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1. Newcomb Time and Atomic Watch

Orbital Period of Earth Revolution : Average Regression Year T0.

T0 = 365.242189 (day) = 3.155692513× 107 (s)

This defines the Newtonian time.

• Newcomb time： Orbital Period of Earth Revolution.
Newcomb defines a second by Newtonian Orbital Period.

• Time of Atomic Watch ： Orbital Period of Earth Revolution.

Measured value by Atomic Watch deviates 0.61 second
(Leap Second) from Newtonian Orbital Period.
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2. Origin of Leap Second

What is leap second ? :
The effect of the additional gravitational force
on Orbital Period of Earth Revolution

The observed period T is longer then T0 by ∆T = 0.621 (s)
T = T0 + ∆T

(1) Newtonian Orbital Period of Earth Revolution

Orbital Period From perihelion to perihelion T0 (s)

(2) Orbital Period measured by Atomic Watch

From perihelion to perihelion ： 0.62 (s) longer than T0

• Additional Gravitational Force ： Relativistic Effect

¶ ³

Relativistic Effect on Orbital Motion :
(

v
c

)2 ∼ 1.0× 10−8

Leap Second ∼ 2× 10−8 : Good agreement

µ ´

• Additional Gravitational Force： Prediction ∆T(Pred.) = 0.621(s)

Reference :

(1) “Symmetry and Its Breaking in Quantum Field Theory”
(T. Fujita, Nova Science Publishers, 2011, 2nd edition)

(2) “Fundamental Problems in Quantum Field Theory”
(T. Fujita and N. Kanda, Bentham Publishers, 2013)
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3. Earth’s Rotation and Tidal Force

[Wrong Theory] : Tidal force may affect on Earth’s Rotation ?

[Wrong claim] : Tidal force may push up matters to the surface ?
Moment of Inertia may become larger ?
Thus, rotation velocity may become slower ?

• The reasons why this theory is incorrect

¶ ³
(1) Tidal Force is conservative and thus does not make Work !

Tidal Force cannot change matter distribution in Earth.
µ ´

• Basic Mechanics : Conservative Force and Work

F = −∇V (r) is called conservative force. Or ∇× F = 0.
The gravity is a conservative force. The Work W is

W (A → B → A) =
∮

F · dr = − [V (r)]A−B−A = 0

and thus does not make any Work.

¶ ³
(2) Matter in Earth cannot move to the surface
　　 since this is against the gravity of Earth.

µ ´

• Period of Earth’s Rotation never changes !
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4. Work of Non-conservative Force

• Work of non-conservative force : we consider
non-conservative force (∇× F 6= 0)

F = (−kx + εy)ex − kyey

Fz = 0 has no loss of generality.

When ε = 0, it is a conservative force (∇× F = 0).

• Definition of Work W : W =
∮

F · dr

The motion of a particle is x = a cos ωt, y = a sin ωt .

In this case, W is calculated with its period T

W =
∮

F · dr =
∫ T

0
(−kxẋ + εyẋ− kyẏ)dt

where ωT = 2π. Thus

W = −εa2ω
∫ T

0
(sin ωt)2dt = −πεa2 .

¶ ³
Therefore, the conservative force cannot make Work.
But the non-conservative force does make Work ⇒
Thus, Energy must be consumed.

µ ´
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5. Leap Second : Prediction of
General Relativity

Correction of General Relativity to Newton Mechanics

• Correction Term : Correction Potential ∆VGR

∆VGR ' − 3
mc2

(
GmM

r

)2
: This is attractive !

(If M is very large, the gravitational collapse occurs.)

• Effect on Leap Second :

Attractive Force ： Area of elliptical orbit becomes smaller.

Correction to Orbital Period ： Shorter ⇒ Anti-leap second

( Orbital Period T and Area S are related as S = `
2m

T
where `, m is angular momentum and mass of Earth. )

• Correction of General Relativity : disagree with observation !
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6. Mercury Perihelion Shifts : Problem of
General Relativity Prediction

Mercury Perihelion Shift : 42
′′

per 100 years

• Problem of Theoretical Calculation :

(1) Mercury Orbit Change due to Additional Potential

(2) Mercury Orbit gets larger, Orbit Period longer

(3) Orbit Change affects much larger on Perihelion Shift

than θ dependence of Elliptic Orbit

(4) General Relativity : Orbit Size smaller, Period shorter

• Observed Perihelion Shift : δθObs ' 7.8× 10−8

New Gravity ： δθTh ' 4.8× 10−8

General Relativity ： δθGR ' 3.3× 10−8 (No Orbit Change)

： δθGR ' −30× 10−8 (Orbit Change)

¶ ³
• Perihelion Shift : May not be Physical Observables.

