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弱い相互作用に関する実験結果は基本的に CVC 理論によって非常にうまく記述さ
れていた [11]．しかしながらこの理論には重大な理論的な欠陥があることが知られ
ていた．それは相互作用 Hamiltonian がカレント・カレント形式であるため，これ
は４点相互作用となっていると言う点である．そしてこれだと２次の摂動論で計算す
ると２次発散が出てしまうと言う問題があり，この点を克服することは理論上の重要
問題であった．弱い相互作用の結合定数は非常に小さいので，ほとんどの実験結果は
１次の摂動論によって記述されていた．しかしながら，理論スキームとしては欠陥が
あることは明らかであった．このため，何らかの修正が必要であったが，１９６０年
代後半にWeinberg-Salam が非可換ゲージ理論による弱い相互作用の模型を提案し
たのである [12, 13]．ところが非可換ゲージ理論では構成粒子が観測量ではなく，さ
らにゲージ粒子は質量ゼロであるため，出発点が間違っていたのは明らかであった．
その上，Higgs 機構と言うさらに意味不明の模型を採用したため，理論体系として
はあまりにも稚拙な間違いだらけの理論模型となっていたのである．しかしながらこ
の模型は最終的には CVC 理論を再現するように手直ししているため，パラメータ
をうまく選べば実験を再現できる理論模型となっている．

5.1 非可換ゲージ理論
量子電磁力学において，繰りこみ理論がうまく機能したと人々は考えたため，これ
は QED がゲージ理論であることに依っていると言うほとんど根拠のない話が一般
的に浸透してしまった．このため弱い相互作用もゲージ理論で構築しようと言う事が
１９６０年代には主流になっていた．この場合，弱い相互作用では SU(2) を考える
必要があったため，非可換ゲージ理論が採用されることになったのである．
当時，非可換ゲージ理論はこれまでの U(1) ゲージ理論と大きな違いはないと人々
は考えたものと思われる．しかしながら実際には，非可換ゲージ理論における構成粒
子の電荷がゲージに依ってしまうため，そのままではこれらの粒子が観測量にはなら
ないことが証明されている．



32 第 5章 Weinberg-Salam の標準模型

5.1.1 ゲージ粒子の質量

ゲージ不変性がある理論体系の場合，そのゲージ粒子の質量はゼロである．一方，
弱い相互作用で必要とされていた弱ベクトルボソンの質量は当時から核子の質量より
はるかに重いものであると言うことは実験的にも知られていた事実である．実際に弱
ベクトルボソンが発見され，その質量が実験的に決められたのは１９８０年代に入っ
てからではある．しかしながら弱い相互作用の理論体系を作る際，ゲージ理論から出
発することは明らかに無謀な試みであったのである．

5.2 Higgs 機構
ゲージボソンに質量を与えると言うほとんど奇術的な手法を用いざるを得なかった
のは勿論，出発点が間違えているからである．この奇術が Higgs 機構である．この
模型はあまりにも稚拙な理論ではあるが，ここでは簡単に解説しておこう．

5.2.1 Higgs ポテンシャル

Higgs 機構の Lagrangian 密度は [14]

L =
1

2
(Dµφ)†(Dµφ)− U(φ)− 1

4
FµνF

µν (5.1)

である．ここで U(φ), Dµ, F µν

U(φ) = −1

4
u0

(|φ|2 − λ2
)2

(5.2)

Dµ = ∂µ + igAµ (5.3)

F µν = ∂µAν − ∂νAµ. (5.4)

と定義されている．ここで u0, λ は定数．この Lagrangian 密度はゲージ変換

Aµ → Aµ + ∂µχ (5.5)

φ → e−igχφ (5.6)

に対して不変となっている．また，場のポテンシャル U(φ) はHiggs ポテンシャル
と呼ばれているが，この出どころは不明であり，基本的な物理量ではない．
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5.3 保存カレントと非保存カレント
ここでは U(1) の場合のみ考えよう．この場合，スカラー場 φ に対する方程式は

∂µ(∂µ + igAµ)φ = −u0φ
(|φ|2 − λ2

)− igAµ(∂µ + igAµ)φ (5.7)

となる．一方，ゲージ場 Aµ に対する方程式は

∂µF
µν = gJν (5.8)

となる．

5.3.1 保存カレント

ここで式 (5.8) の右辺の Jµ は

Jµ =
i

2

{
φ†(∂µ + igAµ)φ− φ(∂µ − igAµ)φ†

}
. (5.9)

と定義されている．この場合，

∂µJ
µ = 0 (5.10)

が成り立っている．従って，Jµ はこの系全体の保存カレントとなっている．しかしこ
のカレントにはベクトルポテンシャル Aµ が含まれている事に注意する必要がある．

5.3.2 複素スカラーボソンのカレント

一方，複素スカラーボソンのカレント Jµ
CSB は

Jµ
CSB =

i

2

{
φ†(∂µφ)− φ(∂µφ†)

}
(5.11)

であり，このカレントはゲージ変換

φ → e−igχφ (5.12)

に対して不変ではない．すなわち，複素スカラーボソンのカレント Jµ
CSB はゲージ依

存となっている [15]．さらに，このカレントは

∂µJ
µ
CSB 6= 0 (5.13)

であり，これは保存していない．従ってこの複素スカラーボソンは物理的な観測量と
はなっていない．
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5.4 ユニタリーゲージ
一方，Higgs 機構の模型計算において人々は Lagrangian 密度の段階でユニタリー

ゲージ固定をしている．これは

φ = φ† (5.14)

とする事に対応している．こうすると最終的な Lagrangian 密度が

L =
1

2
(∂µη)(∂µη)− 1

4
u0

(|λ + η(x)|2 − λ2
)2

+
1

2
g2(λ + η(x))2AµA

µ − 1

4
FµνF

µν

となる．ここで Higgs 場を

φ = φ† = λ + η(x) (5.15)

と仮定している．

5.4.1 2次発散項

Higgs 模型の Lagrangian 密度において，第３項を

LI =
1

2
g2(λ + η(x))2AµA

µ (5.16)

と置こう．これは，ベクトル場 Aµ を量子化すると，物理的な観測量に対して，２次
の摂動計算では２次発散を与える項である．従って，この項が存在する事はこの理論
形式が本質的な欠陥を持っていることに対応している．
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5.5 自発的対称性の破れ
Higgs 模型の基礎になっている模型は自発的対称性の破れの理論模型である．し
かしながら，この理論模型はさらに稚拙な模型計算であり，詳細な解説は必要とは言
えないものである．それでここでは簡単にその問題点を解説しておこう．この問題に
興味がある読者は参考文献 [3, 16] を参照して貰うことにしよう．

5.5.1 自発的対称性の破れの模型

南部達は対称性を議論するにあたり，次のような模型の Lagrangian 密度から議
論を進めている [17]．それは

L = iψ̄γµ∂
µψ +

1

2
G

[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

]
(5.17)

である．ここでフェルミオンの質量はゼロとしている．従ってこの式 (5.17)は次の
カイラル変換

ψ′ = eiαγ5ψ (5.18)

に対して不変である．従って，この系はカイラル対称性を持っている．しかしながら
フェルミオンの質量がゼロの場合、その系を測るものが存在していないため、フェル
ミオン模型としては物理的な意味はない。

5.5.2 Bogoliubov 変換

ここで南部達は Bogoliubov 変換 [18]

cn = eAane
−A = cos θn an − sin θn bn, (5.19)

d†−n = eAbne
−A = cos θn bn + sin θn an (5.20)

