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[0 O0G Photon Propagator and
Electron-Electron
Scattering

Here, we discuss the photon propagator and its consequence on the electron-
electron scattering process. Even though the Feynman propagator is not
a correct one, it can reproduce the right scattering T-matrix of electron-
electron scattering. We here clarify the reason why it can accidentally
agree with the calculated T-matrix of the correct propagator.

G.1 Photon Propagator

When we calculate the S-matrix elements in the process of the elec-
tromagnetic interaction H' = e [ j,A*d*z in the second order perturbation
theory, then we have to evaluate the propagator of photon. This is written
as

(OT{ A" (1) A" (2) }0) (G.1)

where A#(x) is given as

1 —iw, ik-r iwpt—ik-r
A“(x):zz\/m627A CL)\@ N L (G.2)

This should be a solution of the following equation of motion for the gauge
field

0,(0"A” — 9" A = 0, (G.3)
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In this case, a question may arise as to how we can calculate the prop-
agator of photon since the photon field A has one redundant degree of
freedom. As we discuss below, there is some problem for determining the
propagator of photon.

G.1.1 Feynman Propagator of Photon

Before going to the evaluation of the photon propagator in detail, we
should make a comment on the Feynman propagator of photon. The prop-
agator of photon which is known as the Feynman propagator can be written
as

Dy = -9 (C.4)
K k2 e’ ’

This is a standard photon propagator which can be found in most of the
field theory textbooks. However, it is also well-known that this propagator
cannot satisfy the condition of the polarization summation in a correct way.
This is clear since it cannot satisfy the following equation

k.l/

kDR () = =5 #0 (G.5)

where the left hand side should be zero due to the Lorentz condition.
Further, it cannot satisfy the Coulomb gauge condition, and therefore
whatever they invent, there is no way to claim that the Feynman propa-
gator is a right one. However, as will be seen below, Feynman propagator
can reproduce the same T-matrix of electron-electron scattering as the one
calculated from the correct propagator as long as the scattering particles
are on the mass shell. Since the agreement of the T-matrices evaluated
from the two propagators is entirely based on the free Dirac equation of
electrons involved in the scattering process, the Feynman propagator can-
not be applied for physical processes involving electrons which are not free
or off the mass shell.
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G.1.2 Calculation of (0|T{A"(x1)A"(x2)}|0)

Here, we should evaluate the denominator of the propagator
(0|T{AH(x1)A"(2z2)}|0) explicitly in order to avoid any confusions. First, we
insert the vector potential with field quantization, and find

<0|T{AM([E1)AV To }|0 Z Z \/Wek /\Ek:’ N X

ko kN
<0|T{<Ck>\6 ikxy +C zkxl) (C};, Ve —ik'zo + Cpr )\/e )} |O> (G6)

which can be calculated to be

[ Bk 1 N N

O @) A H0) = 3 [ Grmdiacin (€47000) + 7 0(—0)  (G.1

A=1

where we define

r=x1—T3, O(t)=1 for t>0, 6O(t)=0 for t<O0. (G.8)

By noting the following complex plane integrations

/Oo dko pikot —w%: for t>0 o)
= G.9
2m) kg — k* —i gt
—o (2m) Ko ZS e = for t<0
Wi,
we can rewrite (0|T{A"(x1)A"(x2)}|0) as
. . . d4k: 61k T1—22)
(OIT{A" (1) A (22)}[0) = —i o x fok Ak (G.10)

This is just the propagator of photon. Now, the problem comes up when
we evaluate the summation of the polarization vector.
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G.1.3 Summation of Polarization States

Up to now, we have presented the expression of the propagator evalu-
ation of photon without making any comments on the field quantization,
Now, we should quantize only the vector field A which depends on time.
The Coulomb field A° is already solved from the constraint equation, and
thus it cannot appear in the S-matrix expansion. Therefore, we have the
condition that ¢y = 0. In addition, we should respect the Coulomb gauge

condition
k~ek7,\ = 0. (Gll)