• Physical Observables : Orbit Period (No ambiguity)
µ ´
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Chapter 2

New Gravity Model

Quantum field theory is based on the free Dirac fields and four fundamen-
tal interactions. These are electromagnetic, weak, strong and gravitational
interactions. In terms of coupling constant, the electromagnetic interac-
tion must be a standard, and the strength of the coupling constant which
is dimensionless is found to be

α =
1

137
. (2.1)

On the other hand, the strong interaction should be stronger by two orders
of magnitude than the electromagnetic interaction while weak interaction
must be weaker by a few orders of magnitude than the electromagnetic
interaction. In this respect, the gravity is, by far, the weakest force among
the four interactions. In fact, the gravity is by the order of ∼ 10−30 smaller
than the electromagnetic interaction.

2.1 Introduction

Nevertheless, the gravity is very important in the universe for the forma-
tion of stars and galaxies since the force has a very long range, and it is
always attractive. In fact, apart from strong interactions that should re-
sponsible for nuclear fusion in stars, the basic ingredients of forming stars
and galaxies in the universe should be the gravitational interaction.
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10 CHAPTER 2. NEW GRAVITY MODEL

2.1.1 Why Gravity Has Large Effects on Star Formation?

The gravity is crucially important for the formation of stars even though
the interaction strength is quite weak. There are two important aspects in
the gravity when the stars should be formed. The first point is connected
to the interaction range which is very long since it has the shape of 1/r.
The other point is that the gravity is always attractive and the strength
of the force should be proportional to the masses of interacting objects.
Therefore, as long as the corresponding body is massive, there should exist
the attractive interactions from all other massive objects even though they
are far away from each other. Because of the attractive nature, there
should be no shielding in contrast to the electromagnetic cases.

2.1.2 Dirac Equation with Gravitational Potential

When the energy of a particle becomes as high as its mass, then we have
to consider the relativistic equation of motion under the gravitational po-
tential. In this case, the Newton equation is not appropriate for describing
a relativistic motion, and thus, we have to find a new equation of motion.
Since we know that the classical mechanics is derived from the Schrödinger
equation, we should start from the relativistic equation in quantum me-
chanics. This is the Dirac equation, and therefore, we have to consider
the Dirac equation with the gravitational interaction.

However, the Dirac equation with the gravitational potential has not
been determined properly for a long time. This problem is connected to
the ambiguity as to whether the gravitational potential should be taken
as the fourth component of the vector type interaction or the mass term
of scalar type interaction. This problem was not settled until recently,
and thus, we should consider the gravitational field theory in some way or
other. As will be discussed later, the new gravity model is, indeed, con-
structed in terms of a massless scalar field theory. Therefore, the corre-
sponding Dirac equation with the gravitational potential is well established
by now [2, 5].
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2.2 Dirac Equation and Gravity

The Newton equation works very well under the gravitational potential,
and indeed, the Kepler problem is best understood by solving the Newton
equation.

• Ehrenfest Theorem :
This Newton equation itself is obtained from the Schrödinger equation by
making some approximation such as Ehrenfest theorem. In this case, the
time development of the expectation values of r and p in quantum me-
chanics lead to the Newton equation.

• Foldy-Wouthuysen Transformation :
The Schrödinger equation can be derived from the Dirac equation by mak-
ing the Foldy-Wouthuysen transformation which is a unitary transforma-
tion. Therefore, the Dirac equation must be the starting point from which
the Newton equation can be derived.

2.2.1 Dirac Equation and Gravitational Potential

As can be seen from the present discussion, it should be crucially impor-
tant to have the Dirac equation with the gravitational potential properly
taken into account. Otherwise, we cannot obtain the Newton equation
with the gravitational potential. In other words, we should not start from
the Newton equation with the gravitational potential since it is obtained
only after some series of approximations should be properly made for
quantum mechanics.

• Dirac Equation with Coulomb Potential :
Before going to the discussion of the Dirac equation with the gravity,
we should first discuss the Dirac equation with the Coulomb potential of
Vc(r) = −Ze2

r
. This is well-known and can be written as

(
−i∇ ·α + mβ − Ze2

r

)
Ψ = EΨ. (2.2)

On the other hand, we should be careful in which way we put the gravi-
tational potential of V (r) = −GmM

r
into the Dirac equation since there are

two different ways, either the same way as the Coulomb case or putting
the gravitational potential into the mass term.
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• Dirac Equation with Gravitational Potential :
In fact, the right Dirac equation with the gravitational potential of
V (r) = −GmM

r
can be written by putting it into the scalar term as

[
−i∇ ·α +

(
m− G0mM

r

)
β

]
Ψ = EΨ. (2.3)

This is obtained from the field theoretical construction of the gravity
model. By now, we see that the scalar type potential of gravity must be
the right gravitational potential, and we should discuss it more in detail
below.