を使ってフェルミオン演算子 an, bn から新しいフェルミオン演算子 cn, dn に変換し
ている．ここで

A =
∑

n

θn(a†nbn − b†nan) (5.21)

であり，θn は Bogoliubov 角である．



36 第 5章 Weinberg-Salam の標準模型

5.6 カイラル対称性の自発的破れ？
この方法により，南部達はHamiltonian密度を書き直している．この場合，Hamil-

tonian 密度の中に見かけ上，質量項に対応する項が現れている．彼らはこの項が現わ
れた事により，カイラル対称性が破れたと誤解してしまったのである．Bogoliubov

変換はユニタリー変換なので，厳密に行えば正しい変換となっている．しかし彼らは
高次項を考慮しないで議論を進めてしまったため，対称性が破れたと思い込んでし
まったのであろう．系が持っている対称性が自然に破れるとしたら，その原因をきち
んと調べる必要があるが，しかし検証された形跡はない．このため彼らはこの状況を
『自発的破れ』としてしまったのであろう．物理学においては基本的な対称性が外力
なしに破れると言う事はない．その意味において，これは相当，お粗末な計算である
事は間違いない．さらに言えば，彼らは自発的対称性の破れに対応して『massless

boson』が現れると主張しているが，これは S-行列のポールから『massless boson』
が存在するはずであると言う主張であった．ところが，これには理論的な根拠は全く
ない事がわかっている．

5.6.1 カイラル対称性模型の厳密解

２次元の Thirring 模型はフェルミオンの質量がゼロの場合 [19]，Lagrangian 密
度は

L = iψ̄γµ∂
µψ − 1

2
gjµjµ (5.22)

と書かれている．ここで jµ はフェルミオンカレントである．この Lagrangian 密度
はカイラル変換

ψ′ = eiαγ5ψ (5.23)

に対して不変であり，カイラル対称性がある模型となっている．そしてこの Hamil-

tonian は

Ĥ =

∫
dx

{
−i

(
ψ†a

∂

∂x
ψa − ψ†b

∂

∂x
ψb

)
+ 2gψ†aψ

†
bψbψa

}
(5.24)

と書かれていて，これは Bethe 仮設により厳密に解かれている．
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5.6.2 Thirring 模型の真空の厳密解

Thirring 模型の厳密解により作られた真空状態のエネルギーが解析的に解かれて
いる．このため，カイラル対称性に関して極めて重要な性質を知ることができている．
この仕事は平本誠，本間崇司，高橋秀典３氏との共同研究により，幸運にも真空状態
のエネルギーの解析解が見つかったものである [20]．これは自発的対称性の破れに
関する反証の論文として決定的な役割を果たしたことは確かである．これらの結果の
詳細は参考文献 [16] に解説されているので詳細はこの文献を参照して貰うことにし
よう．

5.6.3 厳密解によるThirring 模型の真空の性質

ここでは厳密解によるThirring 模型の真空の諸性質について簡単な説明だけをし
ておこう [16]．

• Thirring 模型の真空のエネルギー

Thirring 模型の真空は勿論，カイラル対称性を破ることはない．この場合，自由
場の真空と比べて厳密解の真空はより低いエネルギー状態になっていることが示され
ている．2次元模型なので実際の自然界との接点はないが，しかしこの真空が実現さ
れていることは確かである．

• 真空におけるカイラル電荷の固有値
真空状態を記述する固有値にカイラル電荷がある．これは

Q5 =

∫
j0
5(x) d3r, (jµ

5 = ψ̄γµγ5ψ) (5.25)

と定義されている．この場合，自由場の真空は左右の対称性があるため，この真空の
カイラル電荷はゼロである．一方，厳密解の真空のカイラル電荷の固有値は ±1 であ
ることがわかっている．

• 『注意書き』
系のカイラル対称性により，カイラル電荷が保存量となっている．そして，カイラ
ル電荷の固有値がゼロでなく有限値である場合，これは勿論，カイラル対称の破れと
は無関係である．昔，ある時期に誤解があったので，コメントしている．
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5.7 負の遺産
現在まで標準理論として評価されてきた Weinberg-Salam の模型は CVC 理論
を再現するように手を加えられていたので，最終的には弱い相互作用の実験を再現で
きる模型ではあった．その意味では，現代物理に残した負の遺産としてはそれ程，大
きいとは言えないかも知れない．しかしながら Higgs 機構にせよ自発的対称性の破
れにせよ，理論物理としては極めて稚拙な理論模型であり，これらが理論物理に与え
た負の遺産は到底，小さいとは言えないであろう．
そして，さらに現在においてさえもまだ，CERN では Higgs 粒子探索実験を継
続している．これは実験物理学に対して甚大な負の遺産を残したことは間違いない事
である．この傷跡を回復するためにはかなり長い時間が必要となっているものと考え
られるが，どうしたら良いのかこればかりは良くわからない．



58

付 録D Basic Notations in Field

Theory

In field theory, one often employs special notations which are by now

commonly used. In this Appendix, we explain some of the notations which

are particularly useful in field theory calculations.

D.1 Natural Units and Constants

Here, we employ the natural units because of its simplicity

c = 1, ~ = 1. (D.1.1)

If one wishes to get the right dimensions out, one should use

~c = 197.33 MeV · fm. (D.1.2)

For example, pion mass is mπ ' 140 MeV/c2. Its Compton wave length is

1

mπ

=
~c

mπc2
=

197 MeV · fm

140 MeV
' 1.4 fm.

Fine structure constant: α = e2 =
e2

~c
=

e2

4π
=

e2

4π~c
=

1

137.036
.

Some constants:




Electron mass : me = 0.511 MeV/c2

Muon mass : mµ = 105.66 MeV/c2

Proton mass : Mp = 938.28 MeV/c2

Bohr radius : a0 =
1

mee2
= 0.529× 10−8 cm
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Gravitational constant: G = 5.906× 10−39 1
M2

p

Weak coupling Constant: GF = 1.166× 10−5 (GeV)−2

Magnetic moments :




Electron : µe = 1.00115965219
e~

2mec

Muon : µµ = 1.001165920
e~

2mµc

Weak bosons :





W± − boson : MW = 80.4 GeV/c2, αW ' 4.3× 10−3

Z0 − boson : Mz = 91.2 GeV/c2, αZ ' 2.73× 10−3

D.2 Hermite Conjugate and Complex Conjugate

For a complex c-number A

A = a + bi (a, b : real). (D.2.1)

Its complex conjugate A∗ is defined as

A∗ = a− bi. (D.2.2)

Matrix A

If A is a matrix, one defines the hermite conjugate A†

(A†)ij = A∗
ji. (D.2.3)

Differential Operator Â

If Â is a differential operator, then the hermite conjugate can be de-

fined only when the Hilbert space and its scalar product are defined. For

example, suppose Â is written as

Â = i
∂

∂x
. (D.2.4)
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In this case, its hermite conjugate Â† becomes

Â† = −i

(
∂

∂x

)T

= i
∂

∂x
= Â (D.2.5)

which means Â is Hermitian. This can be easily seen in a concrete fashion

since

〈ψ|Âψ〉 =

∞∫

−∞

ψ†(x)i
∂

∂x
ψ(x) dx = −i

∞∫

−∞

(
∂

∂x
ψ†(x)

)
ψ(x) dx = 〈Âψ|ψ〉, (D.2.6)

where ψ(±∞) = 0 is assumed. The complex conjugate of Â is simply

Â∗ = −i
∂

∂x
6= Â. (D.2.7)

Field ψ

If the ψ(x) is a c-number field, then the hermite conjugate ψ†(x) is just

the same as the complex conjugate ψ∗(x). However, when the field ψ(x) is

quantized, then one should always take the hermite conjugate ψ†(x). When

one takes the complex conjugate of the field as ψ∗(x), one may examine

the time reversal invariance.

