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MOMENTUM DISTRIBUTIONS AFTER FRAGMENTATION
IN NUCLEUS-NUCLEUS COLLISIONS AT HIGH ENERGY'
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Abstract: We analyse the results of the experiment “He +target > *He + X at 1 GeV/nucl. We concentrate
on the “spectator peak”, where the velocity of the final fragment *He is equal to or larger than the
projectile velocity. The shape and absolute value of the cross section can be understood quan-
titatively. Several effects contribute to the cross section in the transverse.direction. But the *He
fragments emitted at 0° reflect pure spectator physics: the momentum distribution of the observed
He is related in a simple way to the momentum distribution in “He. Using the experimental
fragmentation cross section at 0° we deduce the shape of the momentum space wave function for the
relative neutron->He motion inside *He.

1. The spectator peak

The work which we present here was started after we had seen the results of the
fragmentation experiment

“He +target > *He+X . (1.1)

Anderson efal. ') have performed the experiment at the Bevalac at energies between
0.4 and 2.1 GeV/nucl. The momenta of the outgoing *He fragments are measured
while everything else remains unobserved. The data exhibit a characteristic peak in
the cross section at momenta where the velocities of the *He fragment and the “He
projectile coincide. This peak will be called the “spectator peak” with the following
idea in mind: this peak arises in the reaction (1.1) because the neutron is ripped off
the projectile while the remaining *He fragment continues its motion essentially
without being disturbed. To the degree to which this idea is correct, the momentum
distribution of the *He in the spectator peak reflects the momentum distribution of
the relative motion of the neutron-"He inside the *“He before the collision. Therefore
an analysis of the spectator peak could be a way to measure intrinsic momenta, i.c.
the nuclear wave function in momentum space (which is not the form factor!).

+ Supported in part by a grant from the German Federal Ministry for Research and Technology
(BMFT).

* Present address: Schweizer Institut fiir Nuklearforschung (SIN), CH-5234 Villingen, Switzerland.
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Spectator peaks have already been observed in earlier experiments: Bizard et al. )
study the fragmentation reaction eq. (1.1) with protons as target. Greiner et al. %
map the shape of the peak for '*C and 'O projectiles. Compared to these
experiments Anderson’s measurement covers a considerably wider range of *He
momenta. Some common basic features of the spectator peak appear in all experi-
ments. These properties become particularly simple in the projectile rest system. Let
us denote by k =(k,, k;) the momentum of the *He in this system (k; being the
component in beam direction and & the transverse components). Then the experi-
mental fragmentation cross section for the reaction (1.1) shows the following
features:

(a) Inthe neighborhood of the maximum the spectator peak is symmetric and can
be parametrized by a Gaussian

_g?_—_ =g e——kfké

T for |k|=<2k,, 1.2)
with ko = 110 MeV/c. For values |k|> 2k, the shape becomes asymmetric, the cross
section falls faster in longitudinal direction (k, = 0) than the transverse one (k;=0),

see fig. 1.

10° F T T T T T T T3
7 12 34 ]
104 :—‘3 o+ “C-» e +X =
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43
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Fig. 1. The spectator peak for the fragmentation reaction *He + '>C - *He + X. The experimental ') cross

section E do/d3k with k as the 3He momentum in the projectile rest frame is given for two cuts:

Transverse to the beam direction (i.e. k= 0) and in longitudinal direction (k, =0 and k; > 0). Note the
symmetry for small & and the asymmetry for large k.

(b) The width k, does not depend on the target or on the energy, but is
characteristic for the projectile. The integrated cross section in the peak is about
20 mb for hydrogen and 80 mb for Pb as targets and is independent of energy.
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These properties seem to support the spectator idea: The magnitude and shape do
not depend on the projectile energy as expected if the peak reflects intrinsic
properties. The r.m.s. momentum {p>)"/? for the n->He motion can be estimated
from the r.m.s. charge radius (r¥e of *He to

(PH2=2rHa}"*=135MeV/c. (1.3)

This value agrees well with the r.m.s. momentum width of the spectator peak
(k*)'"* =v3ko=130 MeV/c. (1.4)