2.3 New Gravity Model

When we wish to construct the theory of gravity, the first thing we should
work out should be to find the framework in which the gravitational po-
tential can be properly taken into account in the Dirac equation. Without
doing this procedure, there should be no way to consider the theory of
gravity. In fact, the Dirac equation for a particle with its mass m in the
gravitational potential can be written as

[
−i∇ ·α +

(
m− GmM

r

)
β

]
Ψ = EΨ (2.4)

where M denotes the mass of the gravity center. In addition, if we make
the non-relativistic reduction using the Foldy-Wouthuysen transformation,
then we find the gravitational potential in classical mechanics

V (r) = −GmM

r
+

1

2mc2

(
GmM

r

)2

(2.5)

where the second term of the right hand side should be the additional
potential which appears as the relativistic effect. This additional potential
of gravity is a new gravitational potential, and this must be a new discovery
ever since nineteenth century. It turns out that this new potential can
explain the problem of leap second of the earth revolution period which
will be discussed later.
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• Rough Estimation of Relativistic Effect :
Historically, the first check of the relativistic effect was done by Michelson-
Morley using the velocity of the earth revolution which should be the
fastest object relevant to the observed speed on the earth. The result of
Michelson-Morley experiment showed that the speed of light is not affected
by the earth revolution, and this leads to the concept of the relativity
principle. The relativistic effect in this case is

(v

c

)2

∼ 1.0× 10−8 (2.6)

where c and v denote the velocities of light and the earth revolution, re-
spectively. It should be interesting to note that the leap second of the
earth revolution period is found to be (∆T/T ∼ 2× 10−8) which is just the
same order of magnitude as the relativistic effect.

2.3.1 Lagrangian Density

When we consider the theory of gravity, we should start from the scalar
field theory since it gives always attractive interactions.

• Lagrangian Density of Gravity :
Here, we should write the Lagrangian density of a fermion field ψ inter-
acting with the electromagnetic field Aµ and the gravitational field G

L = iψ̄γµ∂µψ − eψ̄γµAµψ −m(1 + gG)ψ̄ψ − 1

4
FµνF

vµν +
1

2
∂µG ∂µG (2.7)

where m denotes the fermion mass. The gravitational field G is a massless
scalar field. The reason why people did not consider the scalar field for
the gravity should be mainly because the scalar field should not be renor-
malizable. However, there is no necessity of the field quantization of the
gravitational field, and thus, there is no divergence at all.

• Gravity Cannot Be Gauge Theory :
For a long time, people believed that the basic field theory must be a
gauge theory, even though there is no foundation for this belief. Indeed,
the gauge theory has both attractive and repulsive interactions, and there-
fore, it is clear that this model of gauge field theory should not be suitable
for the gravity.
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By now, it is known that only the gauge theory of quantum electrody-
namics using the Feynman propagator should give rise to some divergences
in the calculation of physical observables such as vertex corrections. In
fact, there is no divergence for the vertex corrections which are calculated
from the massive vector field theory [2].

2.3.2 Equation for Gravitational Field

From the Lagrangian density, we can obtain the equation for the gravi-
tational field from the Lagrange equation. Here, we can safely make the
static approximation for the equation of motion, and obtain the equation
for the gravitational field G0 as

∇2G0 = mgρg (2.8)

where mρg corresponds to the matter density. The coupling constant g is
related to the gravitational constant G as

G =
g2

4π
.

This equation eq.(2.8) is indeed the Poisson equation for gravity.

2.3.3 Dirac Equation with Gravitational Potential

From the Lagrangian density with gravity and electromagnetic interac-
tions, we can derive the Dirac equation

[
−i∇ ·α + mβ (1 + gG)− Ze2

r

]
Ψ = EΨ. (2.9)

Further, in case the gravitational force is produced by nucleus with its
mass of M , the Dirac equation becomes

[
−i∇ ·α +

(
m− GmM

r

)
β − Ze2

r

]
Ψ = EΨ (2.10)

which is just the equation discussed in the previous section.
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2.3.4 Foldy-Wouthuysen Transformation of
Dirac Hamiltonian

The Dirac equation with the gravitational interaction

[
−i∇ ·α +

(
m− GmM

r

)
β

]
Ψ = EΨ (2.11)

can be reduced to the non-relativistic equation in quantum mechanics.
This can be done in terms of Foldy-Wouthuysen transformation which is a
unitary transformation. Therefore, the transformation procedure is very
reliable indeed.

• Foldy-Wouthuysen Transformation :
Here, we start from the Hamiltonian with the gravitational potential

H = −i∇ ·α +

(
m− GmM

r

)
β. (2.12)

This Hamiltonian can be rewritten in terms of the Foldy-Wouthuysen
transformation which is somewhat a complicated and tedious procedure
involved, though it can be done in a straightforward way [?]. In this case,
the non-relativistic Hamiltonian should be obtained as

H = m +
p2

2m
− GmM

r
+

1

2m2

GmM

r
p2 − 1

2m2

GMm

r3
(s ·L) (2.13)

which is kept only up to the order of
( p

m

)2 GM

r
.
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2.3.5 Classical Limit of Hamiltonian with Gravity

Here, we should calculate the classical equation of motion from the non-
relativistic Hamiltonian in quantum mechanics. In this case, the Hamil-
tonian which is only relevant to the present discussion can be written as

H =
p2

2m
− GmM

r
+

1

2m2

GmM

r
p2. (2.14)