D.3 Scalar and Vector Products (Three Dimen-

sions) :

Scalar Product

For two vectors in three dimensions

r = (x, y, z) ≡ (x1, x2, x3), p = (px, py, pz) ≡ (p1, p2, p3) (D.3.1)

the scalar product is defined

r · p =
3∑

k=1

xkpk ≡ xkpk, (D.3.2)

where, in the last step, we omit the summation notation if the index k is

repeated twice.
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Vector Product

The vector product is defined as

r × p ≡ (x2p3 − x3p2, x3p1 − x1p3, x1p2 − x2p1). (D.3.3)

This can be rewritten in terms of components,

(r × p)i = εijkxjpk, (D.3.4)

where εijk denotes anti-symmetric symbol with

ε123 = ε231 = ε312 = 1, ε132 = ε213 = ε321 = −1, otherwise = 0.

D.4 Scalar Product (Four Dimensions)

For two vectors in four dimensions,

xµ ≡ (t, x, y, z) = (x0, r), pµ ≡ (E, px, py, pz) = (p0,p) (D.4.1)

the scalar product is defined

x · p ≡ Et− r · p = x0p0 − xkpk. (D.4.2)

This can be also written as

xµp
µ ≡ x0p

0 + x1p
1 + x2p

2 + x3p
3 = Et− r · p = x · p, (D.4.3)

where xµ and pµ are defined as

xµ ≡ (x0,−r), pµ ≡ (p0,−p). (D.4.4)

Here, the repeated indices of the Greek letters mean the four dimensional

summation µ = 0, 1, 2, 3. The repeated indices of the roman letters always

denote the three dimensional summation throughout the text.



62 付 録D Basic Notations in Field Theory

Metric Tensor

It is sometimes convenient to introduce the metric tensor gµν which has

the following properties

gµν = gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 . (D.4.5)

In this case, the scalar product can be rewritten as

x · p = xµpνgµν = Et− r · p. (D.4.6)

D.5 Four Dimensional Derivatives ∂µ

The derivative ∂µ is introduced for convenience

∂µ ≡ ∂

∂xµ
=

(
∂

∂x0
,

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
=

(
∂

∂t
,

∂

∂x
,

∂

∂y
,

∂

∂z

)
=

(
∂

∂t
, ∇

)
, (D.5.1)

where the lower index has the positive space part. Therefore, the deriva-

tive ∂µ becomes

∂µ ≡ ∂

∂xµ

=

(
∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
=

(
∂

∂t
,−∇

)
. (D.5.2)

D.5.1 p̂µ and Differential Operator

Since the operator p̂µ becomes a differential operator as

p̂µ = (Ê, p̂) =

(
i
∂

∂t
, −i∇

)
= i∂µ

the negative sign, therefore, appears in the space part. For example, if

one defines the current jµ in four dimension as

jµ = (ρ, j),

then the current conservation is written as

∂µj
µ =

∂ρ

∂t
+ ∇ · j =

1

i
p̂µj

µ = 0. (D.5.3)



D.6. γ-Matrix 63

D.5.2 Laplacian and d’Alembertian Operators

The Laplacian and d’Alembertian operators, ∆ and ¤ are defined as

∆ ≡ ∇ ·∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

¤ ≡ ∂µ∂
µ =

∂2

∂t2
−∆.

D.6 γ-Matrix

Here, we present explicit expressions of the γ-matrices in two and four

dimensions. Before presenting the representation of the γ-matrices, we

first give the explicit representation of Pauli matrices.

D.6.1 Pauli Matrix

Pauli matrices are given as

σx = σ1 =

(
0 1

1 0

)
, σy = σ2 =

(
0 −i

i 0

)
, σz = σ3 =

(
1 0

0 −1

)
. (D.6.1)

Below we write some properties of the Pauli matrices.

Hermiticity

σ†1 = σ1, σ†2 = σ2, σ†3 = σ3.

Complex Conjugate

σ∗1 = σ1, σ∗2 = −σ2, σ∗3 = σ3.

Transposed

σT
1 = σ1, σT

2 = −σ2, σT
3 = σ3 (σT

k = σ∗k).
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Useful Relations

σiσj = δij + iεijkσk, (D.6.2)

[σi, σj] = 2iεijkσk. (D.6.3)

D.6.2 Representation of γ-matrix

(a) Two dimensional representations of γ-matrices

Dirac : γ0 =

(
1 0

0 −1

)
, γ1 =

(
0 1

−1 0

)
, γ5 = γ0γ1 =

(
0 1

1 0

)
,

Chiral : γ0 =

(
0 1

1 0

)
, γ1 =

(
0 −1

1 0

)
, γ5 = γ0γ1 =

(
1 0

0 −1

)
.

(b) Four dimensional representations of gamma matrices

Dirac : γ0 = β =

(
1 0

0 −1

)
, γ =

(
0 σ

−σ 0

)
,

γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)
, α =

(
0 σ

σ 0

)
,

Chiral : γ0 = β =

(
0 1

1 0

)
, γ =

(
0 −σ

σ 0

)
,

γ5 = iγ0γ1γ2γ3 =

(
1 0

0 −1

)
, α =

(
σ 0

0 −σ

)
.

where 0 ≡
(

0 0

0 0

)
, 1 ≡

(
1 0

0 1

)
.

D.6.3 Useful Relations of γ-Matrix

Here, we summarize some useful relations of the γ-matrices.
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Anti-commutation relations

{γµ, γν} = 2gµν , {γ5, γν} = 0. (D.6.4)

Hermiticity

γ†µ = γ0γµγ0 (γ†0 = γ0, γ†k = −γk), γ†5 = γ5. (D.6.5)

Complex Conjugate

γ∗0 = γ0, γ∗1 = γ1, γ∗2 = −γ2, γ∗3 = γ3, γ∗5 = γ5. (D.6.6)

Transposed

γT
µ = γ0γ†µγ

0, γT
5 = γ5. (D.6.7)

D.7 Transformation of State and Operator

When one transforms a quantum state |ψ〉 by a unitary transformation

U which satisfies

U †U = 1

one writes the transformed state as

|ψ′〉 = U |ψ〉. (D.7.1)

The unitarity is important since the norm must be conserved, that is,

〈ψ′|ψ′〉 = 〈ψ|U †U |ψ〉 = 1.

In this case, an arbitrary operator O is transformed as

O′ = UOU−1. (D.7.2)
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This can be obtained since the expectation value of the operator O must

be the same between two systems, that is,

〈ψ|O|ψ〉 = 〈ψ′|O′|ψ′〉. (D.7.3)

Since

〈ψ′|O′|ψ′〉 = 〈ψ|U †O′U |ψ〉 = 〈ψ|O|ψ〉
one finds

U †O′U = O
which is just eq.(D.7.2).

D.8 Fermion Current

We summarize the fermion currents and their properties of the Lorentz

transformation. We also give their nonrelativistic expressions since the

basic behaviors must be kept in the nonrelativistic expressions. Here, the

approximate expressions are obtained by making use of the plane wave

solutions for the Dirac wave function.