A similar analysis has been performed for the spectator peak with '°O projectiles
[Abul-Magd et al.*)]. But the peak also shows features which do not fit into the
spectator picture: the asymmetry in longitudinal and transverse directions, for
instance. Since “He has spin zero, the intrinsic momentum distribution is necessarily
isotropic and the asymmetry must arise during the fragmentation process. The clue to
understanding the asymmetry may be found in the analysis by Bizard et al. %): These
authors observe that *He fragments at large transverse momenta have been scattered
off the target. Therefore those *He fragments are “participants’ rather than spec-
tators. Obviously the physics of the spectator peak is not clear-cut and a careful
analysis of the reaction mechanism seems to be called for. This analysis is the aim of
this paper. We give a short summary of the results.
The cross section for the fragmentation is decomposed into three terms

do do\¥F do\S?F do\X°
e =E(z) +E(F0) +E(FD) 1.9

which correspond to “elastic fragmentation” (EF, the “He breaks up but the target
remains in the ground state), to the “spectator” reaction (SP, a neutron of *He
interacts inelastically with the target while the *He continues its path unaffected) and
to the “knock-out” reaction (KO, the *He interacts inelastically with the target and
receives momentum). The three processes are depicted in fig. 2. The spectator term
always dominates the cross section under 0°, i.e. for kK, =0. In the transverse
direction, the spectator cross section is most important at small momenta, but the
knock-out cross section determines the behaviour for large |k,| and is mainly
responsible for the asymmetry.

To our knowledge there is only one paper which directly deals with reaction (1.1):
Bizard et al.’) calculate the break-up for protons as the target (here only elastic
fragmentation is possible) and put the emphasis on finite angles (large k). Several
papers treat deuteron break-up: Fildt et al. ®), Bertocchi ef al. ) and most recently
Nissen-Meyer et al. ®). These calculations are similar in spirit to ours, but mostly
concentrate on finite transverse momenta. The careful analysis of the 0° cross section
and its relation to the intrinsic wave function seem novel. '
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Fig. 2. Schematic drawing of the three processes which contribute to the fragmentation reaction in our
analysis.

2. Analysing the fragmentation reaction within Glauber theory

We wish to understand the details of the fragmentation process before we calculate
cross sections. Glauber’s multiple scattering formalism ®) provides an excellent
guide. it is a non-perturbative theory, i.e. goes beyond the impulse approximation,
yet it remains relatively simple: cross sections can be obtained in a closed form.
However, energy conservation is violated and must be included in the theory before
calculations are performed (sect. 3). In order to be specific we treat reaction (1.1)
with “He as the projectile, but the results are easily generalized to other projectiles.

As explained in the introduction, the projectile rest frame seems to be the system
in which the physics is most simple. Therefore we perform the calculation in this
frame. Our notation is summarized in the following equation:

“He {|®o)} + target {| — Po, To)}
->>He {|k, ho)} +n{|k,)} +target’ {|—Po—q, T)}. (2.1)

In the projectile rest frame the “He has the intrinsic wave function |,). The target
(intrinsic wave function | Ty)) arrives with momentum — Py. During the reaction the
“He breaks up into a *He nucleus (momentum k and wave function |h¢)) and a
neutron with momentum k. The target has received momentum transfer —q and is
excited into the state | T). The wave function of relative motion between the *He and
the neutron after break-up is denoted by x,, normalized as {x,|x,? =8 (@ —p’).

With this notation, the cross section for the fragmentation reaction eq. (2.1) is
written in Glauber theory as

do

&’ _,.
m= I S—e {xphoT|1— ‘11 (1-TI3)|Po; To)?, (2.2)

27

jeT



T. Fujita, J. Hiifner | Momentum distributions 497

where the ['; are the profile functions for the collision between a nucleon i from the
projectile and a nucleon j from the target. They are related to the nucleon-nucleon
scattering amplitude by a Fourier transform,

fNN(q>—— —[@etra). (2.3)

In the fragmentation experiment, the “He breaks up; this fact is translated into the
formalism by requiring the final n->He state to be orthogonal to the initial ground
state of “He,

<Xph0,¢0> =0. (2.4)

This relation has important consequences which will be discussed in detail later. In
the experiment neither the final state of the target |T') nor the momentum transfer q
are observed. Instead one measures the momentum k of the *He in the rest system of
“He. From momentum conservation.

q=k,+k, p==k.—k. (2.9)

The cross section eq. (2.2) has to be summed over all unobserved information before
it can be compared to the experiment. The final formula is

= [ da[ @ps®Ga-terpn 3 5 o

&b i ?
= [ @z | [ 52 gy shos TIA-Tlbos To| . (26)

We proceed to evaluate eq. (2.6). Spin degrees of freedom and baryonic excitations
(production of real and virtual A resonances) are neglected. Furthermore, we shall
often use not properly antisymmetrized wave functions.