This can be reduced to the Newton equation by making the expectation
values of operators in quantum theory in terms of the Ehrenfest theorem.
In this case, we approximate the products by the factorization in the
following way

〈
1

2m2

GmM

r
p2

〉
=

〈
1

2m2

GmM

r

〉 〈
p2

〉
(2.15)

which must be a good approximation in the classical mechanics application.
In addition, we make use of the Virial theorem

〈
p2

m

〉
= −〈V 〉 . (2.16)

Therefore, we finally obtain the following additional potential

V (r) = −GmM

r
+

1

2mc2

(
GmM

r

)2

(2.17)

which is a new gravitational potential in classical mechanics. The deriva-
tion of the additional potential is similar to the Zeeman effects in that
both interactions appear in the non-relativistic reduction as the higher
order terms of coupling constant.
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2.4 Predictions of New Gravity Model

By now, a new gravity model is constructed, and as a byproduct, there
appears the additional gravitational potential. This is a very small term,
but its effect can be measurable. Indeed, this is the relativistic effect which
becomes

(v

c

)2

∼ 1.0× 10−8 (2.18)

for the earth revolution around the sun. On the other hand, the leap
second of the earth revolution is found to be(

∆T

T

)
∼ 2× 10−8 (2.19)

which is just the same order of magnitude as the relativistic effect. There-
fore, as we see later, it is natural that the leap second value can be under-
stood by the additional potential of the new gravity model.

2.4.1 Period Shifts in Additional Potential

In the new gravity model, there appears the additional potential in ad-
dition to the normal gravitational potential. In the case of the earth
revolution around the sun, this potential is written as

V (r) = −GmM

r
+

1

2mc2

(
GmM

r

)2

(2.20)

where the second term is the additional potential [2]. Here, G and c denote
the gravitational constant and the velocity of light, respectively. m and M
correspond to the masses of the earth and the sun, respectively.

• Non-integrable Potential :
It should be important to note that the additional potential should be
a non-integrable, and therefore, the treatment should be done in terms
of the perturbation theory. In this case, the Newton equation with the
perturbative procedure of the additional potential can be solved, and the
period T of the revolution is written as

ωT ' 2π(1 + 2η) (2.21)

where η is given as

η =
G2M2

c2R4ω2
. (2.22)
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Here, R is the average radius of the earth orbit. The angular velocity ω is
related to the period T by

ω =
2π

T
. (2.23)

The period shift due to the additional potential becomes

∆T

T
= 2η (2.24)

which is the delay of the period of the revolution [2, 5]．

2.4.2 Period Shifts of Earth Revolution (Leap Second)

In the earth revolution, the orbit radius, the mass of the sun and the
angular velocity can be written as

R = 1.496× 1011 m, M = 1.989× 1030 kg, ω = 1.991× 10−7. (2.25)

In this case, the period shift becomes

∆T

T
= 2η ' 1.981× 10−8. (2.26)

Therefore, the period of the earth revolution per year amounts to

∆TN.G. = 0.621 [s/year] (2.27)

which is a delay. This suggests that the corrections must be necessary in
terms of the leap second.

• Leap Second :
In fact, the leap second corrections have been made for more than 40
years. The first leap second correction started from June 1972, and for 40
years, people made corrections of 25 second. Therefore, the average leap
second per year becomes

∆TObs
N.G. ' 0.625± 0.013 [s/year] (2.28)

which agrees perfectly with the prediction of eq.(2.27).

• Definition of Newcomb Time :
Newcomb defined the time series of second in terms of the earth revolution
period. However, the recent measurement of time in terms of atomic clock
turns out to deviate from the Newcomb time [6]. This deviation should be
due to the relativistic effects, and indeed this deviation can be understood
by the additional potential of gravity.
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2.4.3 Mercury Perihelion Shifts

For a long time, people believed that the Mercury perihelion shifts can be
understood by the higher order effects of general relativity. However, it
is proved that there should be no perihelion shifts for one period of the
earth revolution.

Instead, there should be the Mercury perihelion shifts which may arise
from the effects of other planets such as Jupiter if we can measure the per-
ihelion shifts for some long period of revolutions. Concerning the Mercury
perihelion shifts, however, the measurements as well as the calculations of
the effects from other planets should be carried out more carefully. After
the calculation of Newcomb in the 19 century, no careful calculation on
the perihelion shifts has been done until now.

