31

[0 50 Weinberg-Salam 0 U 0 0 [

OOooo0oooooooboobobobo cvcooobooooooboobooo
0000 (1100000000000 0000000O0000oDoOoOOoOOo
O00b0b0b00b00d0 Hamiltonian 000000000 O0OO0OOOOOOOO
gbbogobogboboobbodbbodgbobobodoboooboobboonn
gbobooggbogoboogobooobooobooobooobooboboonon
gbboobbogoboodgbooobboobboobboobobbuoobboobn
gboooggbbogbooobooobobboobbobuoobobuoobbooon
gbbodbbogbbobooobbobooobboobboobooboabn
OO000 Weinberg-Salam 0000000000000 0O0OOOOODOOOOOO
00000 [12,13|000000000000000000O0DOOO00OOOOOOO
gobobobbbouoogooobbobbuooogoboboooooooooobo
O0O00OHiges 0000000000000 0OO0OOODOOOOOOOO0O0O0O0OO0
gbobogobogobouogobuoobbuoobbobooobooboooboonon
Oooooooo0n0o cvecooogooooooooooooooboobobooo
gboboboooobbbuoooobbbooooboood

5.1 UOUOOOooonon

goboggbogobobobuoobbuoobboooboobuooboboonoon
O QED ODOD00O0O0ODO0oOoooooboooooooobooooobooooon
gbobogobogboougbbodbboobobooboooboooboonon
000000000000000000000000000000 SU(2) 0000
gboboboooobbboooobobobooooboboboooobobobooo

00000000000000000 U(1)00ooooooooooooooogd
gbobogobogobogogoboooboooooboooboonoboonon
gbobogobogobobbuodbboboobobogboooboobboonn
goboboogogoboood



32 O 50 Weinberg-Salam 00000

5.1.1 0O0OO0OO0OO0OO0O0O

gobbobbbodogoooobobobbodooooobbobbouoooonon
gbogbobodboobbuodgbboobuoobbooboobbooboobn
gbobogobouogbobudgbbogboooboobobuoobbodobobooooon
gbboodbbuogbbuoobuoobbuooboboooboboobbuoobboob
gbooggbogboogobogobooobooooboobboooooobooon
gbbbuoogobobbboooobbbooooboo

5.2 Higgs 000

gboogobuogbbooboooboobbuoobbooboooboonbon
ObOoo0o0obo0oboboooboobOooboboob Higgsbooooog
gbbobooogbbbuoooobbobuoooobobuoooobooan

5.2.1 Higgs U0 oognd

Higgs 0 0 0 Lagrangian 00O [14]

£ = S(Du0) (D) = U(6) = {Fuk™ 5.)

0000000 U(g), D*, Fr

1
U9) = —uo(lof =X’ (5.2)
DF = 0! 4 igAH
Fo= PA — VA",

O0Oo0DO00O0b0O0O0 wy, AOUDOODOO Lagrangian DOOO0O0OO0O

AR ARy (5.5)
6 —

0000000000000 00000D00000 U(p) O HiggsOOooooQ
gboboboooobbboooobobuoooooooboboboooobo



53. UbOOO0bOOO0bOOO0bOOD 33

53 000000000O00O00O
0000 U(1) 00000000000000000000 ¢ 000O0ODODODO
00" + igA") 6 = —ugd (|6 — N2) — igA, (0" +igA")o (5.7)
O00000ooooo A, 00000000
O F" = gJ" (5.8)
ooond

5.3.1 U0

0000 (5.8) 0000 J+ O

I = S {01(0" +igA")p — 90" —igA")o'} . (5.9)
gboboobodobodod
97" =0 (5.10)

oooobooobooooooJ#00oo0ooooooboobDoboobboobooonog
Oo0o0Oo0o0oboo00oDOoOooo0 A#00D0DO00D0O00ODDOO0ODDOODbOOO