Fermion currents :




Scalar : ψ̄ψ ' 1

Pseudoscalar : ψ̄γ5ψ ' �·p
m

Vector : ψ̄γµψ '
(
1,

p

m

)

Axialvector : ψ̄γµγ5ψ '
(σ · p

m
, σ

)

(D.8.1)

Therefore, under the parity P̂ and time reversal T̂ transformation, the

currents behave

Parity P̂ :




ψ̄′ψ′ = ψ̄P̂−1P̂ψ = ψ̄ψ

ψ̄′γ5ψ
′ = ψ̄P̂−1γ5P̂ψ = −ψ̄γ5ψ

ψ̄′γkψ
′ = ψ̄P̂−1γkP̂ψ = −ψ̄γkψ

ψ̄′γkγ5ψ
′ = ψ̄P̂−1γkγ5P̂ψ = ψ̄γkγ5ψ

(D.8.2)
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Time Reversal T̂ :




ψ̄′ψ′ = ψ̄T̂−1T̂ψ = ψ̄ψ

ψ̄′γ5ψ
′ = ψ̄T̂−1γ5T̂ψ = ψ̄γ5ψ

ψ̄′γkψ
′ = ψ̄T̂−1γkT̂ψ = −ψ̄γkψ

ψ̄′γkγ5ψ
′ = ψ̄T̂−1γkγ5T̂ψ = −ψ̄γkγ5ψ

(D.8.3)

D.9 Trace in Physics

D.9.1 Definition

The trace of N ×N matrix A is defined as

Tr[A] =
N∑

i=1

Aii. (D.9.1)

It is easy to prove

Tr[AB] = Tr[BA]. (D.9.2)

D.9.2 Trace in Quantum Mechanics

The trace of the Hamiltonian H becomes

Tr[H] = Tr[UHU−1] =
∑
n=1

En, (D.9.3)

where U is a unitary operator, and En denotes the energy eigenvalue of

the Hamiltonian.

D.9.3 Trace in SU(N)

In SU(N), the element Ua can be described in terms of the generator T a

Ua = eiαT a

(D.9.4)

where the generator must be hermitian and traceless since

detUa = exp
(
Tr [ln Ua]

)
= exp

(
iα Tr [T a]

)
= 1 (D.9.5a)
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Tr [T a] = 0. (D.9.5b)

The generators of SU(N) group satisfy the following commutation relations

[T a, T b] = iCabcT c, (D.9.6)

where Cabc denotes a structure constant. The generators are normalized

such that

Tr [T aT b] =
1

2
δab. (D.9.7)

D.9.4 Trace of γ-Matrices and p/

Trace of γ-matrices :

Tr [1] = 4, Tr [γµ] = 0, Tr [γ5] = 0. (D.9.8)

Symbol p/ : p/ ≡ pµγ
µ

Useful Relations:

γµp/γµ = −2p/ (D.9.9)

p/q/ = p · q − iσµνp
µqν (D.9.10)

Tr [p/q/] = 4p · q (D.9.11)

Tr [γ5p/q/] = 0 (D.9.12)

Tr [p/1p/2p/3p/4] = 4
{

(p1 · p2)(p3 · p4)− (p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)
}

(D.9.13)

Tr [γ5p/1p/2p/3p/4] = −4iεαβγδ pα
1 pβ

2 pγ
3 pδ

4 (D.9.14)

Tr [γ5γµ1γµ2γµ3γµ4γµ5γµ6 ] = −4i [gµ1µ2εµ3µ4µ5µ6 − gµ1µ3εµ2µ4µ5µ6

+gµ2µ3εµ1µ4µ5µ6 + gµ4µ5εµ1µ2µ3µ6 − gµ4µ6εµ1µ2µ3µ5 + gµ5µ6εµ1µ2µ3µ4 ] (D.9.15)

εµναβεµ′ν′α′β′ = −

∣∣∣∣∣∣∣∣∣

δµ
µ′ δµ

ν′ δµ
α′ δµ

β′

δν
µ′ δν

ν′ δν
α′ δν

β′

δα
µ′ δα

ν′ δα
α′ δα

β′

δβ
µ′ δβ

ν′ δβ
α′ δβ

β′

∣∣∣∣∣∣∣∣∣
(D.9.16)
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εµναβεµν′α′β′ = −

∣∣∣∣∣∣∣

δν
ν′ δν

α′ δν
β′

δα
ν′ δα

α′ δα
β′

δβ
ν′ δβ

α′ δβ
β′

∣∣∣∣∣∣∣
(D.9.17)

εµναβεµνα′β′ = −2

∣∣∣∣∣
δα

α′ δα
β′

δβ
α′ δβ

β′

∣∣∣∣∣ (D.9.18)

εµναβεµναβ′ = −6δβ
β′ (D.9.19)

εµναβεµναβ = −24 (D.9.20)

D.10 Lagrange Equation

In classical field theory, the equation of motion is most important, and it

is derived from the Lagrange equation. Therefore, we review briefly how

we can obtain the equation of motion from the Lagrangian density.

D.10.1 Lagrange Equation in Classical Mechanics

Before going to the field theory treatment, we first discuss the Lagrange

equation (Newton equation) in classical mechanics. In order to obtain the

Lagrange equation by the variational principle in classical mechanics, one

starts from the action S as defined

S =

∫
L(q, q̇) dt, (D.10.1)

where the Lagrangian L(q, q̇) depends on the general coordinate q and its

velocity q̇. At the time of deriving equation of motion by the variational

principle, q and q̇ are independent as the function of t. This is clear

since, in the action S, the functional dependence of q(t) is unknown and

therefore one cannot make any derivative of q(t) with respect to time t.

Once the equation of motion is established, then one can obtain q̇ by time

differentiation of q(t) which is a solution of the equation of motion. The

Lagrange equation can be obtained by requiring that the action S should

be a minimum with respect to the variation of q and q̇.

δS =

∫
δL(q, q̇) dt =

∫ (
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt
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=

∫ (
∂L

∂q
− d

dt

∂L

∂q̇

)
δq dt = 0, (D.10.2)

where the surface terms should vanish. Thus one obtains the Lagrange

equation
∂L

∂q
− d

dt

∂L

∂q̇
= 0. (D.10.3)

Hamiltonian in Classical Mechanics

The Lagrangian must be invariant under the infinitesimal time displace-

ment ε of q(t) as

q(t + ε) → q(t) + q̇ε, q̇(t + ε) → q̇(t) + q̈ε + q̇
dε

dt
. (D.10.4)

Therefore, one finds

δL(q, q̇) = L(q(t + ε), q̇(t + ε))− L(q, q̇) =
∂L

∂q
q̇ε +

∂L

∂q̇
q̈ε +

∂L

∂q̇
q̇
dε

dt
= 0. (D.10.5)

Since the surface term vanishes, one obtains

δL(q, q̇) =

[
∂L

∂q
q̇ +

∂L

∂q̇
q̈ − d

dt

(
∂L

∂q̇
q̇

)]
ε =

[
d

dt

(
L− ∂L

∂q̇
q̇

)]
ε = 0 (D.10.6)

where the term in bracket is a conserved quantity, and thus the Hamilto-

nian H is defined as

H ≡ ∂L

∂q̇
q̇ − L. (D.10.7)