2.4.4 Retreat of Moon

The moon is also affected by the additional potential of gravity from the
earth. The shifts of the moon orbit can be expressed just in the same way
as the earth revolution. In this case, η can be written as

η =
G2M2

c2R4ω2
. (2.29)

Here, R is the radius of the moon orbit. M and ω denote the mass of the
earth and the angular velocity, respectively. They are written as

R = 3.844× 108 m, M = 5.974× 1024 kg, ω = 2.725× 10−6 (2.30)

Therefore, the period shift becomes

∆T

T
= 2.14× 10−11. (2.31)

Now, we should carry out the calculation as to how the orbit can be shifted,
and the shift of the angle can be written as

∆θ = 4πη. (2.32)

Thus, the orbit shift ∆`m can be written as

∆`m = R∆θ ' 0.052 m (2.33)

and therefore, the shift per year becomes

∆`m (one year) = ∆`m × 3.156× 107

2.36× 106
' 69.5 cm. (2.34)
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• Calculated Results of Retreat of Moon :
Since the orbit of the moon is ellipse, the orbit shift can be seen as if it
were retreated [9]. The orbit is described by

r =
R

1 + ε cos θ
. (2.35)

In addition, the eccentricity is quite small (ε = 0.055) and therefore, we
can rewrite the above equation as

r ' R(1− ε cos θ). (2.36)

Thus, the orbit shift ∆r at θ ' π
2

becomes per year

∆r ' R∆θ ε ' ∆`m (one year) ε ' 3.8 cm (2.37)

On the other hand, the observed value of the retreat shift of the moon
orbit is

∆robs
m ' 3.8 cm (2.38)

which agrees very well with the prediction.

• Retreat Shift is not Real! :
It should be noted that this observation is only possible by making use of
the Doppler shift measurement. This is not a direct measurement of the
moon orbit distance which is not possible due to the uncertainty of the
accuracy of light velocity

c = (2.99792458 ± 0.000000012)× 108 cm/s. (2.39)

The accuracy of the orbit shift ∆robs
m ' 3.8 cm is at the order of 10−10 while

the light velocity is measured only up to 10−8 accuracy. This means that
the shift of the orbit radius is just the instantaneous and apparent effect.
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2.5 Summary

The new gravity theory of eq.(2.7)) can naturally lead to the Dirac equa-
tion of eq.(2.3). This is very important in modern physics since we have
now the Dirac equation with the gravitational potential properly taken
into account. This Dirac equation can be reduced to the non-relativistic
Hamiltonian which then gives rise to the Newton equation with the grav-
itational potential, and this new equation should contain a new gravita-
tional potential as the additional potential.

• Massless Scalar Field :
The fact that the gravity is described by the massless scalar field can give
rise to some important effects on the non-relativistic reduction. This is
in contrast to the Coulomb case, but rather similar to the non-relativistic
reduction of the vector potential case. In the non-relativistic reduction of
the vector potential term in the Hamiltonian, we find new terms such as
Zeeman effects or spin-orbit interactions. In the same way, in the non-
relativistic reduction of the scalar potential term in the Hamiltonian, we
find the new additional potential. In fact, this new additional potential
can reproduce the leap second of the earth revolution.

• Inertial Mass and Gravitational Mass :
From experiments, it is known that the inertial mass and gravitational
mass are just the same. This equivalence of two masses is taken to be one
of the grounds in constructing the general relativity. On the other hand,
this equivalence is derived as a natural consequence in the new gravity
model. This is one of the strong reasons why this new gravity model is a
correct theory of gravity.



Chapter 3

Non-integrable Potential

When the non-integrable potential appears as the small perturbation on
the Newton equation, what should be the best way to take into account
this small potential effect?

3.1 Non-integrable Potential

Here we discuss the physical effects of the non-integrable potential. The
additional potential from the new gravity model has the shape of B0

r2 , and,
therefore, we can write the non-integrable potentials into the simple shape
in the following way

Va(r) =
q

2mc2

(
GmM

r

)2

(3.1)

where

q =

{ −6 for General Relativity
1 for New Gravity

. (3.2)

In this case, the differential equation for the orbit with the additional
potential becomes

dr

dϕ
=

ṙ

ϕ̇
= r2

√
2mE

`2
+

2mα

`2r
− 1

r2
− q

`2c2

(
GmM

r

)2

. (3.3)

This equation can be solved exactly and the effect due to the correction
appears in cos ϕ term and is written as

r =
Ag

1 + ε cos
(

Lg

`
ϕ
) (3.4)

22
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where Ag and Lg are given as

Ag =
L2

g

GMm2
, Lg ≡

√
`2 +

qG2M2m2

c2
≡ `

√
1 + η ' `

(
1 +

1

2
η

)
. (3.5)

Here, the η is defined as

η ≡ qG2M2

c2R4ω2
(3.6)

which is a very small number. It is around 10−8 for the planet motion such
as the earth or Mercury.

3.1.1 Effects of Non-integrable Potential on Solution

The solution of eq.(3.4) has a serious problem in that the orbit is not closed.
This is quite well known that the potential with the non-integrable shape
such as Vc(r) = C

r2 gives rise to the orbit which is not closed. It is, of course,
clear that this type of orbits should not happen in nature.