5.3.2 UUUOLOOOOOOOLOObOOO

00000000000000000 J4gg O

Thsn = £ {61(0%6) — 6(046")} (5.11)
Oo0o000oogoooooooooo
¢ — e X (5.12)

000000000000000000000000000000 JE,z 00000
0000000 (100000000000

0, s 70 (5.13)

gboogoooobobobooobobobobooboboboobobobog
ooooobooon



34 O 50 Weinberg-Salam 00000

54 UOUOOOOOOO

ODD0OHiggs 0000000000000 Lagrangian 00000000000
000000000 00000
6 =¢f (5.14)

OO000b0b00oodogboobOob0dn0 Lagrangian OO0

1 1 1 1
£ = S@um)(@"n) — Juo (A + 1) P = X2)* + S+ 0(2) P4, 4% — P

0000000 Higgs 00

¢ =¢' =X +1(z) (5.15)

gboboooodn

5.4.1 20000

Higgs U0 0O Lagrangian 00000000000

1
512592()\—1-7](90))214#14“ (5.16)
O0oodoooogoggono A#DDDDDDDDDDDDDDDDDDDDDD
doo0doodoooogoooogooboonoooooognooooogoooog

obobobooboobooboobooboobobo



5.5, UbOoobooobod 35

5. UUOUOOOODOOO

Higgs 00000000000 O0DOODOODOOOOOOODODOOOOOO
oboobobobooobobobooooboboboobobboboobobonbg
gbobobobobobobgoboobobobooboboboboobobg
O0000000ooooo 3,16l J0000ooooooOooo

5.5.1 UUOOOUoooooog

0000000000000000000000000 Lagrangian 00000
0000000 [17]0000

L= i + 5 G [(4)? + iy’ (5.17)

0000000000000 000000000ODO0O0O0000oO0O (s.17)0oOd
gboooao

Y = €5 (5.18)

goobodbbogbobobobogobooobboobooobobboonon
gbogboodgbbodbboouoobooobooobboobbooogon
gboboboooobboooobobod

5.5.2 Bogoliubov 0[]
0000000 Bogoliubov 00 [18]

e = eane™ = cos b, a, — sin 6, by, (5.19)

dT_n = eb,e ™ = cosh, b, + sinb, a, (5.20)

Ooo0oooboboobon a,b, OO0O00O00O0O0O00O000 ¢,,d, 0000
oboooobon

A=Y "0n(afb, — blay) (5.21)

00006, 0 Bogoliubov 00000



36 O 50 Weinberg-Salam 00000

5.6 UUOUOOOOOOOOOODOO

000000000000 HamiltonianOOOOOOOOOOOOOO O OHamil-
tonian 0000000000000 DODO0OO00ODODODOOODOOOOOOOOOODOOO0
0000000000000 00000000DO0000b0D0000D0D Bogoliubov
0000000000000 000000D00OOOoOoO0O000000OooOooOooan
0000000000000 ooobooooobooooooa
O0o00o0o0oo0o0O00ooo0oo0dd000000o0oooooooooooOooOoOooao
0000ooooooooooooboooooooooooooooooooooa
Oddddoooo0bOooddoo0oooodoooOoooOoooDooooOoOooon
00000oooooooooo0dooooooboooooooooooooooa
0000000000000 00O0000000D0O000D0O000O00Omassless
bosonODODOOOO0O0O0OOOOOOOO S-O0000000O0O0OOmassless bosonl]
00000000 OoOOooOOooOoO0o0000ooooooooooooooooOooao
O00o0oooooon

5.6.1 JUOOOOOOOOOOOO

0000 Thirring OOOOOOOOO00OOOOOOOOO [19]0Lagrangian [
HRN

= 1 ..
L = i)y, 0" — 3 97" j,. (5.22)

ooooooooooo yj,000ooooooobob00d00 Lagrangian [0
gbobobodo

Y= e (5.23)

0000000000000 oo0oooogood Hamil-
tonian O

. 0 0
- / i {—i (wg% D wb) N 2g¢;¢2wbwa} (5.24)