The profile functions I';(x;" —x; ) depend on the transverse components of the
nucleon coordinates. If R, and Rt are the c.m. positions of the “He and the target,
respectively, then

x,-—xj=(xi—R,,)—(xj—RT)+Ra—RT. (27)

The impact parameter b which appears in egs. (2.2) and (2.6) is defined as
b = R: — R+. The intrinsic coordinates in the target are denoted by s; = x, — Ry and
Jacobi coordinates are chosen for the projectile,

1 1
xl_Ra=%§1, xs—Ra=i§3—%§2—Z§1,

2 1 1 1 1 (2‘8)
x;—R, =§§2—Z§1, x;—R,= —3&3—36>—13€,s .
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The ground-state wave function &, of “He is expanded in a complete set {. } of *He
intrinsic states,

Do(£1, &2, §3) =X @a(§1)ha (€2, €3) 2.9)

where the spectroscopic amplitudes ¢, are not necessarily normalized to one. All
excited states of *He are particle unstable, and since the ground state of *He is
observed, we approximate

Do(€1, &2, £3) = @o(E1)ho(€2, &3) . (2.10)

Then ho appears on both sides of the matrix element in eq. (2.6) and the following
short notation can be introduced

4

s3(b-%§l;[sj])=(h0| H ' 2(1—nj)|h0>,

JeTi= (2.11)
Si(b +%§1; (D= Hr 1-ry),

where the [s;] are the coordinates in the target nucleus. The S-matrix operators S
and S describe *He-target and neutron-target collisions, respectively. We introduce
the notation eq. (2.11) into eq. (2.6) and evaluate the sum over | T,

do 1, (dbd’
“I "I Q2w
(2.12)

d’k
X(To|S¥T(b'+3&"; [s;DS1(b +3£; [sDSHb' —3&"; [s,1S3(b —3&; [5,D| To).

The scattering function |x, )(P = 3q — k) is orthogonal to ¢, because of relation (2.4).
The factor of 2 arises since each of the two neutrons can contribute. In the following,
we have to approximate eq. (2.12). We want to do it such that unitarity is preserved
since it is an important element of any scattering theory. We explain unitarity for our
case. In Glauber theory (1—1I'(d)) is the S-matrix for nucleon-nucleon scattering
and must satisfy

) f £ PE x7 (©)edExe(£)0E (&)

-r®))’=1. (2.13)

This equation implies STS; =1 provided the arguments of $§ and S, are the same.
This holds under the following condition: If the wave functions y, are plane waves
(violating (x,|@o) = 0!), the integration over d’q in eq. (2.12) can be performed

I d’q e ™ xaata 1 Exsga(€) =™ CO8E 1y 30 4 (2.14)

and unitarity $;S¥ =1 applies.
We propose the following approximation scheme to eq. (2.12). The matrix
element in eq. (2.12) is decomposed into two terms,

(8515F8:8%) =(8538% ) +(S:83(S:1S¥ - 1)) (2.15)
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which is still exact. The bracket denotes expectation values with respect to | To). The
first term is kept unchanged but we approximate the second one,

(8383 ($18T — 1)) =(Ss(STNS:ST - 1) . (2.16)

Note that unitarity is preserved. The approximation eq. (2.16) seems necessary in
order to arrive at numerically tractable formulae. Processes are neglected where the
*He excites the target and the neutron collides with the target. These processes seem
less probable because of geometric reasons. The r.h.s. of eq. (2.16) has the form of a
distorted-wave Born approximation: The product S;S¥ is proportional to the cross
section for a neutron-target collision. During the collision the *He should not break
up. This is ensured by the factor (S5} which is the probability amplitude for the *He
not breaking up in the field of the target.

Eq. (2.16) is the main approximation. Its accuracy has not been checked. With the
help of eq. (2.16) the matrix element in eq. (2.12) is written as a sum of three terms
which, as will be shown, correspond to elastic fragmentation, spectator and knock-
out reactions, respectively:

(Si"SlSS,"Sg,) = (S;k )<Sl><S§‘ )(S:;)
+(SNSTHU(STS) ~ (STUS) +((SFS:)—(STXS5) . (2.17)

The matrix elements (S;) have the target ground state on both sides. They are the
S-matrix elements for elastic scattering. The expressions in the round brackets,

(STS)—(S¥XS) = §0<T0|S:lea)<Ta|SilT0>, (2.18)

clearly correspond to inelastic (a # 0!) collisions with the target. For hydrogen as
target (and neglecting A-degrees of freedom) there are no excited states of the target
and only the first term in eq. (2.17) survives.