The abnormal behavior of the solution eq.(3.4) can also be seen from
the following term

cos

(
Lg

`
ϕ

)
' cos(ϕ +

1

2
ηϕ). (3.7)

It should be interesting to see that this term cannot be described in terms
of the cartesian coordinates of x = r cos ϕ, y = r sin ϕ. In fact, cos(ϕ + 1

2
ηϕ)

term becomes

cos(ϕ +
1

2
ηϕ) =

x

r
cos

1

2
ηϕ− y

r
sin

1

2
ηϕ (3.8)

and there is no way to transform the cos 1
2
ηϕ term into x, y coordinates

even though we started from this cartesian coordinate. This is very serious
since the solution expressed by polar coordinates cannot be written any
more in the cartesian coordinates. This is related to the fact that the orbit
is not closed due to the non-integrable potential effects.

3.1.2 Discontinuity of Orbit

The effect of the non-integral potential can be further seen as the discon-
tinuity of the orbit trajectory since the orbit is not closed. In order to see
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this discontinuity of the orbit, we first start from the orbit solution with
the non-integral potential, which is eq.(3.4)

r =
Ag

1 + ε cos
(
1 + 1

2
η
)
ϕ

.

In this case, we find the radius r at ϕ = 0 and ϕ = 2π as

r =
Ag

1 + ε
, ϕ = 0 (3.9)

r =
Ag

1 + ε cos πη
, ϕ = 2π. (3.10)

Therefore the difference ∆r becomes

∆r ≡ r(ϕ=2π) − r(ϕ=0) ' 1

2
Agπ

2η2ε ' 0.15 cm (3.11)

for the Mercury orbit case of the general relativity as an example. This
means that the orbit is discontinuous when ϕ becomes 2π. This is not
acceptable for the classical mechanics, and indeed it disagrees with the
observation. In addition, eq.(3.4) cannot generate the perihelion shift,
and this can be easily seen from the orbit trajectory of eq.(3.4).
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3.2 Perturbative Treatment of Non-integrable Po-

tential

Here we should present a perturbative treatment of the non-integrable
potential. This must be the only way to reliably treat the non-integrability
in classical mechanics.

3.2.1 Integrable Expression

The equation for the orbit determination becomes

dr

dϕ
=

ṙ

ϕ̇
= r2

√
2mE

`2
+

2mα

`2r
− 1

r2
− q

`2c2

(
GmM

r

)2

= r2
√

1 + η

√
2mE

`2(1 + η)
+

2mα

`2(1 + η)r
− 1

r2
. (3.12)

Therefore, we can rewrite the above equation as

√
1 + ηdϕ =

dr

r2
√

2mE
`2(1+η)

+ 2mα
`2(1+η)r

− 1
r2

. (3.13)

Here we note that η = q
`2c2

(GmM)2 is a very small number which is of the
order η ∼ 10−8. Now in order to keep the effect of the non-integrable poten-
tial in terms of integrable expression, we should make an approximation
as

√
1 + ηdϕ ' dϕ. (3.14)

The reason why we should make this approximation is because we should
consider the dynamical effect as the perturbation while the η in the right
hand side of eq.(3.13) should only change the value of constants such as
E or α in the differential equation. In this way, the equation to determine
the orbit becomes

dr

dϕ
= r2

√
2mE

`2(1 + η)
+

2mα

`2(1 + η)r
− 1

r2
(3.15)

which gives the right orbit solution. Now the orbit is closed, and the
solution can be written as

r =
Ag

1 + ε cos ϕ
(3.16)
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where Ag is given as

Ag =
`2

GMm2
(1 + η). (3.17)

Note that the ε is also changed due to the η term, but here we can safely
neglect this effect since it does not play any role for physical observables.
Therefore, the effect of the additional potential is to change the radius Ag

of the orbit even though this change is very small indeed. Now eq.(3.16)
clearly shows that there is no perihelion shift, and this is very reasonable
since the additional potential cannot shift the main axis of the orbit.

3.2.2 Higher Order Effect of Perturbation

Here we should estimate the higher order effect of the perturbation in
eq.(3.13). Denoting the solution of eq.(3.16) by r(0)

r(0) =
Ag

1 + ε cos ϕ

and the perturbative part of the radius by r′ (r = r(0) + r′), we can write
the equation for r′ as

dr′

dϕ
=

1

2
η(r(0))2

√
2mE

`2(1 + η)
+

2mα

`2(1 + η)r(0)
− 1

(r(0))2
(3.18)

where the right side depends only on ϕ. Here, we should make a rough
estimation and only consider the case in which the eccentricity ε is zero. In
this case, the right side does not depend on the variable ε, and thus we can
prove that the right side is zero. Therefore, the higher order correction of
r′ should be proportional to the eccentricity ε and can be written as

r′ ' C0ηεAg (3.19)

where C0 should be some numerical constant. For the earth revolution,
the value of ε is very small (ε ' 0.0167) and thus we can safely ignore this
higher order perturbative effect.



Chapter 4

Planet Effects on Mercury
Perihelion

In this Appendix, we discuss the Mercury perihelion shifts which should
come from the gravitational interactions between Mercury and other plan-
ets such as Jupiter or Saturn. This calculation can be carried out in the
perturbation theory of the Newton dynamics, which is rather new to the
classical mechanics. Here, we should compare the numerical results with
those calculated by Newcomb in 1898.