OO000D0O0DbO0Ob00O0 Bethe DOODOOOODOODODOOOO



5.6. UDOOOOOOOOO0ODLOOD 37

5.6.2 Thirring OO0 0OOOOO

Thirring 0000000000 DOOOO0OOOOO0ODLOOOOODOOOODO
gbogbodgbboobobbobbobbobbobobobbobooboobo
gbobodbbogoggbobobuogobboodbbuoobbbooobboonoon
O00000000000000D00000O0D0 [2000000000000000
gboogobuogbbuodgbbogboooboobobuoobbooooboonon
0000000 [16) 00 0000000000000 000000DOO0O0O0O0O0
gog

5.6.3 U0OO0OOO Thirring OOOOOOOO

0000000000 Thiring 0000000000000000000000
0ooo0 [16)0
e Thirring I OOOOOOOOMO

Thirring 0000000000 DO0OOO0O0ODOO0ODOOOO0ODOOODO0ODLDODOO
gboogobuogbbodboooboobbodgboboobobobooboonon
gobo200dboboggbobogobbuooobboobooobobooonon
gbobobooogobobod

e OO OLODOOODOOOOOO

dodo0oooboooooodoooooobooggod
Qs = / R@) P, (= dysd) (5.25)

gbboodbbogguogbbuobogoboooboooboboobooboonn
gbobogobogbbodbobobodbboobooobuoobbodg £100
gbooobouoooobooo

e JUDIDOODO

gboobodgbbogoboboobboobbooboboobboboogoon
gbboogbogobuoooboobbuoobobboboobbboboobboonbn
gbobboooobbbugooboboooobobobuoooobbobooad



38 O 50 Weinberg-Salam 00000

5.7 UUOD

OO00000000000000000 Weinberg-Salam OO0 00 CVC OO
gooboboboboboooobobooboboboobobobobonoog
gbobobgoboboboooboboooboboboobobobobbobodg
OO000b0o00O0oO0ob0o0obo0ob0obbO HiggsOdooboooooooOo
gbobooboobobobobooboboboobobboboobobobg
obobobobooobooboobuooboobo

OO00O00000b0b0dbU0b0Ob0Ob0CERN OO Higgs U0DOD0DOO0OO
ooobobboboboboobooboboboboboobobobobonbog
goobboboboooobobobobuoooobobobobobobobg
obobobooboooboobuooboobobbooboooboo



58

[1 0 D Basic Notations in Field
Theory

In field theory, one often employs special notations which are by now
commonly used. In this Appendix, we explain some of the notations which
are particularly useful in field theory calculations.

D.1 Natural Units and Constants
Here, we employ the natural units because of its simplicity
c=1, h=1. (D.1.1)
If one wishes to get the right dimensions out, one should use
he =197.33 MeV - fm. (D.1.2)

For example, pion mass is m, ~ 140 MeV /c?. Its Compton wave length is

1 he 197 MeV - fm
—_— = = ~ 1.4 fm.
My  MiC? 140 MeV

, €> € e? 1

Fine struct tant: =ef=_—=—= = :
1ne structure constan « € hC 471' 47ThC 137036

Electron mass: m, = 0.511 MeV/c?

Muon mass:  m, = 105.66 MeV/c?

Some constants:
Proton mass: M, =938.28 MeV/c?

1

mee?

