letters mean the four dimensional
summation px = 0,1,2,3. The repeated indices of the roman letters always
denote the three dimensional summation throughout the text.
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B.4.1 Metric Tensor

It is convenient to introduce the metric tensor ¢*¥ which has the following

properties
10 0 0
9" = Gu = 8 0_1 (11 8 (B.20)
o0 0 -1
In this case, the scalar product can be rewritten as
z-p=2a"p’g, =Et—r-p. (B.21)

B.5 Four Dimensional Derivatives 0,

The derivative 8M is introduced for convenience

0 o o0 o0 0 o 0 09 0 0
On = dzi (8950’ dzxl’ Ox?’ 8353) - (5’%’8_3/’%) - (&’V> (B2

where the lower index has the positive space part. Therefore, the deriva-

tive 0* becomes
0 0 0 0 0 0
= _ — - - — _ —
o= oz, (at’ oz’ Oy’ 82) ((‘%’ V)' (B:23)

B.5.1 p*" and Differential Operator

Since the operator p* becomes a differential operator as

- 0
TR A\ e

the negative sign, therefore, appears in the space part. For example, if we

—N) — 0" (B.24)

define the current j* in four dimension as
i* = (p,3), (B.25)
then the current conservation is written as

. Op .1,
a“]l :§+V.7:;pltjl =0. (B26)
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B.5.2 Laplacian and d’Alembertian Operators

The Laplacian and d’Alembertian operators, A and [] are defined as

o* 9 9

A = V=—"ut— 4 — B.2
V.V 527 + o + 952 (B.27)
(B.28)
82
square = 0,0" = P A. (B.29)

B.6 ~-Matrices

Here, we present explicit expressions of the y-matrices in two and four
dimensions. Before presenting the representation of the ~-matrices, we
first give the explicit representation of Pauli matrices.

B.6.1 Pauli Matrices

Pauli matrices are given as

01 0 —1 1 0
am—01—<1 0), Uy—02—<2, O), az—03—<0 _1‘> (B.30)

Below we write some properties of the Pauli matrices.

B.6.2 Representation of v-matrices

(a) Two dimensional representations of v-matrices

e Dirac :

1 0 0 1 0 1
_ _ _ _ B.31
Yo <0—1>’% (_1()),75 Yon (10) (B.31)

e Chiral :

0 1 0 —1 1 0
Yo (10)’% (1 0>7 Y5 = Yom1 <0_1> (B.32)
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(b) Four dimensional representations of gamma matrices

e Dirac :

(i) (22)

Vo= i’Yo’Y1’Y2’Y3:<(1) 3), Oz:(g_ g) (B.33)
e Chiral :

coan(23) (2 7)

Vs = 0NN = <(1) _2), a=<g _?,> (B.34)
where

05(0(]), 15<1O> (B.35)
00 01

e Hermiticity

ol =01, ob=0y o0ol=03 (B.36)

e Complex Conjugate

* * *
0] =01, 0,=—0y, O03=0;3. (B.37)
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e Transposed

T _ T_ T _ T«
o, =01, 0y =—09, 03 =03 (0 =0%).

o Useful Relations

0,05 = 5ij + ZEiijk,
[O’i, O'j] = 2Z6ijk0k-

B.6.3 Useful Relations of -Matrices

Here, we summarize some useful relations of the y-matrices.

e Anti-commutation relations

A"y =2¢", {7°7"}=0.

e Hermiticity

=m0 B=2% v=-n) %=

e Complex Conjugate

Yo=Y N =7 Yo=Y, V3= Vs="175

59

(B.38)

(B.39)

(B.40)

(B.41)

(B.42)

(B.43)
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e Transposed

VZ = 707,70 Y =Y. (B.44)

B.7 Transformation of State and Operator

When we transform a quantum state [¢) by a unitary transformation U
which satisfies

U'U =1 (B.45)
we write the transformed state as
) = Ulo). (B.46)
The unitarity is important since the norm must be conserved, that is,
W) = @UUp) =1. (B.47)
In this case, an arbitrary operator O is transformed as
O =Uv0U". (B.48)

This can be obtained since the expectation value of the operator O must
be the same between two systems, that is,

(W|Olyp) = (W'|O'|y). (B.49)
Since
WO = (YUTO'U|p) = ([O[) (B.50)
we find

Uto'v = 0. (B.51)
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B.8 Fermion Current

We summarize the fermion currents and their properties of the Lorentz
transformation. We also give their nonrelativistic expressions since the
basic behaviors must be kept in the nonrelativistic expressions. Here, the
approximate expressions are obtained by making use of the plane wave
solutions for the Dirac wave function.

Scalar : PYip ~ 1
Pseudoscalar :  1)y51) ~ P
e Fermion currents : ~ p (B.52)
Vector : vy~ (1, —)
m

Axialvector : ¥y, V50 =~ <L, a)
m

Therefore, under the parity P and time reversal T transformation, the
above currents behave as

PP
Yy = P Iy Py = —hysep

Parity P : i - R g B.53
® ey Pt = PP P = — gy (559
Vs = P ey PY = Yy
Py = YTV =
71 r -1 mo T
e Time reversal T : V¥ = 9T TP = sy (B.54)

7%'%7#’ = ?ZT__AI%T?ﬂ = —?Z’Wﬂ_
Vs = T ey T = —yys

B.9 Trace in Physics

B.9.1 Definition

The trace of N x N matrix A is defined as

Tr{A} =) Ai. (B.55)
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This is simply the summation of the diagonal elements of the matrix A. It
is easy to prove

Tr{AB} = Tr{BA}. (B.56)

B.9.2 Trace in Quantum Mechanics

In quantum mechanics, the trace of the Hamiltonian H becomes

Tr{H} = T{UHU '} = > E,, (B.57)

where U is a unitary operator that diagonalizes the Hamiltonian, and £,
denotes the energy eigenvalue of the Hamiltonian. Therefore, the trace of
the Hamiltonian has the meaning of the sum of all the eigenvalues of the

Hamiltonian.

B.9.3 Trace in SU(N)

In the special unitary group SU(N), we often describe the element U® in
terms of the generator 7° as

a

Ue =e’", (B.58)
In this case, the generator must be hermitian and traceless since
detU” = exp (Tr{lnU"}) = exp (i Tr {T°}) =1 (B.59)
and thus
Tr{T*} =0. (B.60)

The generators of SU(N) group satisfy the following commutation relations
[T, T = iC**T*, (B.61)

where C%° denotes a structure constant in the Lie algebra. The generators
are normalized in this textbook such that

Tr {T°T"} = %5@‘7. (B.62)
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B.9.4 Trace of v-Matrices and p

The Trace of the y-matrices is also important. First, we have
Tr{l} =4, Tr{y,} =0, Tr{y}=0. (B.63)
In field theory, we often define a symbol of p just for convenience

® )=p (B.64)

In this case, the following relation holds :

® b =pq—ioup'q”. (B.65)

The following relations may also be useful :

o Tr{pg} = 4pq, (B.66)

o Tr {1} = 0, (B.67)

o Trlp ot = 4{ (1 P2)(ps - p0) = (b1 o) (P2 pa) + (b1 - 1) (02~ ) } (B6)

o Tr [Vhifobsbs] = —dicagys DS D5 P3PS (B.69)
o Ir [757;117#27%7#47#57#6] = —4i [gmuzgusuwwe — Guips€papapspe

T Opops€prpapsps T JuapsCppapaps — uaps€pipopaps + Juspe€ i popspa (B.70)
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(S'u ’ 5/1 / 5,11, / 5M g

I v o
o, 0, 0 0
® €“Vaﬁ€u/l,/a/g/ = — o ’ a v o o o s (B?l)
5/8 N, 5/8 l/, 5ﬁ a/ 5B B/
6 NI 6 ! 5 o 5 ,6’
6,/ 1// 6V a/ 5” /8/
. €Myaﬁguyla/ﬁ/ = — 5& I/, 50& O/ 6& ﬂl (B?Q)
65 l// 5B a/ 5/3 5/
- 5 8%,
| o Bguua’ﬁ’ —2 (5ﬂ 5,3 p (B?B)
a/ ﬁl
o e g = —60" P (B.74)

o " Pe s = —24 (B.75)
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[0 O C Basic Equations and
Principles

C.1 Lagrange Equation

In classical field theory, the equation of motion is derived from the La-
grange equation. Here, we briefly review how we can obtain the equation
of motion from the Lagrangian density.

C.1.1 Lagrange Equation in Classical Mechanics

Before going to the field theory, we first discuss the Lagrange equation
(Newton equation) in classical mechanics. In order to obtain the Lagrange
equation by the variational principle in classical mechanics, we start from
the action S

SZ/L@@ﬁ, (1)

where the Lagrangian L(q,¢) depends on the general coordinate ¢ and its
velocity ¢. At the time of deriving equation of motion by the variational
principle, ¢ and ¢ are independent as the function of t. This is clear
since, in the action S, the functional dependence of ¢(¢) is unknown and
therefore we cannot make any derivative of ¢(t) with respect to time t.
Once the equation of motion is established, then we can obtain ¢ by time
differentiation of ¢(¢) which is a solution of the equation of motion.

The Lagrange equation can be obtained by requiring that the action S
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should be a minimum with respect to the variation of ¢ and g.

. oL oL _.
OL d oL
- /(a_q_aa_q') Sqdt =0, (C3)

where the surface terms are assumed to vanish. Therefore, we obtain the
Lagrange equation

oL _doL_, (C4)

C.1.2 Hamiltonian in Classical Mechanics

The Lagrangian L(¢q,¢) must be invariant under the infinitesimal time
displacement ¢ of ¢(t) as

) . . . _de
qt+e€) = qt) +ge, q(t+¢€) — ¢(t) et g (C.5)
Therefore, we find
) ) . oL . oL . OL .de
6L(q,q) = L(q(t +¢€),q(t +€)) — L(q,q) = == Ge + 7= Ge + 7= 4— = 0. (C.6)

dq 04 og dt

Neglecting the surface term, we obtain

) oL . OL. d (0L . d oL .
(5L(q,q)— a—qq+a—qq—a(a—qq):|6—|:% (L—a—qq):|€—0. (C7)

Thus, if we define the Hamiltonian H as

oL
=—q¢—L .
95 (C.8)

then it is a conserved quantity.