D.10.2 Lagrange Equation for Fields

The Lagrange equation for fields can be obtained almost in the same

way as the particle case. For fields, we should start from the Lagrangian

density L and the action is written as

S =

∫
L

(
ψ, ψ̇,

∂ψ

∂xk

)
d3r dt, (D.10.8)

where ψ(x), ∂ψ
∂t

and ∂ψ
∂xk

are independent functional variables. Hereafter,

we use the notation of ψ̇(x) ≡ ∂ψ
∂t

. The Lagrange equation can be obtained
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by requiring that the action S should be a minimum with respect to the

variation of ψ, ψ̇ and ∂ψ
∂xk

,

δS =

∫
δL

(
ψ, ψ̇,

∂ψ

∂xk

)
d3r dt =

∫ (
∂L
∂ψ

δψ +
∂L
∂ψ̇

δψ̇ +
∂L

∂( ∂ψ
∂xk

)
δ

(
∂ψ

∂xk

))
d3r dt

=

∫ (
∂L
∂ψ

− ∂

∂t

∂L
∂ψ̇

− ∂

∂xk

∂L
∂( ∂ψ

∂xk
)

)
δψ d3r dt = 0, (D.10.9)

where the surface terms are assumed to vanish. Therefore, one obtains

∂L
∂ψ

=
∂

∂t

∂L
∂ψ̇

+
∂

∂xk

∂L
∂( ∂ψ

∂xk
)
, (D.10.10)

which can be expressed in the relativistic covariant way as

∂L
∂ψ

= ∂µ

(
∂L

∂(∂µψ)

)
. (D.10.11)

D.11 Noether Current

If the Lagrangian density is invariant under the transformation of the

field with a continuous variable, then there is always a conserved current

associated with this symmetry. This is called Noether current and can be

derived from the invariance of the Lagrangian density and the Lagrange

equation.

D.11.1 Global Gauge Symmetry

The Lagrangian density which is discussed in this textbook should have

the following functional dependence in general

L = iψ̄γµ∂
µψ −mψ̄ψ + LI

{
ψ̄ψ, ψ̄γ5ψ, ψ̄γµψ

}

which is obviously invariant under the global gauge transformation

ψ′ = eiαψ, ψ′† = e−iαψ†, (D.11.1)

where α ia a real constant. Therefore, the Noether current is conserved

in this system. To derive the Noether current conservation for the global
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gauge transformation, one can consider the infinitesimal global transfor-

mation, that is, |α| ¿ 1

ψ′ = ψ + δψ, δψ = iαψ. (D.11.2a)

ψ′† = ψ† + δψ†, δψ† = −iαψ†. (D.11.2b)

Invariance of Lagrangian Density

Now, it is easy to find

δL = L(ψ′, ψ′†, ∂µψ
′, ∂µψ

′†)− L(ψ, ψ†, ∂µψ, ∂µψ
†) = 0 (D.11.3a)

which becomes

δL =
∂L
∂ψ

δψ +
∂L

∂(∂µψ)
δ (∂µψ) +

∂L
∂ψ†

δψ† +
∂L

∂(∂µψ†)
δ
(
∂µψ

†)

= iα

[(
∂µ

∂L
∂(∂µψ)

)
ψ +

∂L
∂(∂µψ)

∂µψ −
(

∂µ
∂L

∂(∂µψ†)

)
ψ† − ∂L

∂(∂µψ†)
∂µψ

†
]

= iα∂µ

[
∂L

∂(∂µψ)
ψ − ∂L

∂(∂µψ†)
ψ†

]
= 0 (D.11.3b)

where the equation of motion for ψ is employed.

Current Conservation

Therefore, one defines the current jµ as

jµ ≡ −i

[
∂L

∂(∂µψ)
ψ − ∂L

∂(∂µψ†)
ψ†

]
(D.11.4)

and one has the current conservation

∂µj
µ = 0. (D.11.5)

For Dirac fields, one finds the conserved current

jµ = ψ̄γµψ. (D.11.6)
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D.11.2 Chiral Symmetry

When the Lagrangian density is invariant under the chiral transforma-

tion,

ψ′ = eiαγ5ψ (D.11.7)

then there is another Noether current. Here, δψ as defined in eq.(D.11.2)

becomes

δψ = iαγ5ψ. (D.11.8)

Therefore, a corresponding conserved current for massless Dirac fields

becomes

jµ
5 = −i

∂L
∂(∂µψ)

γ5ψ = ψ̄γµγ5ψ (D.11.9)

and we have

∂µj
µ
5 = 0. (D.11.10)

The conservation of the axial vector current holds for massless field theory

models.

D.12 Hamiltonian Density

The Hamiltonian density H is constructed from the Lagrangian density

L. If the Lagrangian density is invariant under the translation aµ, then

there is a conserved quantity which is the energy momentum tensor T µν.

The Hamiltonian density is constructed from the energy momentum tensor

of T 00.

D.12.1 Hamiltonian Density from Energy Momentum Ten-

sor

Now, the Lagrangian density is given as L
(
ψi, ∂0ψi,

∂ψi

∂xk

)
. If one considers

the following infinitesimal translation aµ of the field ψi and ψ†i

ψ′i = ψi + δψi, δψi = (∂νψi)a
ν ,

ψ†i
′
= ψ†i + δψ†i , δψ†i = (∂νψ

†
i )a

ν ,
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then the Lagrangian density should be invariant

δL ≡ L(ψ′i, ∂µψ
′
i)− L(ψi, ∂µψi)

=
∑

i

[
∂L
∂ψi

δψi +
∂L

∂(∂µψi)
δ(∂µψi) +

∂L
∂ψ†i

δψ†i +
∂L

∂(∂µψ
†
i )

δ(∂µψ
†
i )

]
= 0. (D.12.1)

Making use of the Lagrange equation, one obtains

δL =
∑

i

[
∂L
∂ψi

(∂νψi) +
∂L

∂(∂µψi)
(∂µ∂νψi)− ∂µ

(
∂L

∂(∂µψi)
∂νψi

)]
aν

+
∑

i

[
∂L
∂ψ†i

(∂νψ
†
i ) +

∂L
∂(∂µψ

†
i )

(∂µ∂νψ
†
i )− ∂µ

(
∂L

∂(∂µψ
†
i )

∂νψ
†
i

)]
aν

= ∂µ

[
Lgµν −

∑
i

(
∂L

∂(∂µψi)
∂νψi +

∂L
∂(∂µψ

†
i )

∂νψ†i

)]
aν = 0. (D.12.2)

Energy Momentum Tensor T µν

Therefore, if one defines the energy momentum tensor T µν by

T µν ≡
∑

i

(
∂L

∂(∂µψi)
∂νψi +

∂L
∂(∂µψ

†
i )

∂νψ†i

)
− Lgµν (D.12.3)

then, T µν is a conserved quantity, that is

∂µT µν = 0.

This leads to the definition of the Hamiltonian density H in terms of T 00

H ≡ T 00 =
∑

i

(
∂L

∂(∂0ψi)
∂0ψi +

∂L
∂(∂0ψ

†
i )

∂0ψ†i

)
− L. (D.12.4)

D.12.2 Hamiltonian Density for Free Dirac Fields

For a free Dirac field with its mass m, the Lagrangian density becomes

L = ψ†i ψ̇i + ψ†i
[
iγ0γ ·∇−mγ0

]
ij

ψj. (D.12.5)

Therefore, we find the Hamiltonian density as

H= T 00 = ψ̄i [−iγk∂k+m]ij ψj = ψ̄ [−iγ ·∇+m] ψ. (D.12.6)
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Hamiltonian for Free Dirac Fields

The Hamiltonian H is obtained by integrating the Hamiltonian density

over all space

H =

∫
H d3r =

∫
ψ̄ [−iγ ·∇ + m] ψ d3r. (D.12.7)

In classical field theory, this Hamiltonian is not an operator but is just

the field energy itself. However, this field energy cannot be evaluated

unless one knows the shape of the field ψ(x) itself. Therefore, one should

determine the shape of the field ψ(x) by the equation of motion in the

classical field theory.