=0.529 x 1078 cm

Bohr radius: ag =
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Gravitational constant: G =5.906 x 10739 ML

SN

Weak coupling Constant: Gr =1.166 x 107° (GeV) ™2

h
Electron : i, = 1.00115965219 —-
MeC
Magnetic moments : o
Muon : = 1.001165920
myc

W= —boson : My =80.4 GeV/c?, apy ~43x1073
Weak bosons :
Z° —boson : M,=0912 GeV/c?, az~273x1073

D.2 Hermite Conjugate and Complex Conjugate
For a complex c-number A
A=a+bi (a,b: real). (D.2.1)
Its complex conjugate A* is defined as

A" =a—bi. (D.2.2)

Matrix A

If A is a matrix, one defines the hermite conjugate A'

(A")y; = Al (D.2.3)

Differential Operator A

If A is a differential operator, then the hermite conjugate can be de-
fined only when the Hilbert space and its scalar product are defined. For
example, suppose A is written as

% . (D.2.4)

A:.
)
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In this case, its hermite conjugate A’ becomes

A o\’ )
T:_' R — 7 — =
A Z(ﬁx) " O

which means A is Hermitian. This can be easily seen in a concrete fashion

S

(D.2.5)

since

(] Ag) = / U (@i () de = i / (a%w*(x)) (o) de = (Aple), (D.2.6)

— 00

where ¢)(£00) = 0 is assumed. The complex conjugate of Ais simply

R o .
A = —3— £ A. D.2.
ig 7 (D.2.7)

Field v

If the +(z) is a c-number field, then the hermite conjugate ¢f(x) is just
the same as the complex conjugate ¢*(z). However, when the field ¢ (x) is
quantized, then one should always take the hermite conjugate ¢(z). When
one takes the complex conjugate of the field as ¢*(z), one may examine
the time reversal invariance.

D.3 Scalar and Vector Products (Three Dimen-
sions) :
Scalar Product
For two vectors in three dimensions

r=(2,y,2) = (v1,22,23), D= (Dz;Dy,Pz) = (P1,D2,P3) (D.3.1)

the scalar product is defined

3
r-p= Zxkpk = Tk, (D.3.2)
k=1

where, in the last step, we omit the summation notation if the index £ is
repeated twice.
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Vector Product

The vector product is defined as
T X p = (Tap3 — T3Pz, T3P1 — T1P3, T1P2 — TaP1). (D.3.3)
This can be rewritten in terms of components,
(r X p)i = €jkTiDk, (D.3.4)
where ¢;;, denotes anti-symmetric symbol with

€123 = €231 = €312 = 1, €132 = €213 = €391 = —1, otherwise = 0.

D.4 Scalar Product (Four Dimensions)

For two vectors in four dimensions,
ot = (t,x,y, 2) = (o, ), "= (E,Ds,Py.D:) = (Po, D) (D.4.1)
the scalar product is defined
r-p=Et—1r-p=2x9po — TPk (D.4.2)
This can be also written as
z,p" = x2op’ + 11p' + 22p® + 230" = Et — 71 -p=12 P, (D.4.3)
where 7, and p, are defined as
z, = (2o, —7), pu = (Po, —D)- (D.4.4)

Here, the repeated indices of the Greek letters mean the four dimensional
summation p = 0,1,2,3. The repeated indices of the roman letters always
denote the three dimensional summation throughout the text.
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Metric Tensor

It is sometimes convenient to introduce the metric tensor ¢ which has
the following properties

1 0 0 O
0O -1 0 0
W =g, = D45
0O 0 0 -1
In this case, the scalar product can be rewritten as
r-p=2a"p’g. =Et—r-p. (D.4.6)

D.5 Four Dimensional Derivatives 0,

The derivative 8M is introduced for convenience

0 o o0 o0 0 o 0 0 0 0
O ork (ax()’ ol 92’ 8l’3> = (Ea%;a_yag) = (E’V) , (D.5.1)

where the lower index has the positive space part. Therefore, the deriva-

tive 0¥ becomes
0 0 0 0 0 0
w— Y (Y <Y Y YN _ (Y
o= ox, <8t’ oz’ Oy’ 8z> ((91&’ V)‘ (D52)

D.5.1 p* and Differential Operator

Since the operator p* becomes a differential operator as
= (E,p) = 22 iV | = io"
Y at7

the negative sign, therefore, appears in the space part. For example, if

one defines the current j# in four dimension as

' =(p,J3),
then the current conservation is written as
) 0 .1
0uj“:8—f+v-,7 = ;puj“:O. (D.5.3)
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D.5.2 Laplacian and d’Alembertian Operators

The Laplacian and d’Alembertian operators, A and [] are defined as

0? 0? 0?
A:V-V—wﬁ—a—:y?—'—@,

82
DE@M(?“:@—A

D.6 ~-Matrix

Here, we present explicit expressions of the y-matrices in two and four
dimensions. Before presenting the representation of the ~-matrices, we
first give the explicit representation of Pauli matrices.