C.1.3 Lagrange Equation for Fields

The Lagrange equation for fields can be obtained almost in the same
way as the particle case. For fields, we should start from the Lagrangian

density £ and the action is written as

S = /c <¢,¢, S_Z) &Erdt, (C.9)



C.2. Noether Current 67

where v(z), ¢(z) and % are independent functional variables.
The Lagrange equation can be obtained by requiring that the action S
should be a minimum with respect to the variation of 1, w and %,

_ L 00N o [ (95 9L oL O\
5S = /5£(w,w,axk)drdt—/<a¢5w+ ¢5w+ (am)d(axk)>drdt

ol sor o o .
- /(@ ot o) Oxx a(fw))wdrdt_o’ (€10

where the surface terms are assumed to vanish. Therefore, we obtain

oc o0o9L 0 oL

— == C.11
o Ot gy Oz (FL) (C11)
which can be expressed in the relativistic covariant way as
oL oL
— =0, | == ). C.12
7 = (o) (12

This is the Lagrange equation for field ¢, which should hold for any inde-
pendent field .

C.2 Noether Current

If the Lagrangian density is invariant under the transformation of the
field with a continuous variable, then there is always a conserved current
associated with this symmetry. This is called Noether current and can be
derived from the invariance of the Lagrangian density and the Lagrange
equation.

C.2.1 Global Gauge Symmetry

The Lagrangian density which is discussed in this textbook should have

the following functional dependence in general

L = i)y, 0" — mp + L [, s, hyb] - (C.13)
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This Lagrangian density is obviously invariant under the global gauge

transformation
W=y, gl = ey, (C14)

where o ia a real constant. Therefore, the Noether current is conserved
in this system. To derive the Noether current conservation for the global
gauge transformation, we can consider the infinitesimal global transforma-
tion, that is, |a| < 1. In this case, the transformation becomes

Vo= Y+, S =ia. (C.15)
W= oyt syt syt = —iant. (C.16)

e Invariance of Lagrangian Density

Now, it is easy to find

0L = L', 0", 0, 00") = L, 01, 00, 0,01) = 0. (C.17)
At the same time, we can easily evaluate 6L
oL = g—i o + a(g—fw) 5 (D1h) + 3—55@/)* + % 5 (9,07
— i [(a“f%g—f@b)> P+ a(g—fw ) — (%%) Yl — % 0’
0 s~ T =0 e

where the equation of motion for ¢ is employed.

o Current Conservation

Therefore, if we define the current j, as

oL oL

—q — T )
50.0) ¥ 3@ “ (G-19)

=

then we have

9,5" = 0. (C.20)
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For Dirac fields with electromagnetic interactions or self-interactions, we
can obtain as a conserved current

= . (C.21)

C.2.2 Chiral Symmetry

When the Lagrangian density is invariant under the chiral transforma-
tion,

Y = e (C.22)
then there is another Noether current. Here, §7) becomes
0 = iays). (C.23)

Therefore, a corresponding conserved current for massless Dirac fields with
electromagnetic interactions or self-interactions can be obtained

oL —
= = pyH 5. .24
= i Vs = Py sy (C.24)
In this case, we have
Oujs =0 (C.25)

which is the conservation of the axial vector current. The conservation of
the axial vector current is realized for field theory models with massless
fermions.

C.3 Hamiltonian Density

The Hamiltonian density H is constructed from the Lagrangian den-
sity £. The field theory models which we consider should possess the
translational invariance. If the Lagrangian density is invariant under the
translation a*, then there is a conserved quantity which is the energy mo-
mentum tensor 7/”. The Hamiltonian density is constructed from the

energy momentum tensor of 7%,
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C.3.1 Hamiltonian Density from Energy Momentum Tensor

Now, the Lagrangian density is given as £ <1/}Z~, );, Qi ) If we consider the

9 Bm

following infinitesimal translation a” of the field v; and wj

v = i+ 0y, O = (01h)a”,
ol = wl+owl, ovl = (0,0)a, (C.26)

then the Lagrangian density should be invariant
0L = L(U,0u17) — L(Yi, 0u1i)

oL oL

Making use of the Lagrange equation, we obtain

oL = Z [a—ﬁ (Buahi) + oL (8,0,0:) — O, (% aywz-)] a

aw vl 900

5@#%”] =

o, 8((%%-) 8u¢i
0L f_ 0L 5 ot
* 3|5y O+ 5 et = (amb a’”’)]a

B . oc ., . oL ., . B
= 9, [cgu Z <8(6mz-) 0"p; + 56T ) 1/})] a, = 0. (C.27)

e Energy Momentum Tensor 7

Therefore, if we define the energy momentum tensor 7" by

oL
T — V + o* ;[ — Lag"" C.28
: ( (0) o(0]) w) ! (€29

then 7" is a conserved quantity, that is

0, T = 0. (C.29)

This leads to the definition of the Hamltonian density H in terms of 7%

— 400 __ oL 0., oL 0,7 | _
H=T _;(a@wi)awﬁa(wbawi) L. (C.30)




C.3. Hamiltonian Density 71

C.3.2 Hamiltonian Density from Conjugate Fields

When the Lagrangian density is given as £(v;, 1/}2-, 37“/”;), we can define the
conjugate fields II;,, and II i as

_oL oL

H P — = . C?)].
v 0 i o] ( )

In this case, the Hamiltonian density can be written as
H=3" (Tt + Ty ) = £ (C.32)

It should be noted that this way of making the Hamiltonian density is
indeed easier to remember than the construction starting from the energy

momentum tensor.

e Hamiltonian

The Hamiltonian is defined by integrating the Hamiltoian density over

H:/Hd3r:/

C.3.3 Hamiltonian Density for Free Dirac Fields

all space

> (ythi + ngw'j )—L| d’r. (C.33)

2

For a free Dirac field with its mass m, the Lagrangian density becomes

L =Pl + 4] [0y - V = myol;; V- (C.34)
Therefore, the conjugate fields II,;, and II i are obtained

L

Thus, the Hamiltonian density becomes

H:Z(de}ﬁ—l—[w:@) —L=1); [_mkak""m]ij wjzz/_f [—iy - V+m|y.  (C.36)
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C.3.4 Hamiltonian for Free Dirac Fields

The Hamiltonian H is obtained by integrating the Hamiltonian density
over all space and thus can be written as

H:/Hd3r:/w[—i'y~v+m]1/}d3r. (C.37)

In classical field theory, this Hamiltonian is not an operator but is just the
field energy itself. However, this field energy cannot be evaluated unless
we know the shape of the field ¢ (z) itself. Therefore, we should determine
the shape of the field ¢ (z) by the equation of motion in the classical field
theory.

C.3.5 Role of Hamiltonian

We should comment on the usefulness of the classical field Hamiltonian
itself for field theory models. In fact, the Hamiltonian alone is not useful.
This is similar to the classical mechanics case in which the Hamiltonian
of a point particle itself does not tell a lot. Instead, we have to derive
the Hamilton equations in order to calculate some physical properties of
the system and the Hamilton equations are equivalent to the Lagrange

equations in classical mechanics.

e Classical Field Theory

In classical field theory, the situation is just the same as the classical
mechanics case. If we stay in the classical field theory, then we should de-
rive the field equation from the Hamiltonian by the functional variational
principle as will be discussed in the next section.

o Quantized Field Theory

The Hamiltonian of the field theory becomes important when the fields
are quantized. In this case, the Hamiltonian becomes an operator, and
thus we have to solve the eigenvalue problem for the quantized Hamilto-



C.3. Hamiltonian Density 73

nian H
H|V) = E|U), (C.38)

where |U) is called Fock state and should be written in terms of the creation
and annihilation operators of fermion and anti-fermion. The space spanned
by the Fock states is called Fock space.

In normal circumstances of the field theory models such as QED and
QCD, it is practically impossible to find the eigenstate of the quantized
Hamiltonian. The difficulty of the quantized field theory comes mainly
from two reasons. Firstly, we have to construct the vacuum state which is
composed of infinite many negative energy particles interacting with each
other. The vacuum state should be the eigenstate of the Hamiltonian

HIQ) = Eq|Q), (C.39)

where E denotes the energy of the vacuum and it is in general infinity
with the negative sign. The vacuum state |[Q2) is composed of infinitely
many negative energy particles

Q) = [T '%10)). (C.40)

where |0)) denotes the null vacuum state. In the realistic calculations, the
number of the negative energy particles must be set to a finite value, and
this should be reasonable since physical observables should not depend on
the properties of the deep negative energy particles. However, it is most
likely that the number of the negative energy particles should be, at least,
larger than a few thousand for two dimensional field theory models.

The second difficulty arises from the operators in the Hamiltonian which
can change the fermion and anti-fermion numbers and therefore can induce
infinite series of the transitions among the Fock states. Since the spectrum
of bosons and baryons can be obtained by operating the fermion and anti-
fermion creation operators on the vacuum state, the Fock space which is
spanned by the creation and annihilation operators becomes infinite. In
the realistic calculations, the truncation of the Fock space becomes most
important, even though it is difficult to find any reasonable truncation
scheme.
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In this respect, the Thirring model is an exceptional case where the
exact eigenstate of the quantized Hamiltonian is found. This is, however,
understandable since the Thirring model Hamiltonian does not contain
the operators which can change the fermion and anti-fermion numbers.

C.4 Variational Principle in Hamiltonian

When we have the Hamiltonian, then we can derive the equation of mo-
tion by requiring that the Hamiltonian should be minimized with respect
to the functional variation of the state ¢(r).