4.1 Planet Effects on Mercury Perihelion

The motion of the other planets should affect on the Mercury orbits. How-
ever, this is the three body problems, and thus it is not easy to solve the
equation of motion in an exact fashion. Here, we develop the perturbative
treatment of the other planet motions. Suppose Mercury and the planet
(Jupiter) are orbiting around the sun, and in this case, the Lagrangian can
be written as

L =
1

2
mṙ2 +

GmM

r
+

1

2
mwṙw

2 +
GmwM

rw

+
Gmmw

|r − rw| (4.1)

where (m, r) and (mw, rw) denote the mass and coordinate of Mercury and
the planet, respectively. The last term in the right side of eq.(4.1) is the
gravitational potential between Mercury and the planet, and therefore, it
should be much smaller than the gravitational force from the sun.

27
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4.1.1 The Same Plane of Planet Motions

Here, we assume that the motion of Mercury and the planet must be in
the same plane, and therefore we rewrite the Lagrangian in terms of polar
coordinates in two dimensions

L =
1

2
m(ṙ2 + r2ϕ̇2) +

GmM

r
+

1

2
mw(ṙw

2 + r2
wϕ̇w

2) +
GmwM

rw

+
Gmmw√

r2 + r2
w − 2rrw cos(ϕ− ϕw)

. (4.2)

In this case, the Lagrange equation for Mercury can be written as

mr̈ = mrϕ̇2 − GmM

r2
− Gmmw(r − rw cos(ϕ− ϕw))

(r2 + r2
w − 2rrw cos(ϕ− ϕw))

3
2

(4.3)

d

dt
(mr2ϕ̇) = − GmMrrw sin(ϕ− ϕw))

(r2 + r2
w − 2rrw cos(ϕ− ϕw))

3
2

(4.4)

mwr̈w = mwrwϕ̇2 − GmwM

r2
w

− Gmmw(rw − r cos(ϕ− ϕw))

(r2 + r2
w − 2rrw cos(ϕ− ϕw))

3
2

(4.5)

d

dt
(mwr2

wϕ̇) = − GmwMrrw sin(ϕw − ϕ))

(r2 + r2
w − 2rrw cos(ϕ− ϕw))

3
2

. (4.6)

4.1.2 Motion of Mercury

If we ignore the interaction between Mercury and the planet, then the
Mercury orbit is just given as the Kepler problem, and the equations of
motion become

mr̈ = mrϕ̇2 − GmM

r2
(4.7)

d

dt
(mr2ϕ̇) = 0. (4.8)

Here, the solution of the orbit trajectory is given as

r =
A

1 + ε cos ϕ
(4.9)

where A and ε are written as

A =
`2

mα
, ε =

√
1 +

2E`2

mα2
with α = GMm (4.10)

which should be taken as the unperturbed solution of the revolution orbit.
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4.2 Approximate Estimation of Planet Effects

Now we should make a perturbative calculation of the many body Kepler
problem by assuming that the interaction between Mercury and the planet
is sufficiently small. In this case, we can estimate the effects of other
planets on the Mercury orbit. Here we write again the equation of motion
for Mercury including the gravity from the other planet

r̈ =
`2

m2r3
− GM

r2
− Gmw(r − rw cos(ϕ− ϕw))

(r2 + r2
w − 2rrw cos(ϕ− ϕw))

3
2

. (4.11)

Now we replace r, rw by the average orbit radius R, Rw in the last term of
the right side, and thus, the equation becomes

r̈ =
`2

m2r3
− GM

r2
− Gmw(R−Rw cos(ϕ− ϕw))

(R2 + R2
w − 2RRw cos(ϕ− ϕw))

3
2

. (4.12)

Below we present some approximate solution of eq.(4.12).

4.2.1 Legendre Expansion

First we define the last term of eq.(4.12) by F as

F (x) ≡ − Gmw(R−Rwx)

(R2 + R2
w − 2RRwx))

3
2

, with x = cos(ϕ− ϕw) (4.13)

and we make the Legendre expansion

F (x) = − GmwR

(R2 + R2
w)

3
2

+
GmwRw(R2

w − 2R2)

(R2 + R2
w)

5
2

x + · · · . (4.14)

Therefore we obtain the equation of motion

r̈ =
`2

m2r3
− GM

r2
+

GmwRw(R2
w − 2R2)

(R2 + R2
w)

5
2

cos(ϕ− ϕw) (4.15)

where the constant term is irrelevant and thus we do not write it above.
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4.2.2 Iteration Method

Now we employ the iteration method in order to solve eq.(4.15). First we
make use of the solution of the Kepler problem

ϕ = ϕ(0) + ωt (4.16)

ϕw = ϕ(0)
w + ωwt (4.17)

and thus eq.(4.15) becomes

r̈ =
`2

m2r3
− GM

r2
+

GmwRw(R2
w − 2R2)

(R2 + R2
w)