D.6.1 Pauli Matrix

Pauli matrices are given as

01 0 —1 1 0
ax:m:(l O)’ Oy:JQZ(z' O)’ UZZU3:<O _1). (D.6.1)

Below we write some properties of the Pauli matrices.
Hermiticity

O'Jlr:O'l, O’;:UQ, 0';20'3.
Complex Conjugate

0] =01, 0y=—0, 03 =03.

Transposed

T T T T *
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Useful Relations

0,05 = 52‘]‘ + ieijko-ka (D62)
[O’i, O'j] = 2i€ijk0'k- (D63)

D.6.2 Representation of y-matrix

(a) Two dimensional representations of y-matrices

10 0 1 01
Di . A0 1_ 5 _ 0.1
irac : v (0 _1>, gl (_1 0>, V=7 Lol
01 0 -1 1 0
Chiral : 7" = 1= 5 = A0yt = .
ra v (1 0>, gl (1 0): v T 0 —1

(b) Four dimensional representations of gamma matrices

1 0 0 o
D. . 0: = =
irac : 7" = f <0 _1>, Y (_0_ 0)’
01 0 o
0.1.2.3 _
7 27777—<1 0>a a—(g_ O)a
01 0 —0o
Chiral : /°=p5= =
iral : 7" =0 (1 0>> vy <a 0>,
1 0 o 0
0~ 1.2.3 _ _
7° = i7"y <O _1)7 « <O —0').
where 0= 00 , 1= Lo .
0 0 01

D.6.3 Useful Relations of y-Matrix

Here, we summarize some useful relations of the y-matrices.



D.7. Transformation of State and Operator

Anti-commutation relations

{4} =2¢", {7#°.+"} =0.

Hermiticity

=% (=% 7=-m) =1

Complex Conjugate

0

Yo=7, M= Yo=-" V3=73 V5="s

Transposed

vE=7"7", 1 =1

D.7 Transformation of State and Operator

65

(D.6.4)

(D.6.5)

(D.6.6)

(D.6.7)

When one transforms a quantum state |¢)) by a unitary transformation

U which satisfies
Ul =1

one writes the transformed state as

[9) = Uly).

(D.7.1)

The unitarity is important since the norm must be conserved, that is,

@'y = @UTU) = 1.
In this case, an arbitrary operator O is transformed as

O =U0U".

(D.7.2)
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This can be obtained since the expectation value of the operator O must
be the same between two systems, that is,

(YlO) = WO"|Y). (D.7.3)

Since
WO = (@UTO'Uy) = (¥|O)
one finds
Uto'u = o

which is just eq.(D.7.2).

D.8 Fermion Current

We summarize the fermion currents and their properties of the Lorentz
transformation. We also give their nonrelativistic expressions since the
basic behaviors must be kept in the nonrelativistic expressions. Here, the
approximate expressions are obtained by making use of the plane wave
solutions for the Dirac wave function.

Scalar : Y~ 1
Pseudoscalar :  1)y°1) ~ zp
Fermion currents : - p (D.8.1)
Vector : hryFah ~ (17 _)
m

Axialvector :  ipyHySeh ~ <%, O')

Therefore, under the parity P and time reversal T transformation, the
currents behave
P = PP Py =y
L Py = PPy P = —hyse)
Parity P : ~ o R _ (D.8.2)
Y’ = PPy P = =y
Vs =GP s Py = Pty



D.9. Trace in Physics
P =TT =
e R L Py = PT T = Phrysy)
1me Reversa : 3 o . _
Py = YT T = =)
Vs = YT 5Ty = —yysy)

D.9 Trace in Physics

D.9.1 Definition

The trace of N x N matrix A is defined as
N
i=1

It is easy to prove
Tr[AB] = Tr[BA].