The cross section which corresponds to the first term in eq. (2.17) is

do®F -2 4

T2 e
According to the numerical calculation the elastic fragmentation cross section is not
too important. The reason can be understood from eq. (2.19). The S-matrices vary
over a range of the size of the target. £ has the order of magnitude of the projectile.
One might be tempted to neglect the &-dependence in the (S;) altogether. Then

because of the orthogonality, eq. (2.19) gives zero. To arrive at a non-vanishing term
we expand in powers of £,

2
[ a6 a6 e s, b - 1XS:(b + 300}, @0o®)| . 219)

Lin (506~ 10X +36)

=x3"' (b —3£) +x T (b +3€) (2.20)
=x3"' )+ X (B)+£GVx1—3Vx3),
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with the optical phase shift functions x°*". For instance x3*' is proportional to the

optical potential for *He-target scattering. Since the *He-target optical potential is
about 3 times as large as the neutron-target one, the term proportional to £ is also
rather small. Or in basic physics: in order to break the *He in the mean field of the
target, the force on the neutron must be different from the one on the *He.

The other two terms in eq. (2.17) lead to cross sections of the form

do** d

T2 CPelk S bm G 0+ Tomn+ X(2To),

d KO d (2.21)
c;;k =2 J d°q Fxo(k, q) d—% (He+ Ty~ He+X(#Ty)).

Here the cross sections for inelastic neutron-target or “He-target collisions are
defined as

d’b d’b’ _ivo-sr
@m? ©

X 20 (TolSTBNTXT.IS:0)To),  (2.22)

%(3H6+TO—>3He+X(¢TO))=J'

and for the neutron-target inelastic scattering one obtains it by replacing S§3 by S;.
The cross sections eq. (2.22) can be taken from experiment or calculated according to

the paper by Glauber et al. '°). The form factors Fsp and Fxo are defined as
. 2 1
Falk.g)=| [ @ex5 0" ed) | >mlolbl,  2.239)
2
—ia- 1 .
Fxolk,q)= } f PExy &) e > ( 277)3[%(1( —9)P. (2.23b)

The arrow indicates the limit where x is approximated by a plane wave. Here ¢o
denotes the Fourier transform of ¢o. The spectator form factor Fsp only appeared
after the following approximation

2
t J AP x (&) e S (b — €)pol€)| =KS3(Bmax)) Fsp, (2.24)

which is true as long as the *He-target elastic S-matrix varies slowly over the
extension of the bound state wave function @o. The impact parameter b, is the
position where most of the cross section arises. There is one case, particularly
important for the *He fragmentation, where the approximation (2.24) is exact; if the
scattering wave is a plane wave, @o is a Gaussian and one looks at 0%, 1.e. k = (0, 0, k).
Then the left-hand side of eq. (2.24) is proportional to\l:p?o(k“)lz.
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We discuss the physics of eqs. (2.21): For the sake of clarity we take the limits
indicated in eqs. (2.23) where x, > exp (—ip-£¢)/(2#7)*'%. Then

sP
do

d’k

=2 (;’T"); \Bo(k)
(2.25)

KO o~ 2

d(‘lﬁk =2 I dzq%)l—;—z—@He+To—>3He+X(;ﬁTo))

The shape of the spectator cross section directly reflects the single-particle momen-
tum distribution. Since, as will be shown in the next section, the spectator cross
section dominates for small k, and the symmetry of the spectator peak in longitudinal
and transverse direction reflects the isotropy of the intrinsic motion. The relation
between the width of the peak and the r.m.s. momentum of the wave function, eqs.
(1.3) and (1.4) follows immediately from eq. (2.25). The height of the spectator peak
is determined by o, the total inelastic neutron-target cross section. At high energies,
this cross section is determined by geometry (size of the target) and depends weakly
on the energy, as observed for the spectator peak. For large k, i.e. kK >200MeV/c,
the spectator cross section still dominates the longitudinal momentum distribution
whereas the knock-out cross section do*°/d*k determines the transverse direction.
Since the knock-out cross section is a folding of the intrinsic momentum space
distribution with the inelastic cross section, do*®/d*k falls off slower. The
dominance of the spectator cross section in parallel direction and the importance of
the knock-out process in transverse direction is the reason for the observed asym-
metry. These arguments reproduce qualitatively all features of the spectator peak.
The numerical calculation reported upon in the next section proves also the
quantitative agreement with experiment.