D.12.3 Role of Hamiltonian

The classical field Hamiltonian itself is not useful. This is similar to the

classical mechanics case in which one has to derive the Hamilton equations

in order to calculate physical properties of the system, and the Hamilton

equations are equivalent to the Lagrange equations in classical mechanics.

Classical Field Theory

In classical field theory, the situation is just the same as the classical

mechanics case. If one stays in the classical field theory, then one should

derive the field equation from the Hamiltonian by the functional varia-

tional principle.

Quantized Field Theory

The Hamiltonian of the field theory becomes important when the fields

are quantized. In this case, the Hamiltonian becomes an operator, and

thus one has to solve the eigenvalue problem for the quantized Hamiltonian

Ĥ

Ĥ|Ψ〉 = E|Ψ〉, (D.12.8)

where |Ψ〉 is called Fock state and should be written in terms of the creation

and annihilation operators of fermion and anti-fermion. The space spanned
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by the Fock states is called Fock space. In normal circumstances of the

field theory models such as QED and QCD, it is practically impossible

to find the eigenstate of the quantized Hamiltonian. The difficulty of the

quantized field theory comes mainly from two reasons. Firstly, one has to

construct the vacuum state which is composed of infinite many negative

energy particles interacting with each other. The vacuum state should be

the eigenstate of the Hamiltonian

Ĥ|Ω〉 = EΩ|Ω〉,

where EΩ denotes the energy of the vacuum and it is in general infinity

with the negative sign. The vacuum state |Ω〉 is composed of infinitely

many negative energy particles

|Ω〉 =
∏
p,s

b†
(s)

p |0〉〉,

where |0〉〉 denotes the null vacuum state. In the realistic calculations, the

number of the negative energy particles must be set to a finite value, and

this should be reasonable since physical observables should not depend on

the deep negative energy particles.

D.13 Variational Principle in Hamiltonian

Now, one can derive the equation of motion by requiring that the Hamil-

tonian should be minimized with respect to the functional variation of the

state ψ(r).

D.13.1 Schrödinger Field

When one minimizes the Hamiltonian

H =

∫ [
− 1

2m
ψ†∇2ψ + ψ†Uψ

]
d3r (D.13.1)

with respect to ψ(r), then one can obtain the static Schrödinger equation.
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Functional Derivative

First, one defines the functional derivative for an arbitrary function ψi(r)

by
δψi(r

′)
δψj(r)

= δijδ(r − r′). (D.13.2)

This is the most important equation for the functional derivative, and

once one accepts this definition of the functional derivative, then one can

evaluate the functional variation just in the same way as normal derivative

of the function ψi(r).

Functional Variation of Hamiltonian

For the condition on ψ(r), one requires that it should be normalized

according to ∫
ψ†(r)ψ(r) d3r = 1. (D.13.3)

In order to minimize the Hamiltonian with the above condition, one can

make use of the Lagrange multiplier and make a functional derivative of

the following quantity with respect to ψ†(r)

H[ψ] =

∫ [
− 1

2m
ψ†(r′)∇02ψ(r′) + ψ†(r′)Uψ(r′)

]
d3r′

−E

(∫
ψ†(r′)ψ(r′) d3r′ − 1

)
, (D.13.4)

where E denotes a Lagrange multiplier and just a constant. In this case,

one obtains

δH[ψ]

δψ†(r)
=

∫
δ(r − r′)

[
− 1

2m
∇02ψ(r′) + Uψ(r′)− Eψ(r′)

]
d3r′ = 0. (D.13.5)

Therefore, one finds

− 1

2m
∇2ψ(r) + Uψ(r) = Eψ(r) (D.13.6)

which is just the static Schrödinger equation.
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D.13.2 Dirac Field

The Dirac equation for free field can be obtained by the variational prin-

ciple of the Hamiltonian eq.(D.12.7). Below, we derive the static Dirac

equation in a concrete fashion by the functional variation of the Hamilto-

nian.

Functional Variation of Hamiltonian

For the condition on ψi(r), one requires that it should be normalized

according to ∫
ψ†i ψi(r) d3r = 1. (D.13.7)

Now, the Hamiltonian should be minimized with the condition of eq.(D.13.7)

H[ψi] =

∫
ψ†i (r)

[−i(γ0γ ·∇)ij + m(γ0)ij

]
ψj(r) d3r

−E

(∫
ψ†i (r)ψi(r) d3r − 1

)
, (D.13.8)

where E is just a constant of the Lagrange multiplier. By minimizing the

Hamiltonian with respect to ψ†i (r), one obtains

(−iα ·∇ + mβ) ψ(r)− Eψ(r) = 0 (D.13.9)

which is just the static Dirac equation for free field.
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付 録E Wave Propagations in

medium and vacuum

The classical wave such as sound can propagate through medium. How-

ever, it cannot propagate in vacuum as is well known. This is, of course,

clear since the classical wave is the chain of the oscillations of the medium

due to the pressure on the density.

On the other hand, quantum wave including photon can propagate in

vacuum since it is a particle. Here, we clarify the difference in propagations

between the classical wave and quantum wave. The most important point

is that the classical wave should be always written in terms of real functions

while photon or quantum wave should be described by the complex wave

function of the shape eikx since it should be an eigenstate of the momentum.

This part is written as Appendix to the field theory text book “Funda-

mental problems in quantum field theory” published in Bentham publish-

ers in 2013.

E.1 What is wave ?

The sound can propagate through medium such as air or water. The

wave can be described in terms of the amplitude φ in one dimension

φ(x, t) = A0 sin(ωt− kx) (E.1)

where ω and k denote the frequency and wave number, respectively. The

dispersion relation of this wave can be written as

ω = vk. (E.2)

Here, it is important to note that the amplitude is written as the real

function, in contrast to the free wave function of electron in quantum
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mechanics. In fact, the free wave of electron can be described in one

dimension as

ψ(x, t) =
1√
V

ei(ωt−kx) (E.3)

which is a complex function. The electron can propagate by itself and

there is no medium necessary for the electron motion.

What is the difference between the real wave amplitude and the complex

wave function? Here, we clarify this point in a simple way though this does

not contain any new physics.

E.1.1 A real wave function: Classical wave

If the amplitude is real such as (E.1), then it can only propagate in

medium. This can be clearly seen since the energy of the wave can be

transported in terms of the density oscillation which is a real as the phys-

ical quantity. In addition, the amplitude becomes zero at some point, and

this is only possible when it corresponds to the oscillation of the medium.

This means that the wave function of (E.1) has nothing to do with the

probability of wave object. Instead, if it is the oscillation of the medium,

then it is easy to understand why one finds the point where the amplitude

vanishes to zero. The real amplitude is called a classical wave since it is

indeed seen in the world of the classical physics.

E.1.2 A complex wave function: Quantum wave

On the other hand, the free wave function of electron is a complex func-

tion, and there is no point where it can vanish to zero. Since this is just

the wave function of electron, its probability of finding the wave is always

a constant 1
V

at any space point of volume V .
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E.2 Classical wave

The sound propagates in the air, and its propagation should be trans-

ported in terms of density wave. The amplitude of this wave can be written

in terms of the real function as given in eq.(E.1). This is quite reasonable

since the density wave should be described by the real physical quantity.