D.9.2 Trace in Quantum Mechanics

The trace of the Hamiltonian H becomes

Tr[H) = Ti[UHU '] =) E,,

n=1

67

(D.8.3)

(D.9.1)

(D.9.2)

(D.9.3)

where U is a unitary operator, and FE, denotes the energy eigenvalue of

the Hamiltonian.

D.9.3 Trace in SU(N)

In SU(N), the element U® can be described in terms of the generator 7

Ue = eiaTa
where the generator must be hermitian and traceless since

detU® = exp (Tr [InU?]) = exp (ia Tr [T7]) =1

(D.9.4)

(D.9.5a)
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Tr [T = 0. (D.9.5b)

The generators of SU(N) group satisfy the following commutation relations
[T, T = iC*T*, (D.9.6)

where C% denotes a structure constant. The generators are normalized

such that ]
Tr [T°T"] = 3 5. (D.9.7)

D.9.4 Trace of v-Matrices and p

Trace of y-matrices :

Tr(l] =4, Trly) =0, Tr[y]=0. (D.9.8)
Symbol » : P =p"
Useful Relations:
b = —2p (D.9.9)
M=p-q—iou.p"q” (D.9.10)
T [pf] = 4p- g (D9.11)
Tr [vsp4] = 0 (D.9.12)
T [pbabips) = 4{ (01 2) (03 p1) = (01 - P)p2 - PO) + (pr - P02 p) | (D.9.13)
Tr [y fobyb] = —4i€asys DS D5 D3 1) (D.9.14)
Tr [75'7u17u2'7u3’7u4'7u57u6] = —4i [9M1M2€M3M4M5M6 — Guips€papaps e
T Gpops€pipapsps + Jpaps Eprpopzps — gu4uagu1u2u3us'+'9u5u65u1u2u3u4] (D.9.15)
L Lol Ll L p
o A VA L (D.9.16)

=9
@

=2
»

§° 5’

7
— Iz
E gl B = —
wv'aB
0%y 0%, 8%, 0%
M a B’
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R
g}ujaﬁguy/a/ﬁ/ = — 5(1 ! (SO‘ o 605 8 (D917)
B B B
5, 8. &,
oY, 0%,
€uyaﬂ<€#ya/5/ = -2 55 @ 55 B (D918)
a/ 6/
gﬂyaﬁguyaﬁ’ - _655 e (Dg].g)
" Pe s = —24 (D.9.20)

D.10 Lagrange Equation

In classical field theory, the equation of motion is most important, and it
is derived from the Lagrange equation. Therefore, we review briefly how
we can obtain the equation of motion from the Lagrangian density.

D.10.1 Lagrange Equation in Classical Mechanics

Before going to the field theory treatment, we first discuss the Lagrange
equation (Newton equation) in classical mechanics. In order to obtain the
Lagrange equation by the variational principle in classical mechanics, one
starts from the action S as defined

S = /L(q,q) dt, (D.10.1)

where the Lagrangian L(q,¢) depends on the general coordinate ¢ and its
velocity ¢. At the time of deriving equation of motion by the variational
principle, ¢ and ¢ are independent as the function of t. This is clear
since, in the action S, the functional dependence of ¢(¢) is unknown and
therefore one cannot make any derivative of ¢(t) with respect to time t.
Once the equation of motion is established, then one can obtain ¢ by time
differentiation of ¢(¢) which is a solution of the equation of motion. The
Lagrange equation can be obtained by requiring that the action S should
be a minimum with respect to the variation of ¢ and .