5
2

cos(b + βt) (4.18)

where b and β should be given as

b = ϕ(0) − ϕ(0)
w , β = ω − ωw. (4.19)

4.2.3 Particular Solution

In order to solve eq.(4.18), we assume that the last term is sufficiently
small and therefore r may be written in the following shape as

r = r(0) + K
GmwRw(R2

w − 2R2)

(R2 + R2
w)

5
2

cos(b + βt) (4.20)

where r(0) denotes the Kepler solution of r(0) = A
1+ε cos ϕ

. Now we insert the

solution of eq.(4.20) into eq.(4.18), and we find the solution of K as

K = − 1

β2
. (4.21)

Therefore, we obtain the approximate solution as

r = r(0) − GmwRw(R2
w − 2R2)

(R2 + R2
w)

5
2 β2

cos(b + βt). (4.22)
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4.3 Effects of Other Planets on Mercury

Perihelion

Therefore we should put the Kepler solution for r(0) and thus the Mercury
orbit can be written as

r =
A

1 + ε cos ϕ
− GmwRw(R2

w − 2R2)

(R2 + R2
w)

5
2 β2

cos(b + βt)

' A

1 + ε cos ϕ + GmwRw(R2
w−2R2)

R(R2+R2
w)

5
2 (ω−ωw)2

cos(b + βt)
(4.23)

where we take A ' R and also β = ω − ωw. Here as for εw, we take

εw ≡ Gmw

RR2
w(ω − ωw)2

(
1− 2R2

R2
w

)

(
1 + R2

R2
w

) 5
2

(4.24)

and using b + βt = ϕ− ϕw, we obtain

r ' A

1 + ε cos ϕ + εw cos(ϕ− ϕw)
. (4.25)

This equation suggests that the Mercury perihelion may well be affected
by the planet motions.

4.3.1 Numerical Evaluations

Now we calculate the Mercury perihelion shifts due to the planet motions
such as Jupiter or Venus. In order to do so, we first rewrite
ε cos ϕ + εw cos(ϕ− ϕw) terms as

ε cos ϕ + εw cos(ϕ− ϕw) = c1 cos ϕ + c2 sin ϕ =
√

c2
1 + c2

2 cos(ϕ + δ) (4.26)

where c1 and c2 are defined as

c1 = ε + εw cos ϕw (4.27)

c2 = εw sin ϕw. (4.28)

Here cos δ can be written as

cos δ =
c1√

c2
1 + c2

2

. (4.29)
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Further, εw is much smaller than ε and thus eq.(4.29) becomes

cos δ =
ε + εw cos ϕw√

(ε + εw cos ϕw)2 + (εw sin ϕw)2
' 1− 1

2

(εw

ε

)2

sin2 ϕw. (4.30)

4.3.2 Average over One Period of Planet Motion

Now we should make the average over one period of planet motion and
therefore we find

1

2π

∫ 2π

0

sin2 ϕw dϕw =
1

2
. (4.31)

Thus, δ becomes

δ ' εw√
2 ε

' 1√
2 ε

GM

R2
w

1

R(ω − ωw)2

(mw

M

)
(
1− 2R2

R2
w

)

(
1 + R2

R2
w

) 5
2

' Rw ω2
w√

2 εR (ω − ωw)2

(mw

M

)
(
1− 2R2

R2
w

)

(
1 + R2

R2
w

) 5
2

(4.32)

where the planet orbits are taken to be just the circle, for simplicity.
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4.3.3 Numerical Results

In order to calculate the effects of the planet motions on the δ, we first
write the properties of planets in Table 1. Here, numbers are shown in
units of the earth.

Table 1

Mercury Venus Mars Jupiter Saturn Earth Sun

Orbit Radius 0.387 0.723 1.524 5.203 9.55 1.0
Mass 0.055 0.815 0.107 317.8 95.2 1.0 332946.0
Period 0.241 0.615 1.881 11.86 29.5 1.0

ω 4.15 1.626 0.532 0.0843 0.0339 1.0

In Table 2, we present the calculations of the values δ for one hundred
years of averaging and the calculations are compared with the calculated
results by Newcomb.

Table 2 The values of δ for one hundred years

Planets Venus Earth Mars Jupiter Saturn Sum of Planets

δ by eq.(4.32) 49.7 27.4 0.77 32.1 1.14 111.1
δ by Newcomb 56.8 18.8 0.51 31.7 1.5 109.3

As one sees, the agreement between the present calculation and New-
comb results is surprisingly good [6]. Here we do not verify the calculation
of Newcomb for the other planet effects on the Mercury perihelion shifts,
and instead we simply employ his calculated results.

4.3.4 Comparison with Experiments

The observed values of the Mercury perihelion shifts are often quoted in
some of the old textbooks. However, it should be very difficult to find
some reliable numbers of the Mercury perihelion shifts since these values
are determined for 100 years of observation period in 19 century. In this
respect, the comparison between the calculation and observation should
be a homework problem for readers.
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