C.4.1 Schrodinger Field

When we minimize the Hamiltonian
1
H = / {—%WV%anTUw d3r (C.41)

with respect to ¢(r), then we can obtain the static Schrédinger equation.

e Functional Derivative

First, we define the functional derivative for an arbitrary function ;(r)
by

(Swi('f'/)
ov;(r)

This is the most important equation for the functional derivative, and once

= 4;;0(r —r'). (C.42)

we accept this definition of the functional derivative, then we can evaluate
the functional variation just in the same way as normal derivative of the
function ;(r).
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e Functional Variation of Hamiltonian

For the condition on v (r), we require that it should be normalized ac-
cording to

/w(rw(r) dr=1. (C.43)

In order to minimize the Hamiltonian with the above condition, we can
make use of the Lagrange multiplier and make a functional derivative of
the following quantity with respect to (r)

H[y] = / [—LW(T/)V'%(TI)+¢T(r’)Uw(r’)} &>r'

—-E </ Y (r) dPr' — 1 ) : (C.44)

where F denotes a Lagrange multiplier and just a constant. In this case,
we obtain

OHW] _ o o1 gy Y Bl | it —
5¢T(7«)_/6( )[ 5 V() + Ud(r') — By )]d 0. (C.45)

Therefore, we find

5= VA(r) + Ui(r) = B(r) (C.46)

which is just the static Schrodinger equation.

C.4.2 Dirac Field

The Dirac equation for free field can be obtained by the variational
principle of the Hamiltonian. Below, we derive the static Dirac equation
in a concrete fashion by the functional variation of the Hamiltonian.

e Functional Variation of Hamiltonian

For the condition on v;(r), we require that it should be normalized ac-
cording to

[l a1 (C.47)
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Now, the Hamiltonian should be minimized with the condition of eq.(C.47)

/¢ iy - V)ij +m(y")i;] & (r) dPr

-FE (/ Yl (r)(7°)ij005 () dr — 1) , (C.48)

where F is just a constant of the Lagrange multiplier. By minimizing the
Hamiltonian with respect to wj (r), we obtain

(—iv -V +m)y(r)— Ep(r)=0 (C.49)

which is just the static Dirac equation for free field.
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0 OD Wave Propagations in
Medium and Vacuum

The classical wave such as sound can propagate through medium. How-
ever, it cannot propagate in vacuum as is well known. This is, of course,
clear since the classical wave is the chain of the oscillations of the medium
due to the pressure on the density.

On the other hand, quantum wave including photon can propagate in
vacuum since it is a particle. Here, we clarify the difference in propagations
between the classical wave and quantum wave. The most important point
is that the classical wave should be always written in terms of real functions
while photon or quantum wave should be described by the complex wave
ik

function of the shape ¢"** since it should be an eigenstate of the momentum.

D.1 What is Wave?

The sound can propagate through medium such as air or water. The
wave can be described in terms of the amplitude ¢ in one dimension

o(z,t) = Agsin(wt — kx) (D.1)

where w and k denote the frequency and wave number, respectively. The
dispersion relation of this wave can be written as

w = vk. (D.2)

Here, it is important to note that the amplitude is written as the real
function, in contrast to the free wave function of electron in quantum
mechanics. In fact, the free wave of electron can be described in one

dimension as
U ik
Y(z,t) = W‘?Z(w ) (D.3)
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which is a complex function. The electron can propagate by itself and
there is no medium necessary for the electron motion.

What is the difference between the real wave amplitude and the complex
wave function? Here, we clarify this point in a simple way though this does
not contain any new physics.

D.1.1 A Real Wave Function: Classical Wave

If the amplitude is real such as (D.1), then it can only propagate in
medium. This can be clearly seen since the energy of the wave can be
transported in terms of the density oscillation which is a real as the phys-
ical quantity. In addition, the amplitude becomes zero at some point, and
this is only possible when it corresponds to the oscillation of the medium.
This means that the wave function of (D.1) has nothing to do with the
probability of wave object. Instead, if it is the oscillation of the medium,
then it is easy to understand why one finds the point where the amplitude
vanishes to zero. The real amplitude is called a classical wave since it is
indeed seen in the world of the classical physics.

D.1.2 A Complex Wave Function: Quantum Wave

On the other hand, the free wave function of electron is a complex func-
tion, and there is no point where it can vanish to zero. Since this is just
the wave function of electron, its probability of finding the wave is always
a constant % at any space point of volume V.

D.2 Classical Wave

The sound propagates in the air, and its propagation should be trans-
ported in terms of density wave. The amplitude of this wave can be written
in terms of the real function as given in eq.(D.1). This is quite reasonable
since the density wave should be described by the real physical quantity.
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Instead, this requires the existence of the medium (air), and the wave can
propagate as long as the air exists. Here, we first write the basic wave
equation in one dimension

10% 0%

V2Ot da?

(D.4)

which is similar to the wave equation in quantum mechanics, though it is
a real differential equation. Here, v denotes the speed of wave.

D.2.1 Classical Waves Carry Their Energy?

In this case, a question may arise as to what is a physical quantity
which is carried by the classical wave like sound. It seems natural that
the wave carries its energy (or wave length). In fact, the transportation
of the energy should be carried out by the compression of the density and
successive oscillations of the medium. Therefore this is called compression
wave.

D.2.2 Longitudinal and Transverse Waves

Here, we discuss the terminology of the longitudinal and transverse
waves, even though one should not stress its physics too much since there
is no special physical meaning.

e Longitudinal Wave :

The sound propagates as the compressional wave, and the oscillations
should be always in the direction of the wave motion. In this case, it
is called longitudinal wave. This wave can be easily understood since one
can make a picture of the density wave.

e Transverse Wave :

On the other hand, if the motion of the oscillations is in the perpendicular
to the direction of the wave motion, then it is called transverse wave. The
tidal wave may be the transverse wave, but its description may not be
very simple since the density change may not directly be related to the
wave itself.
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D.3 Quantum Wave

Photon and quantum wave are quite different from the classical wave,
and the quantum wave is a particle motion itself. No medium oscillation is
involved. For example, a free electron moves with the velocity v in vacuum,
and this motion is also called ”wave”. The reason why we call it wave is
due to the fact that the equation of motion that describes electrons looks
similar to the classical wave equation of motion. Further, the solution

k2 and thus it is the same as

of the wave equation can be described as ¢
the wave behavior in terms of mathematics. But the physical meaning is
completely different from the classical wave, and quantum wave is just the

particle motion which behaves as the probabilistic motion.

D.3.1 Quantum Wave (Electron Motion)

The wave function of a free electron in one dimension can be described

as

U(x,t) = Tlvei(Wt_k'T) (D.5)

which is a solution of the Schrodinger equation of a free electron,

o 1

— = - V? D.6

ot 2m ¥ (D-6)
where k£ = v2mw, and V denotes the corresponding volume. Since the

Schrodinger equation is quite similar to the wave equation in a classical
sense, one calls the solution of the Schrodinger equation as a wave. How-
ever, the physics of the quantum wave should be understood in terms of
the quantum mechanics, and the relation to the classical wave should not
be stressed. That is, the quantum wave is completely different from the
classical wave, and one should treat the quantum wave as it is. In addition,
the behavior and physics of the classical wave are very complicated and it
is clear that we do not fully understand the behavior of the classical wave
since it involves many body problems in physics.
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D.3.2 Photon

The electromagnetic wave is called photon which behaves like a particle
and also like a wave. This photon can propagate in vacuum and thus it
should be considered to be a particle. Photon can be described by the
vector potential A.

e Aisreal! :

However, this A is obviously a real function, and therefore, it cannot
propagate like a particle. This can be easily seen since the free Hamiltonian
of photon commutes with the momentum operator p = —iV, and therefore
it can be a simultaneous eigenstate of the Hamiltonian. Thus, the A
should be an eigenstate of the momentum operator since the free state
must be an eigenstate of momentum. However, any real function cannot
be an eigenstate of the momentum operator, and thus the vector field in
its present shape cannot describe the free particle state.

e Free solution of vector field :
What should we do? The only way of solving this puzzle is to quantize a
photon field. First, the solution of A can be written as

\V Zka

with kx = wit — k- r. Here, € ) denotes the polarization vector which will

1 . .
A(r) = Z €k, (C;fc’)\eilkx + Ck)\elkx) (D.7)
kA

be discussed later more in detail. As one sees, the vector field is indeed a
real function.

e Quantization of vector field :

Now we impose the following quantization conditions on cL y and ¢y

(R CL’,)\’] = Okl OA N5 (D.8)
[Ck7,\, Ck/7,\/] = 0, [CL}\, C};/,)\'] =0. (Dg)

In this case, C};A, ¢k, become operators. Therefore, one should now con-
sider the Fock space on which they can operate. This can be defined as

cn0) = 0 (D.10)
a0y = |k, (D.11)



82 O O D Wave Propagations in Medium and Vacuum

where |0) denotes the vacuum state of the photon field. Therefore, if one
operates the vector field on the vacuum state, then one obtains

1 .
(k, \| A(2)0) = meme—m. (D.12)

As one sees, this new state is indeed the eigenstate of the momentum
operator and should correspond to the observables. Therefore, photon
can be described only after the vector field is quantized. Thus, photon is
a particle whose dispersion relation becomes

D.4 Polarization Vector of Photon

Until recently, there is a serious misunderstanding for the polarization
vector e’,;)\. This is related to the fact that the equation of motion for the
polarization vector is not solved, and thus there is one condition missing
in the determination of the polarization vector.

D.4.1 Equation of Motion for Polarization Vector

Now the equation of motion for A* = (A°, A) without any source terms
can be written from the Lagrange equation as

0, F" =0 (D.14)
where 'Y = gFAY — 0¥ A*. This can be rewritten as
0,0"'AY — 0"9,A" = 0. (D.15)

Now, the shape of the solution of this equation can be given as
1 A ,
At () = — e epae *T 4l e D.16
( ) zk:z)\: \/m k| CRA kA ( )

and thus we insert it into eq.(D.15) and obtain

ke — (kye')kH = 0. (D.17)
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Now the condition that there should exist non-zero solution of e‘,;)\ is ob-
viously that the determinant of the matrix in the above equation should
vanish to zero, namely

det{k*¢g"" — k"k"} = 0. (D.18)

This leads to k* = 0, which means ky = w;, = |k|. This is indeed a proper
dispersion relation for photon.