oL oL
08 /5 (q,q)dt /(3q 0q + 3d 5q) dt
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oL d oL

= — —— — ] d0qdt=0 D.10.2

/ <aq dt aq) 1 ’ ( )

where the surface terms should vanish. Thus one obtains the Lagrange

equation

oL d oL

— - ——=0. D.10.3

dq dt 0q ( )

Hamiltonian in Classical Mechanics

The Lagrangian must be invariant under the infinitesimal time displace-
ment € of ¢(t) as

d
gt +e) = qt) +de, d(t+e) — d(t) +de+a d—i . (D.10.4)
Therefore, one finds
. . ) oL . OL . 0L .de
0L(q,q) = L(q(t +€),4(t + €)) — L(q,q) = o~ qe+ —— e+ 0. (D.10.5)

dq dq 8_q Tat =

Since the surface term vanishes, one obtains

, oL . OL. d (0L d oL |
0L(q,q) = 3_qq—'—8_qq_%(8_q'q)}e_{ﬁ <L—a—q,q)]6—0 (D.10.6)

where the term in bracket is a conserved quantity, and thus the Hamilto-
nian H is defined as
=—4—L. (D.10.7)

D.10.2 Lagrange Equation for Fields

The Lagrange equation for fields can be obtained almost in the same
way as the particle case. For fields, we should start from the Lagrangian
density £ and the action is written as

S = /c (zp,z/}, %’) Pr dt, (D.10.8)

k

where (z), 2% and g—fk are independent functional variables. Hereafter,

Ot
=

we use the notation of i)(z) = 5.~ The Lagrange equation can be obtained
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by requiring that the action S should be a minimum with respect to the
variation of ¥, ¢ and %,

g5 o2 (v 22 ) - /<—— S o (20 e

oL 88£ 0 oL 3

where the surface terms are assumed to vanish. Therefore, one obtains

oL 9o (9/5 0 8£

D.10.10
which can be expressed in the relativistic covariant way as
oL oL
— =0 == |- D.10.11
% = (o) (p104Y

D.11 Noether Current

If the Lagrangian density is invariant under the transformation of the
field with a continuous variable, then there is always a conserved current
associated with this symmetry. This is called Noether current and can be
derived from the invariance of the Lagrangian density and the Lagrange
equation.

D.11.1 Global Gauge Symmetry

The Lagrangian density which is discussed in this textbook should have
the following functional dependence in general

= i)y, 0" — mapp + Ly {0, vyse, b}
which is obviously invariant under the global gauge transformation
Y =y, ¢t = eyl (D.11.1)

where « ia a real constant. Therefore, the Noether current is conserved
in this system. To derive the Noether current conservation for the global
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gauge transformation, one can consider the infinitesimal global transfor-
mation, that is, |o| < 1

Y=+ oY, 0 =iarh. (D.11.2a)

W= gt 46T, sy = —iagt. (D.11.20)

Invariance of Lagrangian Density

Now, it is easy to find

5’C = E(W» d],T? aud/? 8uw,T) - 'C(d}a ¢Ta 8;/[#7 8M¢T) =0 (Dllga’)

which becomes

oc oL . oC
= 5 1
3059 5,07 O+ 5 8 0
oL oL oL oL
— o —= [ WA |
“K “a<am>)¢+a<am> O = (“a< mw))‘” 500,41

. oL
= 100, [ 50,0) "~ 30 mm

where the equation of motion for ¢ is employed.

z/ﬁ} (D.11.3b)

Current Conservation

Therefore, one defines the current j* as

oL oL
= g | —— ) — ——— gt D.11.4
il T TG RTO A DA
and one has the current conservation
Ot = 0. (D.11.5)

For Dirac fields, one finds the conserved current

"=y, (D.11.6)
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D.11.2 Chiral Symmetry

When the Lagrangian density is invariant under the chiral transforma-
tion,
P = e (D.11.7)

then there is another Noether current. Here, j¢ as defined in eq.(D.11.2)

becomes

0 = iaysi). (D.11.8)
Therefore, a corresponding conserved current for massless Dirac fields
b
ecomes . or b i _—
and we have
d,j8 = 0. (D.11.10)

The conservation of the axial vector current holds for massless field theory
models.