3. The numerical calculation

Energy conservation is neglected in the Glauber approximation to multiple
scattering. In many practical cases, e.g. elastic scattering, this neglect has little
consequence. Not so for the fragmentation reaction studied in this paper. Ene-zy
conservation cuts in severely. For instance it introduces a kinematical limit for the
momentum distribution do/dk in the spectator peak. We derive it for the longi-
tudinal direction. Energy-momentum balance for reaction eq. (1.1) is written in the
laboratory system of reference:

“He [Py, E4]+To[O, My,]>*He [Ps, E,— M1+

2
(Py—P3) ] ’ 3.1)

- =7
+(T+n)[P4 P3,MTO+M 2(MT0+M)

where energy and momentum of each partner is given in brackets. In the kinematical
limit the *He carries away the maximal kinetic energy. The target plus neutron
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forming a bound A + 1 system, absorb the momentum difference P, — P; but do not
carry significant kinetic energy because of the large mass. A Lorentz transformation
into the rest system of the projectile leads to the following kinematical limit:
max E P 7
k= (VE MM -2 (E4—M)) >IM forEsmo. (32)
M, E, 8
Even if the projectile energy E, goes to infinity, the parallel momentum K| of He in
the projectile rest system cannot exceed 800 MeV/c! More generally: If the pro-
jectile has Ap nucleons, the kinematical limit for the fragment with (Ap — 1) nucleons
is

e =(1—ﬁ)M for E - o0. (3.3)
In the actual experiment, where the kinetic energy of the incident *Heis 1 GeV/nucl,
the kinematical limit is at 500 MeV/c. Since experimental points go up to
400 MeV/c, energy conservation must be handled carefully. We modify the expres-
sions for the cross sections derived in the previous sections in the following way. Eqs.
(2.19) or (2.21) are in the form

——=1d%qg|T k, 2 , 34
=[ dqITe,q) (3.4)
where the g-integration is performed in the transverse direction. We replace ¢ by the
three-dimensional vector of momentum transfer and introduce a delta function for
energy conservation in the projectile rest frame:

do _

Ferae I d>q Bod(E% —Ex +VM3 + k> +VM* +(k —q)* - M| Tk, g)*. (3.5)

Here Bo = P,/E, is the velocity of the beam and E% and EF are the energies of the
target before and after the reaction, respectively,

Er=vMZ+P3,
VMZ +(Po+q)?, (EF) (3.6)
Er= .
(A—n)VMZ+(Po/AD)* + ¥ VM +(P/A1+q;)° (KO or SP) .
i=1

The final energy of the target depends on the particular process: For elastic
fragmentation (EF) the target absorbes the momentum transfer ¢ as a whole. For an
inelastic case, n nucleons are knocked out of the target and share the momentum
transfer ¢ =Y, ¢;. Eq. (3.6) gives the final energies of the target for the two cases. We
neglect binding effects. It seems necessary to know the details of the final target state
in order to treat energy conservation properly. This is not so, at least not at high
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energy where the difference
Et ~E' = Boqi+0(q”)/ (Po/ Ar)*) (3.7)

is independent of the two forms of eq. (3.6) for E % atleast to leading order. Since (g°)
remains constant with increasing energy the correction decreases. In the present
experiment we estimate the error to be few percent. We show the importance of
energy conservation for the fragmentation reaction. We assume the matrix element
|T(k, q)| = const and perform the g-integration in eq. (3.5) assuming k, =0. The
result called “phase space” is plotted in fig. 3 as a function of k.

T T T T T T3
3 [ ]
S 1

@ ~ N i
® N 0.4 GeVnucl. |
a 10 \ | 3
0 C \ 1GeV/nucl, .
@ = \ 3
a N \ 10 GeV/nucl. ]
£ - \ -
a L 0.26GeV/nucl. i
- .
jool—L 1 111
0 0.2 0.4 0.6 0.8
ky [Gev/c]

Fig. 3. The importance of energy conservation for the fragmentation reaction. The cross section is

calculated by assuming the dynamical matrix element to be constant but taking energy conservation into

account properly. This result is called phase space. It is plotted for different incident energies as a function
of k; for k, = 0. Observe how abruptly the phase space drops.