D.4.2 Condition from Equation of Motion
Now we insert the condition of k? = 0 into eq.(D.17), and obtain
ke =0 (D.19)

which is a new constraint equation obtained from the basic equation of
motion. Therefore, this condition (we call it “Lorentz condition”) is most
fundamental. It should be noted that the Lorentz gauge fixing is just the
same as eq.(D.19). This means that the Lorentz gauge fixing is improper
and forbidden for the case of no source term. In this sense, the best gauge
fixing should be the Coulomb gauge fixing

k-e=0 (D.20)

from which one finds ¢y = 0, and this is indeed consistent with experiment.

e Number of freedom of polarization vector :

Now we can understand the number of degree of freedom of the polariza-
tion vector. The Lorentz condition £,¢* = 0 should give one constraint on
the polarization vector, and the Coulomb gauge fixing k- € = 0 gives an-
other constraint. Therefore, the polarization vector has only two degrees
of freedom, which is indeed an experimental fact.

e State vector of photon :
The state vector of photon is already discussed. But here we should rewrite
it again. This is written as

€ —ikx
(k, A\ A(2)]0) = \/%e ke, (D.21)
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In this case, the polarization vector € ) has two components, and satisfies
the following conditions

€Ep )\ Ep N = (5>\’)\/, k- €\ — 0. (D22)

D.4.3 Photon Is a Transverse Wave?

People often use the terminology of transverse photon. Is it a correct
expression? By now, one can understand that the quantum wave is a
particle motion, and thus it has nothing to do with the oscillation of the
medium. Therefore, it is meaningless to claim that photon is a transverse
wave. The reason of this terminology may well come from the polariza-
tion vector €\ which is orthogonal to the direction of photon momentum.
However, as one can see, the polarization vector is an intrinsic property
of photon, and it does not depend on space coordinates.

e No rest frame of photon ! :

In addition, there is no rest frame of photon, and therefore, one cannot
discuss its intrinsic property unless one fixes the frame. Even if one says
that the polarization vector is orthogonal to the direction of the photon
momentum, one has to be careful in which frame one discusses this prop-
erty.

In this respect, it should be difficult to claim that photon behaves like a
transverse wave. Therefore, one sees that photon should be described as
a massless particle which has two degrees of freedom with the behavior of
a boson. There is no correspondence between classical waves and photon,
and even more, there is no necessity of making analogy of photon with the
classical waves.

D.5 Poynting Vector and Radiation

We have clarified that the propagation of the real function requires some
medium which can make oscillations. Here, we discuss the Poynting vector
how it appears in physics, and show that it cannot propagate in vacuum at
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all. Also, we present a brief description of the basic radiation mechanism
how photon can be emitted.

D.5.1 Field Energy and Radiation of Photon

Before discussing the propagation of the Poynting vector, we should
first discuss the mechanism of the radiation of photon in terms of classical
electrodynamics. The interaction Hamiltonian can be written as

fﬁ——/}-Afr (D.23)

which should be a starting point of all the discussions. Now, we make a
time derivative of the interaction Hamiltonian and obtain

_dH,  [[0j . 0A]

Since we can safely set A° = 0 in this treatment, we find

E=—". D.2
B (D.25)

Therefore, we can rewrite eq.(D.24) as

W:/j~Ed3r—/%-Ad3r. (D.26)

Defining the first term of eq.(D.24) as Wy, we can rewrite Wy as

d 1 € ) )
=[|j Edr=—— — B+ 2E?) & —/ .Sd* (D.2
Wg /j d’r dt[/<2uol ]+2\ ])dr] V.Sdr (D.27)

which is just the energy of electromagnetic fields.

D.5.2 Poynting Vector

Here, the last term of eq.(D.27) is Poynting vector S as defined by

S=ExB (D.28)
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which is connected to the energy flow of the electromagnetic field. This
Poynting vector is a conserved quantity, and thus it has nothing to do with
the electromagnetic wave. In addition, it is a real quantity, and thus there
is no way that it can propagate in vacuum. In addition, the Poynting vector
cannot be a target of the field quantization, and thus it always remains
classical since it is written in terms of £ and B. However, there is still
some misunderstanding in some of the textbooks on Electromagnetism,
and therefore, one should be careful for the treatment of the Poynting

vector.

e Exercise problem:

Here, we present a simple exercise problem of circuit with condenser with
C (disk radius of a and distance of d) and resistance with R. The electric
potential difference V is set on the circuit. In this case, the equation for
the circuit can be written as

This can be easily solved with the initial condition of () =0 at t = 0, and
the solution becomes

Q=cv(1-e7).

Therefore, the electric current J becomes

dt R
In this case, we find the electric field £ and the displacement current j,
VC ¢
E - Y. (1 - e‘ﬁ> e, (D.29)
Ta? goma’
) OFE Vo
Ji = 5r T peapt e (D.30)
Thus, the magnetic field B becomes
g r ot
By = ger e ™

where fCB - dr = ppigrr? is used. Therefore, the Poynting vector at the
surface (with » = a ) of the cylindrical space of the disk condenser becomes
2

o % oraRd

__t_ __t_
e RC <1—€ RC)er.
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It should be noted that the energy in the Poynting vector is always flowing
into the cylindrical space. Therefore, the electric field energy is now ac-
cumlated in the cylindrical space. There is, of course, no electromagnetic
wave radiation, and in fact, the Poynting vector is the flow of field energy,
and has nothing to do with the electromagnetic wave.

D.5.3 Emission of Photon

The emission of photon should come from the second term of eq.(D.26)
which can be defined as Wy and thus

I
Wi = /E Adr. (D.31)

In this case, we can calculate the % term by employing the Zeeman effect
Hamiltonian with a uniform magnetic field of B,

e
2m,

Hy;=-——0-By. (D.32)

The relevant Schrodinger equation for electron with its mass m, becomes

0 e
= =_ - By ). D.
Z@t 2mea 0 (D.33)
Therefore, we find
07 e [oyt | Oy e?
- =—|—= — | = ———=VBy(r). D.34
o " m. o PV TPy ngv o(r) (D-34)

In order to obtain the photon emission, one should quantize the field A in
eq.(D.31).

e Field quantization :

The field quantization in electromagnetic interactions can be done only
for the vector potential A. The electric field EF and the magnetic field B
are classical quantities which are defined before the field quantization.
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[1 O E New Derivation of Dirac
Equation

Here, we should present a novel method to derive the Dirac equation with-
out making use of the first quantization. It is shown that, from the local
gauge invariance and the Maxwell equation, we can derive the Lagrangian
density of the Dirac field.

E.1 Derivation of Lagrangian Density of Dirac Field

Dirac derived the Dirac equation by factorizing the dispersion relation
of energy and momentum such that the field equation becomes the first
order in time derivative. Now, we can derive the Lagrangian density of
the Dirac field in an alternative way by making use of the local gauge
invariance and the Maxwell equation as the most fundamental principle.

E.1.1 Lagrangian Density for Maxwell Equation

We start from the Lagrangian density of the Maxwell equation

1
E = —gjuA'u — Z F#VF'WI (E].)
where A* is the gauge field, and F),, is the field strength and is given as
F,=0,A, —0,A,. (E.2)

Here j, denotes the current density of matter field which couples to the
electromagnetic field. From the Lagrange equation, we obtain

OuF" = gj" (E3)

which is just the Maxwell equation.
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E.1.2 Four Component Spinor

Now, we can derive the kinetic energy term of the fermion Lagrangian
density. First, we assume that the Dirac fermion should have four compo-

nents

(U
b= (E.4)

This is based on the observation that electron has spin degree of freedom
which is two. In addition, there must be positive and negative energy
states since it is a relativistic field, and therefore the fermion field should
have 4 components.

e 16 Independent Components

Now, the matrix elements

POy (E.5)
can be classified into 16 independent Lorentz invariant components as
(R scalar,
Yys1) pseudo — scalar,
L4 2/_1%1/1 : 4 component vector, (E6)
@Z%ﬁm/} : 4 component axial — vector,
L ZZ_JUWZ/J : 6 component tensor,

where 1) is defined for convenience as

b =Py (E.7)

These properties are determined by mathematics.

e Shape of Vector Current

From the invariance consideration, the vector current j, must be written
as

ju = CO@E%L@D (E8)
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where () is a constant. Since we can renormalize the constant C, into the
coupling constant g, we can set without loss of generality

Co=1. (E.9)

E.2 Shape of Lagrangian Density

By making use of the local gauge invariance of the Lagrangian density,
we see that the following shape of the Lagrangian density can keep the

local gauge invariance

_ _ 1
L = Cpo"'y — gy, AF — 1 FF" (E.10)

where () is a constant. At this point, we require that the Lagrangian
density should be invariant under the local gauge transformation

{ A, — A+ 0,x,
°

| (B.11)
W — eixy

where x should be an arbitrary function of space and time. In this case,
it is easy to find that the constant C; must be

Cy =i (E.12)

Here, the constant 2 should be included implicitly into the constant C.
The determination of 4 can be done only when we compare calculated
results with experiment such as the spectrum of hydrogen atom.

E.2.1 Mass Term

The Lagrangian density of eq.(E.10) still lacks the mass term. Since the
mass term must be a Lorentz scalar, it should be described as

Cotpy) (E.13)

which is, of course, gauge invariant as well. This constant C; should be
determined again by comparing the calculated results of hydrogen atom,
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for example, with experiment. By denoting C, as (—m), we arrive at the
Lagrangian density of a relativistic fermion which couples with the elec-
tromagnetic fields A*

- - - 1
L = 0,y — gy, p A* — mapnp — 1 FF* (E.14)

which is just the Lagrangian density for the Dirac field interacting with
electromagnetic fields.

E.2.2 First Quantization

It is important to note that, in the procedure of deriving the Lagrangian
density of eq.(E.14), we have not made use of the quantization condition
of

E —i 9 p— —iV. (E.15)
ot’
Instead, the first quantization is automatically done by the gauge condition
since the Maxwell equation knows the first quantization in advance. This
indicates that there may be some chance to understand the first quantiza-
tion procedure in depth since this method gives an alternative way of the
quantization condition of the energy and momentum.