Instead, this requires the existence of the medium (air), and the wave can

propagate as long as the air exists. Here, we first write the basic wave

equation in one dimension

1

v2

∂2φ

∂t2
=

∂2φ

∂x2
(E.4)

which is similar to the wave equation in quantum mechanics, though it is

a real differential equation. Here, v denotes the speed of wave.

E.2.1 Classical waves carry their energy ?

In this case, a question may arise as to what is a physical quantity

which is carried by the classical wave like sound. It seems natural that

the wave carries its energy (or wave length). In fact, the transportation

of the energy should be carried out by the compression of the density and

successive oscillations of the medium. Therefore this is called compression

wave.

E.2.2 Longitudinal and transverse waves

Here, we discuss the terminology of the longitudinal and transverse

waves, even though one should not stress its physics too much since there

is no special physical meaning.

• Longitudinal wave : The sound propagates as the compressional wave,

and the oscillations should be always in the direction of the wave motion.

In this case, it is called longitudinal wave. This wave can be easily under-

stood since one can make a picture of the density wave.

• Transverse wave : On the other hand, if the motion of the oscilla-

tions is in the perpendicular to the direction of the wave motion, then it
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is called transverse wave. The tidal wave may be the transverse wave, but

its description may not be very simple since the density change may not

directly be related to the wave itself.

E.3 Quantum wave

Photon and quantum wave are quite different from the classical wave,

and the quantum wave is a particle motion itself. No medium oscillation is

involved. For example, a free electron moves with the velocity v in vacuum,

and this motion is also called ”wave”. The reason why we call it wave is

due to the fact that the equation of motion that describes electrons looks

similar to the classical wave equation of motion. Further, the solution

of the wave equation can be described as eikx, and thus it is the same as

the wave behavior in terms of mathematics. But the physical meaning is

completely different from the classical wave, and quantum wave is just the

particle motion which behaves as the probabilistic motion.

E.3.1 Quantum wave (electron motion)

The wave function of a free electron in one dimension can be described

as

ψ(x, t) =
1√
V

ei(ωt−k·r) (E.5)

which is a solution of the Schrödinger equation of a free electron,

i
∂ψ

∂t
= − 1

2m
∇2ψ (E.6)

where k =
√

2mω, and V denotes the corresponding volume. Since the

Schrödinger equation is quite similar to the wave equation in a classical

sense, one calls the solution of the Schrödinger equation as a wave. How-

ever, the physics of the quantum wave should be understood in terms of

the quantum mechanics, and the relation to the classical wave should not

be stressed. That is, the quantum wave is completely different from the
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classical wave, and one should treat the quantum wave as it is. In addition,

the behavior and physics of the classical wave are very complicated and it

is clear that we do not fully understand the behavior of the classical wave

since it involves many body problems in physics.

E.3.2 Photon

The electromagnetic wave is called photon which behaves like a particle

and also like a wave. This photon can propagate in vacuum and thus it

should be considered to be a particle. Photon can be described by the

vector potential A.

• A is real ! : However, this A is obviously a real function, and therefore,

it cannot propagate like a particle. This can be easily seen since the free

Hamiltonian of photon commutes with the momentum operator p̂ = −i∇,

and therefore it can be a simultaneous eigenstate of the Hamiltonian.

Thus, the A should be an eigenstate of the momentum operator since the

free state must be an eigenstate of momentum. However, any real function

cannot be an eigenstate of the momentum operator, and thus the vector

field in its present shape cannot describe the free particle state.

• Free solution of vector field : What should we do ? The only way of

solving this puzzle is to quantize a photon field. First, the solution of A

can be written as

A(x) =
∑

k,λ

1√
2ωkV

εk,λ

(
c†k,λe

−ikx + ck,λe
ikx

)
(E.7)

with kx ≡ ωkt− k · r. Here, εk,λ denotes the polarization vector which will

be discussed later more in detail. As one sees, the vector field is indeed a

real function.

• Quantization of vector field : Now we impose the following quantization

conditions on c†k,λ and ck,λ

[ck,λ, c†k′,λ′ ] = δk,k′δλ,λ′ , (E.8)

[ck,λ, ck′,λ′ ] = 0, [c†k,λ, c†k′,λ′ ] = 0. (E.9)
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In this case, c†k,λ, ck,λ become operators. Therefore, one should now con-

sider the Fock space on which they can operate. This can be defined as

ck,λ|0〉 = 0 (E.10)

c†k,λ|0〉 = |k, λ〉 (E.11)

where |0〉 denotes the vacuum state of the photon field. Therefore, if one

operates the vector field on the vacuum state, then one obtains

〈k, λ|A(x)|0〉 =
1√

2ωkV
εk,λe

−ikx. (E.12)

As one sees, this new state is indeed the eigenstate of the momentum

operator and should correspond to the observables. Therefore, photon

can be described only after the vector field is quantized. Thus, photon is

a particle whose dispersion relation becomes

ωk = |k|. (E.13)

E.4 Polarization vector of photon

Until recently, there is a serious misunderstanding for the polarization

vector εµ
k,λ. This is related to the fact that the equation of motion for the

polarization vector is not solved, and thus there is one condition missing

in the determination of the polarization vector.

E.4.1 Equation of motion for polarization vector

Now the equation of motion for Aµ = (A0,A) without any source terms

can be written from the Lagrange equation as

∂µF
µν = 0 (E.14)

where F µν = ∂µAν − ∂νAµ. This can be rewritten as

∂µ∂
µAν − ∂ν∂µA

µ = 0. (E.15)
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Now, the shape of the solution of this equation can be given as

Aµ(x) =
∑

k

∑

λ

1√
2V ωk

εµ
k,λ

[
ck,λe

−ikx + c†k,λe
ikx

]
(E.16)

and thus we insert it into eq.(E.15) and obtain

k2εµ − (kνε
ν)kµ = 0. (E.17)

Now the condition that there should exist non-zero solution of εµ
k,λ is ob-

viously that the determinant of the matrix in the above equation should

vanish to zero, namely

det{k2gµν − kµkν} = 0. (E.18)

This leads to k2 = 0, which means k0 ≡ ωk = |k|. This is indeed a proper

dispersion relation for photon.

E.4.2 Condition from equation of motion

Now we insert the condition of k2 = 0 into eq.(E.17), and obtain

kµε
µ = 0 (E.19)

which is a new constraint equation obtained from the basic equation of

motion. Therefore, this condition (we call it “Lorentz condition”) is most

fundamental. It should be noted that the Lorentz gauge fixing is just the

same as eq.(E.19). This means that the Lorentz gauge fixing is improper

and forbidden for the case of no source term. In this sense, the best gauge

fixing should be the Coulomb gauge fixing

k · ε = 0 (E.20)

from which one finds ε0 = 0, and this is indeed consistent with experiment.

• Number of freedom of polarization vector : Now we can understand

the number of degree of freedom of the polarization vector. The Lorentz

condition kµε
µ = 0 should give one constraint on the polarization vector,
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and the Coulomb gauge fixing k ·ε = 0 gives another constraint. Therefore,

the polarization vector has only two degrees of freedom, which is indeed

an experimental fact.

• State vector of photon : The state vector of photon is already discussed.

But here we should rewrite it again. This is written as

〈k, λ|A(x)|0〉 =
εk,λ√
2ωkV

e−ikx. (E.21)

In this case, the polarization vector εk,λ has two components, and satisfies

the following conditions

εk,λ · εk,λ′ = δλ,λ′ , k · εk,λ = 0. (E.22)

E.4.3 Photon is a transverse wave ?