The fragmentation reaction which we discuss is performed at high energy. It seems
reasonable to neglect Coulomb effects. Furthermore one is tempted to assume all
scattering wave functions to be plane waves. This is certainly correct for the incident
wave (the ‘He-target relative motion), but dangerous for the relative motion
between the *He and the neutron after break-up, since they move rather slowly
relative to each other. For a typical momentum transfer {g°)"/* =400 MeV/c to the
neutron in the *He spectator process, the neutron energy is (g%)/2M =80 MeV. A
careful consideration of the *He final state interaction is also imposed by the
orthogonality requirement eq. (2.4), which now reads

(plea)=0. (3.8)

We shall assume that the neutron after the break-up moves in the same potential V
as the one that binds the neutron to the *He. Then the solutions of the Schrodinger
equation for the bound state ¢, and the scattering wave y, are automatically
orthogonal. In order to avoid excessive numerical integrations, we assume the
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potential to be of separable form
(Ve ='lualulr) . 3.9

The strength A is determined such that a bound state exists at the experimental value
of the separation energy of “He (E = —20 MeV). The shape of {T'|u) is related to the

bound state wave function ¢o by
2

z?(k)oc(EB———é%E) o (k). (3.10)

Then the Lippmann-Schwinger equation for the scattering function in the potential
eq. (3.9) can be solved analytically and is given by k3 = ~2MFEgp,

2 2 -~ ~k
) (k=87 e —p) -~ g 2R 311
CP T wggaa
qi%o qz—pz—ig
For the numerical calculations we have defined an ““orthogonality defect” C(p, q) by
H2IC, )= [ Pk gola-RICm ki) =5V -k, (.12)

For a Gaussian wave function @o(p)ocexp (—p>/2p3), a simple parametrization
{which is better than 10%) has been found

C(p, ¢)=exp {—0.28(q/po)* exp (-0.27 p/po)} , (3.13)

where we ignored the imaginary part of C eq. (3.12), which is found to be negligible.

The importance of the orthogonality corrections is shown in fig. 4. The cross
sections for the fragmentation of *“He are drawn for the elastic fragmentation part eq.
(2.19) and for the spectator and knock-out process eq. (2.21). The comparison shows
results with a proper neutron wave , ‘‘orthogonalized wave” and with a plane wave.
The size of the effect depends on the particular process: proper final-state interaction
reduces the elastic fragmentation (EF) cross section by about a factor of 10. In this
way the EF cross section is reduced from dominance to minor importance. The
spectator cross section (SP) remains practically unaffected by the final-state inter-
action.

The potential V eq. (3.9) which we use to calculate the distortion has deficiencies:
by construction it acts only in relative s-waves. Furthermore, it is a hermitian
potential, while for positive energy of the outgoing neutron an absorptive part should
be added. The absorptive part is responsible for a reduction of flux: The knocked-on
neutron moves partly through the 3He and may excite it on the way. In those cases
there is no *He observed. From geometrical arguments we estimate the probability to
be 3 that the *He is destroyed by final-state interaction. Therefore we reduce all
calculated cross sections by this factor 1 ,

We close this section by giving the expressions for the various amplitudes and
elementary cross sections which enter the final expressions for the fragmentation
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Fig. 4. The importance of the proper final-state interaction for the relative motion between neutron and

*He after break-up. We show cross sections for selected processes (elastic fragmentation, “EF”, etc.)

calculated without and with the final-state interaction for the neutron->He relative motion (“‘plane wave”
and “orthogonalized wave”, respectively).

cross sections. Wherever possible, we employ Gaussians to simplify the numerical
calculations. The bound state function for the relative n->He motion is a Gaussian
with a Fourier transform

—k2/2
ek/p%’

3/4
4") (3.14)

Golk) = (7

0

whose width py is obtained from the experimental charge radius of *He via eq. (1.3).
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The elastic fragmentation cross section contains the S-matrices for elastic *He-target
and for elastic n-target collisions. We choose (S;}—1 to be Gaussians,

1—(Si(b)) = */RY, (3.15)
The radius constants R, for '°C as target are

Ry=23fm  (n—'’Cscattering)
5 12 (3.16)
R;=3.1fm {"He — “C scattering) .