E.3 Two Component Spinor

The derivation of the Dirac equation in terms of the local gauge invari-
ance shows that the current density that can couple to the gauge field
A" must be rather limited. Here, we discuss a possibility of finding field
equation for the two component spinor. When the field has only two

¢ = ( Z; ) , (E.16)

then we can prove that we cannot make the current j, that couples with

components,

the gauge field A,. This can be easily seen since the matrix elements

¢'0¢ (E.17)
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can be classified into 4 independent variables as
#'p . scalar, ¢lope: 3componentvector. (E.18)

Therefore, there is no chance to make four vector currents which may
couple to the gauge field A,. This way of making the Lagrangian den-
sity indicates that it should be difficult to find a Lagrangian density of
relativistic bosons.
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Since there is no way to evaluate the strong interactions in terms of QCD,
we should carry out the calculation of the nuclear interactions in terms of
meson exchange processes. This is the only reliable and reasonable method
to evaluate nuclear forces in a proper manner. The nuclear interaction
should be mediated by the exchange processes of observed bosons, such

as pions.

F.1 One Boson Exchange Potential

The structure of nucleus can be described once nucleon-nucleon interac-
tions are properly known. Indeed there are already sufficiently large num-
ber of works available for the determination of the nucleon-nucleon poten-
tial [7, 8, 9, 10]. The most popular nuclear interaction may be obtained by
one boson exchange potential (OBEP) [11, 12, 2] where exchanged bosons
are taken from experimental observations. In this case, the masses and the
coupling constants of the exchanged bosons are determined from various
methods, partly experimentally and partly theoretically. The discussions
of the determination of these parameters may have some ambiguities, but
one can see that the basic part of the nuclear force can be well understood
until now.

However, there is one important problem which still remains unsolved.
This is related to the medium attraction of the nucleon-nucleon potential,
and it is normally simulated by the effective scalar meson exchange process.
Until now, however, people have discovered no massive scalar meson in
nature and, therefore, the artificial introduction of the scalar meson is
indeed a theoretical defect of the one boson exchange model. This is indeed
a homework problem for many years of nuclear physics research. However,
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this important problem is left unsolved for a long time since many of the
nuclear theorists moved to the quark model calculations of the nucleon-
nucleon interaction. By now, it becomes clear that the evaluation of the
QCD based model has an intrinsic difficulty due to the gauge dependence
of the quark color charge [4] and this strongly suggests that the meson
exchange approach is indeed a right direction of nuclear force calculations.

F.2 Two Pion Exchange Process

In addition to the one boson exchange processes, one should consider the
two pion exchange diagrams in order to obtain a proper nucleon-nucleon
interaction. There are, of course, many calculations of the nucleon-nucleon
interaction due to the two pion exchange processes [13, 14, 15], and this
may indeed give rise to the medium range attraction even though until
now there is no clear cut evaluation which can isolate the nuclear force
contribution to the medium range attraction.

Here, we present a careful calculation of the two pion exchange processes.
The important point is that the fourth order process involving the four 5
interactions is not suppressed at all, in contrast to the one pion exchange
diagram where the 75 coupling is indeed suppressed by the factor of 7= with
M denoting the nucleon mass. This is basically due to the parity mismatch
and corresponds to the mixture of the small and the large components of
the Dirac spinors. Therefore, it should be very important to calculate the
two pion exchange process properly in order to understand the medium
attraction of the nucleon-nucleon interaction.

Now, the evaluation of the two pion exchange Feynman diagram is done
in a straight forward way [1], and we find the corresponding T-matrix as

T =igy(m - 7'2)2/ o i3 1 . i)
" (2m) " k2 —m2 +ie (p1 — k)Y — M+ ie ’
1 1
xiyl) iy ()

(q — ]{?)2 — m?r + 1€ (p2 + k),“f}/l(f) — M + e

where p; (p';) and p, (p',) denote the initial (final) four momenta of the
two nucleons, and ¢ is the four momentum transfer which is defined as
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g = p1 —p;. Here, we have ignored the crossed diagram which is much
smaller than eq.(F.1). By noting

M2 =1, (N2 =1, 37" = =" (F.2)

we can rewrite eq.(F.1) as
k1 1 (o1 — k)Y — M
T =iq* (7 - 2/ p
R N Ty VR A e S T2

(p2 + k)“%(?) - M
(p2 + k)2 — M2~

(F.3)
Now, we introduce the Feynman parameters x,y, z as

1 ! v v 1
abcd:6/0 dm/o dy/o dZ[a—i—(b—a)x+(c—b)y+(d—c)z]4. (F4)

Further, we assume that the nucleons at the initial state are on the mass
shell

(hy = M)u(pr) =0, (P, — M)u(pz) =0 (F.5)

and therefore we also find

u(p'1)g" vuu(pr) = 0. (F.6)

In addition, we take the non-relativistic limit for the nucleon motion and
thus obtain

d'k 3K M2 2z — y)?
~ —6igi(T - T) / dq:/ dy/ dz/ + ( §4 Y (F.7)
— s

where s is defined as
s=q¢ ((y—z)* —y+a)+ M2z —y)> +m2(l —y). (F.8)

The momentum integration of £ can be easily carried out, and we find

1 z y 2 N2
.7-2)2/ dm/ dy/ dz [E_M ' (F.9)
2
0 0 0 S S
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This three dimensional integration of z,y, 2z can be done only numerically,
and the calculated result can be well fit by the following shape

In A
T~—(1- 7-2)232;2 X T (F.10)
where A and m, are found to be
A~057,  mg~4.Tm, ~ 650 MeV. (F.11)
Here, we replace the four momentum transfer of ¢> as
¢=q4-9~-q (F.12)

since we may use the static approximation to a good accuracy

2
1
(q0)* = <\/M2 +pt -\ M? +p’f> ~ pPi P < (F.13)

If we take the value of the 7NN coupling constant as % ~ 8, then we find

2
g
T~ — . 2_ Js F.14
(11 - 72) P ( )
where
2 1 4
Is w2 o Im 057~ 145 (F.15)

A4t 4m T 322

which are consistent with the values determined from the nucleon-nucleon
scattering experiments. It should be important to note that the present
calculation suggests that the 7' = 0 channel of the nucleon-nucleon interac-
tion is very strong in comparison with the 7'= 1 case. This means that the
proton-neutron interaction is much stronger than the interactions between
identical particles. .
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F.3 Double Counting Problem

In general, the evaluation of the two boson exchange potential should
be carefully done due to the double counting problem. This is clear since
the solution of the Schrodinger equation with the one boson exchange
potential should contain the repeat of the one boson exchange process in
some way or the other.

F.3.1 Ladder Diagrams

In order to understand the double counting problem, we should first
start from the Lippmann-Schwinger equation for the T-matrix, and the
T-matrix equation for the nucleon-nucleon scattering case can be written
as

1
T=Vyy+Vynn———7—""T F.16
NN NN~ Hy+ e ( )
where Vyy and H, denote the nucleon-nucleon potential and the two nu-
cleon Hamiltonian in the free state, respectively. Suppose this Vyy should
be one pion exchange potential V;, and we insert it into eq.(F.16) and

expand it into the ladder type contributions

1

T:Vﬂ+VﬂmVﬂ+--- : (F.17)
Here it is claimed that the second term should correspond to the contri-
butions from the two pion exchange potential. Indeed, it indicates that
some part of the two pion exchange process should be taken into account
in this T-matrix equation. However, this is not necessarily correct for
the pion exchange process since the one pion exchange potential is sup-
pressed a great deal due to the 7; interaction which picks up the product
of the large and small components of the Dirac wave function. On the
other hand, the second order ladder calculation can take into account only
the large components of the Dirac wave functions. This is clear since the
Lippmann-Schwinger equation is solved only for the non-relativistic wave
function. In addition, the OPE potential is obtained already by making
the approximation of the non-relativistic reduction, and thus the two pion
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exchange process is completely different from the second order ladder con-
tribution of OPE potential.

F.3.2 One Pion Exchange Potential

Here, we see that the T-matrix of the one pion exchange process is
written as

T(OPE)

_ 1 _
= —g2u(py) Ty u(p1) = u(py) T2y u(p2) (F.18)

¢ —m2 +ic

and after some static and non-relativistic approximations, we obtain the
OPE potential

2 (1) e ™" m2  m, 1 m?
Velr) = ———-=> S| =+ — + —= —o - F.19
(r) 4 m2 r el T )T (F.19)
where
Sz =3(01-7) (02 - 7) f= (F.20)
=3(o1- 7)oy 7)) —01 - O = ——0r. )
12 1 2 102, 2Mpg

Here, one finds the suppression factor of 27”7’; The most important point
is that the OPE potential can be obtained only after one takes the ex-
pectation value of the +° matrix with free Dirac wave functions, and the
suppression factor comes from this point of the expectation value (p)y°u(p)
which is proportional to the product of the large and small components of
the Dirac wave function.

F.3.3 Two Pion Exchange Potential

On the other hand, the two pion exchange diagram does not have any
such suppressions because one considers all the intermediate states which
pick up the states strongly coupled to the 7° vertex with the initial nucleon
state. We can write it more explicitly

) d*k 1 1 1 1
TTPER) — ngr(TrTz)Z/—U(pi)kg — 3 Hgvé )75 - Mﬂevé "u(pr)
1

(2m)*
u(ps). (F.21)

xa(ph)5” : 7 :
2 o+ =M +ice”® (q—k)2—m?2 +ice
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Here, one can see that the two fyél)s appear between the spinors u(p)) and
u(p1) and thus there is no suppression. In addition, one sees that the ladder
contribution of eq.(F.21) can only take into account the intermediate states
which are always described in terms of the non-relativistic wave functions
in the Lippmann-Schwinger equation, and the OPEP is obtained only after
one has taken the expectation value of the +° with the free Dirac states.
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[0 O0G Photon Propagator and
Electron-Electron
Scattering

Here, we discuss the photon propagator and its consequence on the electron-
electron scattering process. Even though the Feynman propagator is not
a correct one, it can reproduce the right scattering T-matrix of electron-
electron scattering. We here clarify the reason why it can accidentally
agree with the calculated T-matrix of the correct propagator.