Now, we are ready to construct the numerator of the propagator of photon,
and we find

2
" . kakb

D e = (5 b_ o ) (CG.12)

A=1

which is the only possible solution for the summation of the polarization

vector. Note that this can satisfy the condition of k - €,y = 0, because the
left hand side of eq.(G.12) multiplied by £* becomes

o
2
(]

GZ,)\GZ,)\ =0 (G.13)
A—=1

while the right hand side can be calculated as

kKb k2kb
a ab _1.b _
k;(a ——k2>—k:— =0 (G.14)

and thus eq.(G.12) can satisfy all the conditions we have for the polariza-
tion vectors. Therefore, the propagator of photon D becomes

D™(k) = ! <5ab—kakb>. (G.15)

k2 — qe k2
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G.1.4 Coulomb Propagator

The Coulomb part is solved exactly since it does not depend on time.
Namely the equation of motion for the Coulomb part is a constraint equa-
tion which has nothing to do with the quantization of field. Note that
the field quantization should always involve the time dependence of fields.
Now, the equation of motion for the A" part can be written as

V2AY = —eyy = —ej°(2) (G.16)

which is a constraint equation. However, the right hand side is made of
electron fields, and the quantization of the electron fields is already done.
It should be noted that the Coulomb case is calculated from the first order
perturbation theory since it arises from

He=e / 300t 7 A () dPr — % / (VA")2dPr. (G.17)

In this case, the interaction Hamiltonian between two Dirac fields ;¢ and
79 becomes

2 000 Y0
He = S /Mdshdz)’rz (G.18)

_g ‘7‘1—7'2‘

which can be rewritten in terms of the momentum representation as

_ 2 [H@5(-q) 4
He = / s (G.19)

On the other hand, the propagator of photon should be calculated from the

S-matrix expansion in the second order perturbation theory. Therefore,
the Coulomb propagator is completely different from the photon prop-
agator which is calculated from the S-matrix expansion. However, the
Coulomb field interaction should be always considered for the scattering
process since electrons are already quantized.



104 0O O G Photon Propagator and Electron-Electron Scattering

G.1.5 Correct Propagator of Photon

The correct propagator of photon is given in eq.(G.12), but if we con-
sider the scattering process such as electron-electron scattering in which
the scattering particles are all on the mass shell, then we should add the
Coulomb scattering in which the Coulomb propagator is employed. There-
fore, the total propagators of photon together with the Coulomb scattering
become

DCul(k) = % A% — part

(G.20)

k2 —ie k2

D (k) = 5 (5‘“’ — ka—kb> A — part.
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G.2 Feynman Propagator vs. Correct
Propagator

Here, we discuss the equivalence and /or difference between the T-matrices
which are calculated from Feynman and correct propagators, The discus-
sion of the equivalence between them is usually found in old field theory
textbooks [1, 2]. However, this equivalence proof is valid only if the propa-
gators appear in the scattering processes with free electrons. Therefore, if
there is a loop involved such as the fermion self-energy, then the expected
equivalence cannot be valid any more. Later in this section, we discuss
some physical effects which may arise from the T-matrix difference be-
tween the Feynman and the correct propagators.

G.2.1 Electron-Electron Scattering

As an example, we present the scattering T-matrices between two elec-
trons in which one electron with its four momentum p; scatters with an-
other electron with its four momentum p,, and after the scattering, we
find two electrons with their momenta of p’; and p’,. The four momentum
transfer is defined as ¢ = p; — p'; = p'5 — po.

(a) Feynman Propagator

In the case of Feynman propagator as given in eq.(G.4), the T-matrix
can be written in a straight forward way as

[\

T = — = [a(p )7 u(pn)a @2y u(pe) — a(p' ) yulp) - a(p')yu(p)] - (G21)

This is accidentally consistent with experiments.
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(b) Correct Propagator

Now, we evaluate the T-matrix with the correct propagator of photon
which is given by eq.(G.20). First, the T-matrix from the Coulomb part
can be written as

62

T = ;ﬂ(p’l)VOU(pl)ﬂ(p’Q)VOU(pz)- (G.22)

On the other hand, the T-matrix from the vector field A becomes

1
a?