The radius R; is chosen to fit elastic p — *C scattering at 1 GeV for not too large
momentum transfer. The value of R is deduced from the “He-'>C elastic cross
section. The incoherent inelastic n-target and *He-target cross sections are
parametrized in the form derived by Fujita etal. ''), and they have been tested for the
reaction *He + target >‘He+X,

A —g2 2
Z i, (3.17)

L?
d2 7 (h +C~>h+X(not'’C,.)) = =2,

where L?=65 mb and

£3=3, ¢3=200MeV/c  (He as projectile),
(3.18)
£1=8, q1=390MeV/c (n as projectile) .

The shadowing factor [(S(bmax))|” defined in eq. (2.24) for the spectator contribution
has been included in eq. (3.17) by replacing &; = 2 (which would be appropriate for
n—'2C collision) by £, =8. The results of our calculation are compared with
experiment in the next section.

4. The results and their discussion

The fragmentation cross section for the reaction *He+target->He+X is

decomposed into three terms

do (do do\%* [ do\*° 4

w7 () & @
They correspond to elastic fragmentation (EF, the target remains in the ground state)
to the spectator part (SP, where the neutron is knocked out of “He and the *He
continues unaffectedly) and to the knock-out process (KO, where the *He receives
momentum during the collision). For a schematic representation see fig. 2. There are
no free parameters in the theory. We compare the expressions with experiment. We
start by elastic fragmentation. Its calculation is rather delicate, since amplitudes of
opposite signs are added. Fortunately there is a case in which elastic fragmentation is
the only contribution and can therefore be tested:

EF

‘He+p->H+n+p. 4.2)
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Fig. 5. The fragmentation reaction with proton as target. Here only elastic fragmentation contributes. Our
calculation is compared with experimental results by Bizard et al. .

Fig. 5 shows a comparison between our calculation and the experiment by Bizard et
al. ?). The basic features are understood: The absolute magnitude is reproduced
within 50%. The narrow width in the longitudinal direction (k. = 0) and the rather
broad structure in the transverse direction (k;= 0) agree fairly well. Only for large k ,
a discrepancy develops. It is partly due to the Gaussian approximation for the elastic
S-matrix like in eq. (3.15).

After being sure that elastic fragmentation is handled correctly, we can proceed to
more complicated targets. Fig. 6 shows the experimental points for >C together with
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Fig. 6. The fragmentation reaction on ‘2C as target. The experimental cross sections from Anderson et
al. 'y are compared with the calculation (solid curve). The broken lines show the various contributions
(elastic fragmentation, EF, spectator process, SP, and knock-out reaction KO).
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the calculation. The spectator term dominates in the longitudinal direction. The
elastic fragmentation is smaller by at least a factor two and the knock-out process is
completely unimportant. In transverse direction the situation is more complicated.
Although the spectator term dominates at small momenta, the elastic fragmentation
takes over in the intermediate regime and for large transverse momenta the
knock-out process determines the cross section. The dominance of the spectator part
at Jow momenta explains the symmetry of the fragmentation cross section in k; and
k.. The increasing importance of the knock-out process is responsible for the
asymmetry at large values of k. The overall agreement between experiment and
calculation is good, but the comparison clearly reveals discrepancies, in particular for
high momenta. We suspect the approximation eq. (2.16) to be partly responsible for
the discrepancy in transverse direction since processes are neglected in which both
neutron and *He interact inelastically. This may lead to high transverse momenta.
Furthermore the shape in this domain depends critically on how well (experiment-
ally) the condition k= 0 is realized.

To our opinion, the discrepancy in the longitudinal direction is connected with the
Gaussian approximation for the momentum distribution inside “He. We just do not
see any other reason since all dynamical processes affect the transverse distribution.
Therefore we turn the argument around: We look for a distribution |¢o(k)|* whose
corresponding cross section agrees with experiment in the longitudinal direction.
Fortunately the relation between |0/ and the cross section is simple for the spectator
contribution which dominates for k, = 0: The cross section is directly proportional
to |@o(k)|?, cf. eq. (2.25). This result is not changed by the final-state interaction,
since distortion influences the spectator cross section do°*/d’k only in a minor way
(fig. 4). Energy conservation, however, has to be handled carefully. The relation
between calculated cross section and the momentum distribution is contained in the
function

zU=(32) JIetr, @3)
calc

where the calculated cross section contains all contributions including final state
interaction. Fig. 7 shows the function Z. The correcting function Z is calculated for a
Gaussian distribution |<EO|2. As suggested by relation eq. (2.25) for the spectator cross
section, the function Z should be independent of |ol>. We assume this indepen-
dence. Then an experimental momentum distribution can be extracted from the
fragmentation cross section in longitudinal direction by