G.1 Photon Propagator

When we calculate the S-matrix elements in the process of the elec-
tromagnetic interaction H' = e [ j,A*d*z in the second order perturbation
theory, then we have to evaluate the propagator of photon. This is written
as

(OT{ A" (1) A" (2) }0) (G.1)

where A#(x) is given as

1 —iw, ik-r iwpt—ik-r
A“(x):zz\/m627A CL)\@ N L (G.2)

This should be a solution of the following equation of motion for the gauge
field

0,(0"A” — 9" A = 0, (G.3)
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In this case, a question may arise as to how we can calculate the prop-
agator of photon since the photon field A has one redundant degree of
freedom. As we discuss below, there is some problem for determining the
propagator of photon.

G.1.1 Feynman Propagator of Photon

Before going to the evaluation of the photon propagator in detail, we
should make a comment on the Feynman propagator of photon. The prop-
agator of photon which is known as the Feynman propagator can be written
as

Dy = -9 (C.4)
K k2 e’ ’

This is a standard photon propagator which can be found in most of the
field theory textbooks. However, it is also well-known that this propagator
cannot satisfy the condition of the polarization summation in a correct way.
This is clear since it cannot satisfy the following equation

k.l/

kDR () = =5 #0 (G.5)

where the left hand side should be zero due to the Lorentz condition.
Further, it cannot satisfy the Coulomb gauge condition, and therefore
whatever they invent, there is no way to claim that the Feynman propa-
gator is a right one. However, as will be seen below, Feynman propagator
can reproduce the same T-matrix of electron-electron scattering as the one
calculated from the correct propagator as long as the scattering particles
are on the mass shell. Since the agreement of the T-matrices evaluated
from the two propagators is entirely based on the free Dirac equation of
electrons involved in the scattering process, the Feynman propagator can-
not be applied for physical processes involving electrons which are not free
or off the mass shell.
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G.1.2 Calculation of (0|T{A"(x1)A"(x2)}|0)

Here, we should evaluate the denominator of the propagator
(0|T{AH(x1)A"(2z2)}|0) explicitly in order to avoid any confusions. First, we
insert the vector potential with field quantization, and find

<0|T{AM([E1)AV To }|0 Z Z \/Wek /\Ek:’ N X

ko kN
<0|T{<Ck>\6 ikxy +C zkxl) (C};, Ve —ik'zo + Cpr )\/e )} |O> (G6)

which can be calculated to be

[ Bk 1 N N

O @) A H0) = 3 [ Grmdiacin (€47000) + 7 0(—0)  (G.1

A=1

where we define

r=x1—T3, O(t)=1 for t>0, 6O(t)=0 for t<O0. (G.8)

By noting the following complex plane integrations

/Oo dko pikot —w%: for t>0 o)
= G.9
2m) kg — k* —i gt
—o (2m) Ko ZS e = for t<0
Wi,
we can rewrite (0|T{A"(x1)A"(x2)}|0) as
. . . d4k: 61k T1—22)
(OIT{A" (1) A (22)}[0) = —i o x fok Ak (G.10)

This is just the propagator of photon. Now, the problem comes up when
we evaluate the summation of the polarization vector.
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G.1.3 Summation of Polarization States

Up to now, we have presented the expression of the propagator evalu-
ation of photon without making any comments on the field quantization,
Now, we should quantize only the vector field A which depends on time.
The Coulomb field A° is already solved from the constraint equation, and
thus it cannot appear in the S-matrix expansion. Therefore, we have the
condition that ¢y = 0. In addition, we should respect the Coulomb gauge

condition
k~ek7,\ = 0. (Gll)

Now, we are ready to construct the numerator of the propagator of photon,
and we find

2
" . kakb

D e = (5 b_ o ) (CG.12)

A=1

which is the only possible solution for the summation of the polarization

vector. Note that this can satisfy the condition of k - €,y = 0, because the
left hand side of eq.(G.12) multiplied by £* becomes

o
2
(]

GZ,)\GZ,)\ =0 (G.13)
A—=1

while the right hand side can be calculated as

kKb k2kb
a ab _1.b _
k;(a ——k2>—k:— =0 (G.14)

and thus eq.(G.12) can satisfy all the conditions we have for the polariza-
tion vectors. Therefore, the propagator of photon D becomes

D™(k) = ! <5ab—kakb>. (G.15)

k2 — qe k2
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G.1.4 Coulomb Propagator

The Coulomb part is solved exactly since it does not depend on time.
Namely the equation of motion for the Coulomb part is a constraint equa-
tion which has nothing to do with the quantization of field. Note that
the field quantization should always involve the time dependence of fields.
Now, the equation of motion for the A" part can be written as

V2AY = —eyy = —ej°(2) (G.16)

which is a constraint equation. However, the right hand side is made of
electron fields, and the quantization of the electron fields is already done.
It should be noted that the Coulomb case is calculated from the first order
perturbation theory since it arises from

He = e/jo(t,r)AO(r)d3r - %/(VAO)Qd?’T. (G.17)

In this case, the interaction Hamiltonian between two Dirac fields ;¢ and
79 becomes

2 000 Y0
He = S /Mdghdgrz (G.18)

_g ‘7‘1—7'2‘

which can be rewritten in terms of the momentum representation as

_ 2 [H@5(-q) 4
He = / s (G.19)

On the other hand, the propagator of photon should be calculated from the
S-matrix expansion in the second order perturbation theory. Therefore,
the Coulomb propagator is completely different from the photon prop-
agator which is calculated from the S-matrix expansion. However, the
Coulomb field interaction should be always considered for the scattering
process since electrons are already quantized.
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G.1.5 Correct Propagator of Photon

The correct propagator of photon is given in eq.(G.12), but if we con-
sider the scattering process such as electron-electron scattering in which
the scattering particles are all on the mass shell, then we should add the
Coulomb scattering in which the Coulomb propagator is employed. There-
fore, the total propagators of photon together with the Coulomb scattering
become

DCul(k) = % A% — part

(G.20)

k2 —ie k2

D (k) = 5 (5‘“’ — ka—kb> A — part.
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G.2 Feynman Propagator vs. Correct
Propagator

Here, we discuss the equivalence and /or difference between the T-matrices
which are calculated from Feynman and correct propagators, The discus-
sion of the equivalence between them is usually found in old field theory
textbooks [1, 2]. However, this equivalence proof is valid only if the propa-
gators appear in the scattering processes with free electrons. Therefore, if
there is a loop involved such as the fermion self-energy, then the expected
equivalence cannot be valid any more. Later in this section, we discuss
some physical effects which may arise from the T-matrix difference be-
tween the Feynman and the correct propagators.

G.2.1 Electron-Electron Scattering

As an example, we present the scattering T-matrices between two elec-
trons in which one electron with its four momentum p; scatters with an-
other electron with its four momentum p,, and after the scattering, we
find two electrons with their momenta of p’; and p’,. The four momentum
transfer is defined as ¢ = p; — p'; = p'5 — po.

(a) Feynman Propagator

In the case of Feynman propagator as given in eq.(G.4), the T-matrix
can be written in a straight forward way as

[\

T = — = [a(p )7 u(pn)a @2y u(pe) — a(p' ) yulp) - a(p')yu(p)] - (G21)

This is accidentally consistent with experiments.
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(b) Correct Propagator

Now, we evaluate the T-matrix with the correct propagator of photon
which is given by eq.(G.20). First, the T-matrix from the Coulomb part
can be written as

62

T = ;ﬂ(p’l)VOU(pl)ﬂ(p’Q)VOU(pz)- (G.22)

On the other hand, the T-matrix from the vector field A becomes

1
a?

T(A):Z_Z a(p Jyulp)u(®'s)yulp) — ')y - quip:) Gulp')y - quip)| - (G-23)

Now, we make use of the free Dirac equations for two electrons at the

initial and final states

(G.24)
and thus we can rewrite

u(p'y)y - quip) = a(@' )Y ulp)gl,  a@@'y)y - quip:) = —a(p'y)Y ulp)gy  (G.25)

where ¢ = E; — B,/ and ¢) = FE, — E,. Therefore, 7Y becomes

62 0,0

T = 7 [0 )rulp) - alp)yu(py) +U(p’l)VOU(pl)%U(p’z)vou(pz) . (G.26)
Note that one may be tempted to assume that ¢! = —¢) = ¢" at this point.
However, the energy conservation can be used only at the final stage of
the calculation, and therefore, the evaluation of the T-matrix should be
done without using the energy conservation. It should be noted that
the on-shell scattering processes like the electron-electron scattering must
conserve the energy, and therefore one can employ the equation ¢ = —¢)
when one calculates the cross section. Now, it is easy to check that the
sum of T(©) and TW becomes

o2

©) (4) — _
TO+TW = -

[a(p' )7 u(pr)a(p's)y upa) — a(p'y)yu(pr) - a(p'y)yu(ps))

62 0 0_|_ 0,0 L, L
T i]]qu QIQQ)U(IO D7 u(p)a(p's)y u(ps). (G.27)
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As can be seen, the T-matrix calculated from the correct propagator has an
extra-term which is not found in the T-matrix evaluated from the Feynman
propagator. Therefore, there exists a clear difference between the two T-
matrices in the electron-electron scattering case.

G.2.2 Right T-matrix from Feynman Propagator

Now, if one uses the energy conservation of ¢} = —¢) = ¢°, then the
Feynman propagator can reproduce the right T-matrix for the electron-
electron scattering cross section as one can find the equivalence proof in
old textbooks [1, 2]. Indeed, the on-shell scattering case is justified because
the energy conservation is taken into account for the whole system. This
should be one of the strong reasons why people accepted the Feynman
propagator. But it should be noted that the agreement of the Feynman
propagator calculation with experiments should be accidental.

G.2.3 Loop Diagrams (Fermion Self-energy)

As one sees from the comparison between the Feynman and correct
propagators, the use of free Dirac equations play a very important role.
Therefore, it is most likely that the two propagators should give the very
big difference for the fermion self-energy type diagrams in which interme-
diate fermions do not satisfy the free Dirac equations.