T(A):Z_Z a(p Jyulp)u(®'s)yulp) — ')y - quip:) Gulp')y - quip)| - (G-23)

Now, we make use of the free Dirac equations for two electrons at the

initial and final states

(G.24)
and thus we can rewrite

u(p'y)y - quip) = a(@' )Y ulp)gl,  a@@'y)y - quip:) = —a(p'y)Y ulp)gy  (G.25)

where ¢ = E; — B,/ and ¢) = FE, — E,. Therefore, 7Y becomes

62 0,0

T = 7 [0 )rulp) - alp)yu(py) +U(p’l)VOU(pl)%U(p’z)vou(pz) . (G.26)
Note that one may be tempted to assume that ¢! = —¢) = ¢" at this point.
However, the energy conservation can be used only at the final stage of
the calculation, and therefore, the evaluation of the T-matrix should be
done without using the energy conservation. It should be noted that
the on-shell scattering processes like the electron-electron scattering must
conserve the energy, and therefore one can employ the equation ¢ = —¢)
when one calculates the cross section. Now, it is easy to check that the
sum of T(©) and TW becomes

o2

©) (4) — _
TO+TW = -

[a(p' )7 u(pr)a(p's)y upa) — a(p'y)yu(pr) - a(p'y)yu(ps))

62 0 0_|_ 0,0 L, L
T i]]qu QIQQ)U(IO D7 u(p)a(p's)y u(ps). (G.27)
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As can be seen, the T-matrix calculated from the correct propagator has an
extra-term which is not found in the T-matrix evaluated from the Feynman
propagator. Therefore, there exists a clear difference between the two T-

matrices in the electron-electron scattering case.

G.2.2 Right T-matrix from Feynman Propagator

Now, if one uses the energy conservation of ¢} = —¢) = ¢°, then the
Feynman propagator can reproduce the right T-matrix for the electron-
electron scattering cross section as one can find the equivalence proof in
old textbooks [1, 2]. Indeed, the on-shell scattering case is justified because
the energy conservation is taken into account for the whole system. This
should be one of the strong reasons why people accepted the Feynman
propagator. But it should be noted that the agreement of the Feynman
propagator calculation with experiments should be accidental.

G.2.3 Loop Diagrams (Fermion Self-energy)

As one sees from the comparison between the Feynman and correct
propagators, the use of free Dirac equations play a very important role.
Therefore, it is most likely that the two propagators should give the very
big difference for the fermion self-energy type diagrams in which interme-
diate fermions do not satisfy the free Dirac equations.

(a) Feynman Propagator

Using the Feynman propagator, the self-energy of fermion can be easily

written as

d*k 1 1
(F) — ;2 1
=) w/(27?)4%15—}6—m+i57 k? —ie
e? A

which is just the self-energy contribution normally found in the textbooks.
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(b) Correct Propagator

The self-energy of fermion with the correct propagator has never been
calculated up to now, but we should evaluate it since it is very important to
examine whether this self-energy contribution can agree with the normal
self-energy contribution with the Feynman propagator. First, the Coulomb
part does not contribute to the fermion self-energy because of the equal
time operations, and thus we should only calculate the contribution from
the vector potential part which can be written as

a k2 k®
d*k 1 (5 - >
(A () — 4 2/ a b . G.2
(p) = ie (27?)4’y ﬁ—}é—m+i5ﬁy k? —ie (G.29)

What we have to calculate is whether the X()(p) should be the same as
Y#)(p) or not. From the calculations, we see that it does not agree with

the one calculated from the Feynman propagator. In this respect, there is
no reason any more that we can employ the Feynman propagator for the
calculation that involves the photon propagation unless all fermions are
on the mass shell.