. d _
|¢o(k..)|§x.,=ﬁ(h=0)lmz YKy - (4.4)

The result is shown in fig. 8. As expected, the distribution follows the Gaussian for low
momenta. Then it deviates and falls less rapidly. The reason is not clear to us: It may
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Fig. 7. The correcting function Z defined in eq. (4.3) as a function of the longitudinal momentum.
Although the calculated cross section and the momentum distribution decay rapidly with increasing kj, the
ratio is practically constant up to the kinematical limit.
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Fig. 8. The experimental momentum distribution of the neutron (proton} bound state wave function in
“He. The points are computed from the experimental fragmentation cross section using the relation (4.4),
The calculated momentum distribution is due to Zabolitzky et al. 1) For orientation we indicate the
Fermi momentum kg for n->He relative motion and the kinematical limit k. for infinite incident energy.

be due to nucleon-nucleon correlations. We do not know of any detailed experimen-
tal mapping of |@o(k)|* for “He. We are only aware of the calculation by Zabolitzky et
al. '*). These authors give p(k), the probability to find a nucleon with momentum k
inside “He. This quantity is different from |po(k)|> which is the probability to find
momentum k under the condition that *He remains in the ground state. More
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quantitatively, if the intrinsic wave function @ of *He is expanded

P16, 8)= T onlhnllr &), @.5)

where the 4, are normalized to 1, then
pUk)= X 16a(k) = |Gol)] (4.6)

Although p(k) and |@o(k)|2, need not be equal, the calculated momentum dis-
tribution agrees fairly well with Iéolzxp. In particular, the deviation from the Gaussian
is reproduced. We do not know how significant the remaining discrepancies are.

We summarize: The fragmentation reaction “He + target > >He + X can be quan-
titatively understood in the spectator peak. The cross section at 0° is particularly
interesting. it reflects in a simple way the momentum distribution inside the
projectile nucleus. We think that a study of the spectator peak is a good way to
measure intrinsic momenta. We close by warning: The fragmentation cross section
for *“He +target > p+X at 0° cannot easily be related to the momentum distribution
inside the projectile. Final-state interactions influence magnitude and shape of the
spectator peak considerably ).

We enjoyed many discussions with the colleagues and friends of the institute. We
are especially grateful to J. Knoll whose advice and constructive criticism greatly
improved the work. We thank S. Nagamiya and I. Sick for long discussions. Mrs.
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References

1) L. M. Anderson, Ph.D. thesis Sept. 1977, Report LBL 6769
2) G. Bizard, C. Le Brun, J. Berger, J. Duflo, L. Goldzahl, F. Plonin, J. Oostens, M. v. d. Bossche, L. Vu
Hai, F. L. Fabbri, P. Picozza and L. Satta, Nucl. Phys. A285 (1977) 461
3) D.E. Greiner, P. J. Lindstrom, H. H. Heckman, B. Cork and F. S. Beiser, Phys. Rev. Lett. 35 (1975)
152
4) A. Abul-Magd and J. Hiifner, Z. Phys. A227 (1976) 379
5) G. Bizard and A. Tekou, Nuovo Cim., to be published
6) G. Faldt and H. Pilkuhn, Ann. of Phys. 58 (1970) 454
7) L. Bertocchi and A. Tekou, Nuovo Cim. 21A (1974) 223;
L. Bertocchi and D. Treleani, Nuovo Cim. 36A (1976) 1
8) S. A. Nissen-Meyer, Nucl. Phys. A306 (1978) 499;
J. H. Kithn and S. A. Nissen-Meyer, Nucl. Phys. A312 (1978) 409
9) R. J. Glauber, Lectures in theoretical physics, Boulder, Colorado, 1958, ed. W. E. Brittin and L. G.
Dunham, vol. I (Interscience, N.Y., 1959) p. 315
10) R. J. Glauber and G. Matthiae, Nucl. Phys. B21 (1970) 135
11) T. Fujita and J. Hiifner, Phys. Lett. 87B (1979) 327
12) J. Zabolitzky and W. Ey, Phys. Lett. 76B (1978) 527
13) T. Fujita and J. Hiifner, Nucl. Phys. A314 (1979) 317



	ScattTheo
	NPA343493(14)