(a) Feynman Propagator

Using the Feynman propagator, the self-energy of fermion can be easily

written as

d*k 1 1
(F) — ;2 1
=) w/(27?)4%15—}6—m+i57 k? —ie
e? A

which is just the self-energy contribution normally found in the textbooks.
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(b) Correct Propagator

The self-energy of fermion with the correct propagator has never been
calculated up to now, but we should evaluate it since it is very important to
examine whether this self-energy contribution can agree with the normal
self-energy contribution with the Feynman propagator. First, the Coulomb
part does not contribute to the fermion self-energy because of the equal
time operations, and thus we should only calculate the contribution from
the vector potential part which can be written as

a k2 k®
d*k 1 (5 - >
(A () — 4 2/ a b . G.2
(p) = ie (27?)4’y ﬁ—}é—m+i5ﬁy k? —ie (G.29)

What we have to calculate is whether the X()(p) should be the same as
Y#)(p) or not. From the calculations, we see that it does not agree with

the one calculated from the Feynman propagator. In this respect, there is
no reason any more that we can employ the Feynman propagator for the
calculation that involves the photon propagation unless all fermions are
on the mass shell.
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[0 OH Non-integrable Potential

When the non-integrable potential appears as the small perturbation on
the Newton equation, what should be the best way to take into account
this small potential effect?

H.1 Non-integrable Potential

Here we discuss the physical effects of the non-integrable potential. The
additional potential from the new gravity model has the shape of %, and,
therefore, we can write the non-integrable potentials into the simple shape
in the following way

2mc? r

Va(r) = - (GmM)2 (i.1)

where

—6 for General Relativity

1 for New Gravity

In this case, the differential equation for the orbit with the additional
potential becomes

dr Z'ITQ\/QmE+2ma_i_L<GmM)2. (H.3)

@ % 2 Cro r2 22 r

This equation can be solved exactly and the effect due to the correction
appears in cos ¢ term and is written as

A
T 1+ Ecosg<%90> e
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where A, and L, are given as

12 qGQMQmZ 1
M= gt L= T Tnxe(1egn). @)

Here, the 7 is defined as

B qGQMQ
n= 2 R4.,2

(H.6)

which is a very small number. It is around 10~® for the planet motion such
as the earth or Mercury.

H.1.1 Effects of Non-integrable Potential on Solution

The solution of eq.(H.4) has a serious problem in that the orbit is not
closed. This is quite well known that the potential with the non-integrable
shape such as V,(r) = r% gives rise to the orbit which is not closed. It is, of
course, clear that this type of orbits should not happen in nature.

The abnormal behavior of the solution eq.(H.4) can also be seen from
the following term

L 1
cos (7%) ~ cos(p + §ng0). (H.7)
It should be interesting to see that this term cannot be described in terms
of the cartesian coordinates of = = rcosy, y = rsinp. In fact, cos(¢ + 1n¢)
term becomes

1 T 1 Y 1

- . Z — Zgin = H.
cos(go—l—Qn(p) —Cos Si)p — sin g (H.8)

and there is no way to transform the cos %ngp term into z, y coordinates
even though we started from this cartesian coordinate. This is very serious
since the solution expressed by polar coordinates cannot be written any
more in the cartesian coordinates. This is related to the fact that the orbit
is not closed due to the non-integrable potential effects.
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H.1.2 Discontinuity of Orbit

The effect of the non-integral potential can be further seen as the dis-
continuity of the orbit trajectory since the orbit is not closed. In order
to see this discontinuity of the orbit, we first start from the orbit solution
with the non-integral potential, which is eq.(H.4)

Ay

"= 1+6COS(1+%7])Q0'

In this case, we find the radius r at ¢ =0 and ¢ = 27 as

Ag
= =0 H.9
r T o P (H.9)
A
r = —24—— p=2r. (H.10)
1 +ecosmn

Therefore the difference Ar becomes
1
AT = 1(pr) — T(p=0) = §Ag7r27725 ~ 0.15 cm (H.11)

for the Mercury orbit case of the general relativity as an example. This
means that the orbit is discontinuous when ¢ becomes 27. This is not
acceptable for the classical mechanics, and indeed it disagrees with the
observation. In addition, eq.(H.4) cannot generate the perihelion shift,
and this can be easily seen from the orbit trajectory of eq.(H.4).
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H.2 Perturbative Treatment of Non-integrable Po-
tential

Here we should present a perturbative treatment of the non-integrable
potential. This must be the only way to reliably treat the non-integrability
in classical mechanics.

H.2.1 Integrable Expression

The equation for the orbit determination becomes

dr T 9 [2mE n 2moa 1 q (GmM\’

_— pr— _— = ’]” S —

de b 02 02y r2  (2c2 r
2mFE 2mao 1

= 72 /1+n\/€2(1+77)+€2(1+77)7“_ﬁ' (H.12)

Therefore, we can rewrite the above equation as

d
V1+ndp = L . (H.13)

2 2mE 2ma. 1
r \/ Py T P

Here we note that n = L (GmM )’ is a very small number which is of the

order 1 ~ 107, Now in order to keep the effect of the non-integrable poten-
tial in terms of integrable expression, we should make an approximation
as

V14 nde >~ dp. (H.14)

The reason why we should make this approximation is because we should
consider the dynamical effect as the perturbation while the 7 in the right
hand side of eq.(H.13) should only change the value of constants such as
E or a in the differential equation. In this way, the equation to determine
the orbit becomes

dr 9 2mE 2mao 1
— = - = H.15
dp \/62(1 +1) * C(L+n)r r? (FL.15)
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which gives the right orbit solution. Now the orbit is closed, and the
solution can be written as

A
r=—>795 (H.16)
1+ecosep
where A, is given as
EQ
A, = ——(1 . H.1

Note that the ¢ is also changed due to the 1 term, but here we can safely
neglect this effect since it does not play any role for physical observables.
Therefore, the effect of the additional potential is to change the radius A,
of the orbit even though this change is very small indeed. Now eq.(H.16)
clearly shows that there is no perihelion shift, and this is very reasonable
since the additional potential cannot shift the main axis of the orbit.

H.2.2 Higher Order Effect of Perturbation

Here we should estimate the higher order effect of the perturbation in

eq.(H.13). Denoting the solution of eq.(H.16) by r(©
b0 — A
1+ecosp

and the perturbative part of the radius by ' (r = r® 4+ 1), we can write
the equation for 7’ as

dr’ 1 2mE 2mao 1
— = —p(r(0)? — H.18
iy~ 2" \/152(1 ) A+ )@ o) (H.18)

where the right side depends only on ¢. Here, we should make a rough

estimation and only consider the case in which the eccentricity ¢ is zero. In
this case, the right side does not depend on the variable £, and thus we can
prove that the right side is zero. Therefore, the higher order correction of
r’ should be proportional to the eccentricity ¢ and can be written as

r' ~ ConeA, (H.19)

where C; should be some numerical constant. For the earth revolution,
the value of ¢ is very small (¢ ~ 0.0167) and thus we can safely ignore this
higher order perturbative effect.
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H.3 Period Corrections from
General Relativity

Here we discuss briefly the period corrections generated by the addi-
tional potential of the general relativity. The gravitational potential to-
gether with the additional potential from the general relativity is given

as
GM 3 (GmM\>
Vir)=——-" 2( o ) . (H.20)
r mc r
Therefore the Newton equation becomes
GmM L?]
= — —= H.21
mr 2 + o ( )
where Lg is defined as
6G>M>*m?
L§ = (? — — (H.22)

c
The solution of the differential equation is given by taking into account
the perturbative treatment of the non-integrable potential

A
r=—>735_ (H.23)
1+ecosep
where A, is given as
L2
A, = g, H.24
g9 GMm2 ( )

Therefore, the period 7' can be determined when we integrate ¢ = # over

the orbit period as

/¢ T 2w ) ) 2 1
— dt = rede = A / —d H.25
m/o /o L o (1+ecosy)? 4 (H.25)

which can be calculated to be
wT =27m(1 — 27). (H.26)

In this case, the correction AT to the period can be written as
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H.3.1 Earth Revolution Period

For the earth revolution around the sun, the correction to the period T’
due to the general relativity becomes

ATgr = —3.8  [s/year] (H.28)

which is in the wrong direction as compared to the observation in terms of
the leap second delay. In addition, this value is, by far, too large compared
to the leap second, and in fact, the observed value of the leap second is
around 0.62 [s/year]. Therefore, the correction to the earth period from
the general relativity should be completely ruled out from the observation.

H.4 Gravitational Wave

It is really a shame as a theoretical physicist that we have to make a brief
explanation about the gravitational wave. It is beyond imagination that
some group of people insisted that they observed a signal of the gravita-
tional wave. Those people who claimed a “discovery” of the gravitational
wave should be far from physicists, and their standard of understanding
physics must be lower than the fourth grade student of university. The
physical observation can be done only if the object should have any inter-
actions with matters whatever it can be. However, the gravitational wave
which is a classical wave has no interaction with any physical objects. This
means that its observation of their claim does not make sense.

When a physical object can propagate in vacuum, then it must be a
particle like photon whatever it may be, even though massless. This is
confirmed from the vast amount of experiments, and by now, “the ether
hypothesis” is completely excluded. In fact, all modern physics is based
on the relativity principle, and there is no experiment which contradicts
the relativity.
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H.5 Predictions of New Gravity Model

By now, a new gravity model is constructed, and as a byproduct, there
appears the additional gravitational potential. This is a very small term,
but its effect can be measurable. Indeed, this is the relativistic effect which
becomes

v

2
(—) ~1.0x 1078 (H.29)
&

for the earth revolution around the sun. On the other hand, the leap

second of the earth revolution is found to be

(%) ~2x107® (H.30)

which is just the same order of magnitude as the relativistic effect. There-
fore, as we see later, it is natural that the leap second value can be under-
stood by the additional potential of the new gravity model.

H.5.1 Period Shifts in Additional Potential

In the new gravity model, there appears the additional potential in ad-
dition to the normal gravitational potential. In the case of the earth
revolution around the sun, this potential is written as

GmM>2

r

vy = - (

r 2mc?