People often use the terminology of transverse photon. Is it a correct

expression ? By now, one can understand that the quantum wave is a

particle motion, and thus it has nothing to do with the oscillation of the

medium. Therefore, it is meaningless to claim that photon is a transverse

wave. The reason of this terminology may well come from the polarization

vector εk,λ which is orthogonal to the direction of photon momentum.

However, as one can see, the polarization vector is an intrinsic property

of photon, and it does not depend on space coordinates.

• No rest frame of photon ! : In addition, there is no rest frame of

photon, and therefore, one cannot discuss its intrinsic property unless one

fixes the frame. Even if one says that the polarization vector is orthogonal

to the direction of the photon momentum, one has to be careful in which

frame one discusses this property.

In this respect, it should be difficult to claim that photon behaves like a

transverse wave. Therefore, one sees that photon should be described as

a massless particle which has two degrees of freedom with the behavior of

a boson. There is no correspondence between classical waves and photon,

and even more, there is no necessity of making analogy of photon with the

classical waves.
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E.5 Poynting vector and radiation

We have clarified that the propagation of the real function requires some

medium which can make oscillations. Here, we discuss the Poynting vector

how it appears in physics, and show that it cannot propagate in vacuum at

all. Also, we present a brief description of the basic radiation mechanism

how photon can be emitted.

E.5.1 Field energy and radiation of photon

Before discussing the propagation of the Poynting vector, we should

first discuss the mechanism of the radiation of photon in terms of classical

electrodynamics. The interaction Hamiltonian can be written as

HI = −
∫

j ·A d3r (E.23)

which should be a starting point of all the discussions. Now, we make a

time derivative of the interaction Hamiltonian and obtain

W ≡ dHI

dt
= −

∫ [
∂j

∂t
·A + j · ∂A

∂t

]
d3r. (E.24)

Since we can safely set A0 = 0 in this treatment, we find

E = −∂A

∂t
. (E.25)

Therefore, we can rewrite eq.(E.24) as

W =

∫
j ·E d3r −

∫
∂j

∂t
·A d3r. (E.26)

Defining the first term of eq.(E.24) as WE, we can rewrite WE as

WE ≡
∫

j ·E d3r = − d

dt

[∫ (
1

2µ0

|B|2 +
ε0

2
|E|2

)
d3r

]
−

∫
∇ · S d3r (E.27)

which is just the energy of electromagnetic fields.
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E.5.2 Poynting vector

Here, the last term of eq.(E.27) is Poynting vector S as defined by

S = E ×B (E.28)

which is connected to the energy flow of the electromagnetic field. This

Poynting vector is a conserved quantity, and thus it has nothing to do with

the electromagnetic wave. In addition, it is a real quantity, and thus there

is no way that it can propagate in vacuum. In addition, the Poynting vector

cannot be a target of the field quantization, and thus it always remains

classical since it is written in terms of E and B. However, there is still

some misunderstanding in some of the textbooks on Electromagnetism,

and therefore, one should be careful for the treatment of the Poynting

vector.

• Exercise problem: Here, we present a simple exercise problem of circuit

with condenser with C (disk radius of a and distance of d) and resistance

with R. The electric potential difference V is set on the circuit. In this

case, the equation for the circuit can be written as

V = R
dQ

dt
+

Q

C
.

This can be easily solved with the initial condition of Q = 0 at t = 0, and

the solution becomes

Q = CV
(
1− e−

t
RC

)
.

Therefore, the electric current J becomes

J =
dQ

dt
=

V

R
e−

t
RC .

In this case, we find the electric field E and the displacement current jd

E =
Q

πa2
ez =

V C

ε0πa2

(
1− e−

t
RC

)
ez (E.29)

jd =
∂E

∂t
=

V

Rπa2
e−

t
RC ez. (E.30)

Thus, the magnetic field B becomes

B =
id r

2
eθ =

r

2πa2R
e−

t
RC eθ



E.5. Poynting vector and radiation 89

where
∫

C
B · dr = µ0idπr2 is used. Therefore, the Poynting vector at the

surface (with r = a ) of the cylindrical space of the disk condenser becomes

S = E ×B = − V 2

2πaRd
e−

t
RC

(
1− e−

t
RC

)
er.

It should be noted that the energy in the Poynting vector is always flowing

into the cylindrical space. Therefore, the electric field energy is now ac-

cumlated in the cylindrical space. There is, of course, no electromagnetic

wave radiation, and in fact, the Poynting vector is the flow of field energy,

and has nothing to do with the electromagnetic wave.
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E.5.3 Emission of photon

The emission of photon should come from the second term of eq.(E.26)

which can be defined as WR and thus

WR = −
∫

∂j

∂t
·A d3r. (E.31)

In this case, we can calculate the ∂j
∂t

term by employing the Zeeman effect

Hamiltonian with a uniform magnetic field of B0

HZ = − e

2me

σ ·B0. (E.32)

The relevant Schrödinger equation for electron with its mass me becomes

i
∂ψ

∂t
= − e

2me

σ ·B0 ψ. (E.33)

Therefore, we find

∂j

∂t
=

e

me

[
∂ψ†

∂t
p̂ψ + ψ†p̂

∂ψ

∂t

]
= − e2

2m2
e

∇B0(r). (E.34)

In order to obtain the photon emission, one should quantize the field A in

eq.(E.31).

• Field quantization : The field quantization in electromagnetic inter-

actions can be done only for the vector potential A. The electric field E

and the magnetic field B are classical quantities which are defined before

the field quantization.

E.6 Gravitational wave

People often discuss the gravitational wave which is supposed to come

from the Einstein equation. In this case, one sees that the equation for

the metric tensor is all real, and thus the solution of this equation must

be also real. Therefore, the gravitational wave, if at all exists, is a real

function, and thus it cannot propagate in vacuum unless one believes the
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aether hypothesis.

• No quantization of gravity : In addition, there is no physical meaning

to quantize the metric tensor and therefore, there is no chance that the

gravitational wave propagates in vacuum.

E.6.1 General relativity

Since we treat the gravitational wave, we should make a comment on

the general relativity. Einstein invented the general relativity which is the

second order differential equation for the metric tensor gµν. A question

may arise as to why the general relativity can be related to the gravi-

tational theory. This reason is simply because Einstein claimed that he

had proved the gravitational Poisson equation should be derived from the

general relativity at the weak gravitational limit. However, in his proof,

he assumed the following strange equation

g00 ' 1 + 2φ (E.35)

where φ denotes the gravitational field. Because of this equation (E.35),

he could derive the gravitational Poisson equation

∇2φ(r) = 4πGρ(r) (E.36)

where G and ρ denote the gravitational constant and the density, respec-

tively.

• Eq.(E.35) is correct ? : Here, we show that eq.(E.35) is not only

strange but simply incorrect. In order to do so, we should examine the

physical meaning of the equation g00 ' 1 + 2φ. We should notice that 1

(unity) in the right hand side of eq.(E.35) is a simple number. This is clear

since the metric tensor is just the coordinate system itself. However, the

gravitational field φ is a dynamical variable, and therefore this summation

of two different categories is simply meaningless.

• No connection between general relativity and gravity : By now it

should be clear that the general relativity has nothing to do with gravity.

It is a theory for the coordinate system (metric tensor), but it is not a

theory for nature.
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Note :

The new gravitational theory is explained in detail in Chapter 6 in the

text book of

“Fundamental problems in quantum field theory” .

Reference :
Fundamental Problems in Quantum Field Theory

T. Fujita and N. Kanda, Bentham Publishers, 2013
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