(H.31)

where the second term is the additional potential [5]. Here, G and ¢ denote
the gravitational constant and the velocity of light, respectively. m and M
correspond to the masses of the earth and the sun, respectively.

e Non-integrable Potential :

As discussed in the previous chapter, the additional potential should be
a non-integrable, and therefore, the treatment should be done in terms
of the perturbation theory. In this case, the Newton equation with the
perturbative procedure of the additional potential can be solved and the
period T of the revolution is written as

wT =~ 27(1 + 2n) (H.32)
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where 7 is given as

GQMZ
AR
Here, R is the average radius of the earth orbit. The angular velocity w is
related to the period 7' by

n= (H.33)

2
= —. H.34
W= (H.34)
The period shift due to the additional potential becomes
AT
— =2 H.35
T =21 (H.35)

which is the delay of the period of the revolution [4, 5]0

H.5.2 Period Shifts of Earth Revolution (Leap Second)

In the earth revolution, the orbit radius, the mass of the sun and the
angular velocity can be written as

R=1.496 x 10" m, M =1.989 x 10* kg, w=1.991 x 107", (H.36)

In this case, the period shift becomes

AT
=2~ 1.981 1078 (H.37)

Therefore, the period of the earth revolution per year amounts to
ATy =0.621 [s/year] (H.38)

which is a delay. This suggests that the corrections must be necessary in
terms of the leap second.

e Leap Second :

In fact, the leap second corrections have been made for more than 40
years. The first leap second correction started from June 1972, and for 40
years, people made corrections of 25 second. Therefore, the average leap
second per year becomes

ATS% ~0.625+0.013 [s/year] (H.39)
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which agrees perfectly with the prediction of eq.(H.38).

e Definition of Newcomb Time :

Newcomb defined the time series of second in terms of the earth revolution
period. However, the recent measurement of time in terms of atomic clock
turns out to deviate from the Newcomb time [16]. This deviation should be
due to the relativistic effects, and indeed this deviation can be understood
by the additional potential of gravity.
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1.2.3 Minkowski [ [J
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O0000000000E?-p22 000000 E?-p?l=E—p2? 0000
00000000000000000000000000000000000000
00000000000 0000000

E? —p?? = E? — p*c® = (mc?)? (I.21)

gbobobooogbbbuoooub pbbbuoooobbbuoogobn

2
E = +/(mc®)? + p2c® = mc* + f_m + - (1.22)

gbbobbboooobbbuoooobbboooobbodan
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gboboggbogoboogobuoobobooobuooboooboboooboon
ooboobobooooooog pdboobob mOOoOooOooO VAo

2
V= % (1.23)

goooboooobbobod pdd mUdoboboooobon

2
bc p

V="n~=— 1.24

FE m ( )
O000oooooououoouoouoouoo-

OOO00O00b0000d Lorentz D OOD

vE
ps =7 (px + ?) ., E'=~(E+up,) (L.25)

O0o00o0odoooooooooooooooooooooon (pIEc2)DDD
00000000 Voo (12500
pzlc2 7( x+vc_§) 02

E 4 (E+vpy) (1:26)

Vv

gboooobobobobooboobo pO0bOO0ODLO0

pacc2
+v

gbobobooodgobobod ‘/i:sz,CQ,‘/Q:UDDDDDDDDD(I.27)|:|

V4
1+ Y32

(1.28)

gbboobboobouogdgbboboooobbod
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gboogbobodbogobuogbboobuoobbooboobobuooboon
OO000D0000000000O0NewtonUO O OO Maxwell 0 000 Galilei O O
OLorentzUOUODOODOOODOOODODOOODOOODOOODOODOOO

e Newton 00 00 Galilei OO

GalileiDOOODOOODOODO
r=1"+ovt', t=t (1.29)

OO0O000000 NewtonODOOODOOOOOOO

Lz oU 22 U
ar_ 97 ar 9% I
e or  "w? T ox (1.30)

OO0OONewton DUO0O0 Galilei DODOOO000OO0OOO0OOOOOOOO

e Newton [l 0 J [0 Lorentz [ [J

LorentzOOOODODO

=7y +ot'), t=xv (t' + %x’) (1.31)

gboboboooobboogobobod

/ / dz’
d_a: _ dx’ 4+ vdt _ v +U, (1.32)
dt  dt' 4+ Hda' 14 L4z

2y

gbooooogn

d*x 1 i < o’ 4 v ) CZZTQI y d*a’ (133)
2 T v g vdr | T NG 2 :
dt y(dt + Zdx') \ 1+ 59 8 <1 N U%ﬂ) dt

O00O0ONewtonOOODOOODOODODO0OODOOO0OO0DOO, Newton O Lorentz
Oooooooooboooo
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e Maxwell 0 00O Galilei D [

OOOob00d0OMaxwellUODOOODO EOOOO

1 02

OO0O00000GalileiDOOOnO

0 0 0 0 0

1/0 A R

O0O000OMaxwell OO0 GalileiDDOODOODODOODOOODOOOOODOO

goobooo

e Maxwell [0 [0 0O 0 Lorentz [ [J
LorentzO OO O QOQOO
1, 1,

2 Ot2 2 ot?
OO00O00OMaxwellOOOO LorentzO OO0 OO0 OQOQoQoQoQonQ

(1.37)
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I.b Udoouooooogod

OO000000ooooOOoo0O0ooooDOoboD ArO0O0O0OOODDOD AtO
O00000O0O0000DOObO0bODOOO000bDOO00oDboOOoOoooDD AtO
obobboboobooboobooboobb

I.5.1 0000O0O0DODOOODOOoOoOOogo

00 o 0000000000000O (DOoDoOoOooOO)00O0O0O000oooo
Ooo0oooboooooooooboOobooOobooboooD ¢vODOOODOODOO
gbogdbogboboogbbooboobboobbuoobbuooobboobboonn
gbobooboobooboboboboboboboobobobobboobobobog
0000 (2A7) DO00O0OO0OO0OO0OO0OO0OO0O0OOO0OOOOO

¢ =cAr (1.38)

gbbogbogggboogbboogbooobooboboobobuoobboonon
O000000000000000000000000000000000 (2At) O
gboogobo

V (cAt)? — (cAT)?2 = vAt (1.39)

U2

gbbogbbbuooogbbbuoooobbbuoooobbodao

oboooboboobon

I.5.2 O0O0O0OOOO0OODOOOODOOOO0

doooooooooooooooooooooooooooooooooooaa
0000000 (—v) D000000000 Lorentz 00000000
v
' =y(x — vt), t'z*y(t—gx), v =y, =z (L.41)

000000000 (—v) OO0OOOOOOOU00OO0DOODODODOOOOOOOOO
gbooboodboboogbbobbuogobbuoobobooooobobobuoobboonon
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gbbobooogbbbuoooobbboooon

U2

000000000000 (I.40)0 O (1.42) D0D0O0O0O0DODOOOOOOAt O AT
goboboooobbbuogooboboooobobobuoooobboboo

I.5.3 000O0oooooooon

0000000000 +000000000 «=vt 0000000000000
OOoooboboboboo+ogoob0boboun, Lorentz DO OO

z' = y(x+vt) = vt (1.43)

0000000000 vAt = ywAt, cAt = ~ycAt 0000000000000
000 (1.40) O

: 1
Ar=y1-5 x ——— At = At
c [1_ w2

gboboobobuoooobbooogbobobooon

I.b4 0OO0OOOOO

gbogobuogbboobdobbooboobboobboobbodobood
gboobodbbogbobobodgbboobooboboobuoobobooboonon
gbbobooogbbbuoooobbboooon

000000000000 A7r000000000 A¢(D00O0O0)0000OO
OOo0000b00oo0oDbDOo0o0o0ooO0ooboO0oD ArObDOoO0OOODOODO
rOoo0bodboooobobooboooooboobobooo rooboooobon
O000000000 Lorentz UDUODOODOO Lorentz UDOOODOOOODOO
0000000000 Ar0O00D0D0 AtODO0ODOOO0ODOOODOOO

oboobobobobbobobob roogboobuooboobooboon
gbooboboooboboboobobuoboobob oL robooooboobog
OoO0o0o0o0OOo0o0oo00 A¢toobooOoooooooboooo
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I.e UOOoooogg

ooobobobobooooboboboboobobobobobooobn
googbobobobooooobobobooooobobobobobobobog
gbooboobo

I..1 0O0O0O0O0OOOOO

D000 0000000000000 000D00000 Lorentz OO ODOODO
gbboobugooobuodbbodbbuoobbuoobbooobooobobn
gbobogobuogogboguobobogboobbuodb pdbbooboooo
Oooooogg po

p’:v( _Z_;E):< v) \/1:7-_ \/7 (1.44)

gboogbbbuogoobboogobboboooooon

1+
1—

Qle

N=A

(.45)

ol

0000000000000 0000000000 (red shift) 000000000
gbbbuoooobbbobbboodgbbboooobbbdan
000000000 (infra-red) D0 000 (ultra-violet) 0000000000
gbbogobdgbooobooobuoobobuoobboobobobuoobboonn
gbobogdboo,gobbuoodboogbbobooobbuooobbooobn
gbbboooobbboodobbobbboooobbban
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1.2 OO0O0ODOOOOODOOOODODOOOO

00000000000 ((@O000o0oO0)0000o0o0o0o0oooooo0oo
000000000000000000 0 no~2x10°0000000000
oboooobood oo oo

™= 5 (I.46)

O000000000000000 I'D Lerentz OO DOO0O0OODOOOOODOOO
OO0 Lorentz U0 ODO0OO0OOODOOODOO

e 0D OODUODLO L. D[DOOO0ODOODOODLOOODOODODOOD
000 L O Lorentz D000 z=~(x'+0vt')=~vt’ 00O

L = ~vry (1.47)

0000000000000 1GeV/c>000000000000DO00O000O v~c
obooodb y~106 0000000000000 O0ODO0ODOO LO

L=~v7g=10.6 x 3 x 10* x 2 x 107% ~ 6.3 km (1.48)

gboogbooobugobouobobuooobooobooobboobboonn
obobbooboobooboon

1.3 OU00O0OODODODDODOOODOOOOO

gboogobuogbobobuogbbuoobbooboobbuoobbuooboon
000000000 (147)0000000000000000000000000
gobobodg
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