D.12 Hamiltonian Density

The Hamiltonian density H is constructed from the Lagrangian density
L. If the Lagrangian density is invariant under the translation ", then
there is a conserved quantity which is the energy momentum tensor 7.

The Hamiltonian density is constructed from the energy momentum tensor
of 7%,

D.12.1 Hamiltonian Density from Energy Momentum Ten-
sor

9

a_) . If one considers
g,

Now, the Lagrangian density is given as £ (1/12‘, Ooi,

the following infinitesimal translation a” of the field ¢; and ¢j
770; = q/ji + 577Z}17 61/)1 = (ay¢i)aya
el = vl +ovl, o0l = @,40)a",
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then the Lagrangian density should be invariant

oL = E(wz’ ,u¢ ) (,lvblv 8M¢2)

oL ' - or N
Z [3% (6ﬂwi) 6(Outhi) + wT 0y + ((be) 6 (Ot )] =0. (D.12.1)

Maklng use of the Lagrange equation, one obtains

oL oL
0L = v ¥ a 81/ ) _a —81/ 7
5 [ 00+ s 000 =0 (g ) o

oL oL
4 (@) + 0, 0Y) = 0, o] | | a”
Z aw* 0e) (6‘m2)( o) <8(@u¢3> ¢>]a

B v o ., oc ., 4 B
=0, [ﬁg“ Z (a@wi) 0¥ ; + —8(8u1/1;r) 9] zp)] a, = 0. (D.12.2)

Energy Momentum Tensor 7+

Therefore, if one defines the energy momentum tensor 7" by

oL

T = 0" + ———— 8”@ — Lg"” (D.12.3)
Zi: ( (Outhi) GIGRT >

then, 7" is a conserved quantity, that is

0T =0.
This leads to the definition of the Hamiltonian density H in terms of 7%

oL oL

H=TY= Oy + ——— %! | — L. D.12.4
; (8(%%) (o)) ( )

D.12.2 Hamiltonian Density for Free Dirac Fields
For a free Dirac field with its mass m, the Lagrangian density becomes
L=l + 0] [y -V —m°] 4. (D.12.5)
Therefore, we find the Hamiltonian density as

H=T" =; [—iyOc+m],; ;=1 [—iy - V+m] . (D.12.6)
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Hamiltonian for Free Dirac Fields

The Hamiltonian H is obtained by integrating the Hamiltonian density
over all space

H = /Hd3r = /&[—iﬁy-Ver]z/;d?’r. (D.12.7)

In classical field theory, this Hamiltonian is not an operator but is just
the field energy itself. However, this field energy cannot be evaluated
unless one knows the shape of the field ¢(x) itself. Therefore, one should
determine the shape of the field ¢(xz) by the equation of motion in the
classical field theory.

D.12.3 Role of Hamiltonian

The classical field Hamiltonian itself is not useful. This is similar to the
classical mechanics case in which one has to derive the Hamilton equations
in order to calculate physical properties of the system, and the Hamilton
equations are equivalent to the Lagrange equations in classical mechanics.

Classical Field Theory

In classical field theory, the situation is just the same as the classical
mechanics case. If one stays in the classical field theory, then one should
derive the field equation from the Hamiltonian by the functional varia-
tional principle.

Quantized Field Theory

The Hamiltonian of the field theory becomes important when the fields
are quantized. In this case, the Hamiltonian becomes an operator, and
thus one has to solve the eigenvalue problem for the quantized Hamiltonian
H

H|U) = E|T), (D.12.8)

where |U) is called Fock state and should be written in terms of the creation
and annihilation operators of fermion and anti-fermion. The space spanned
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by the Fock states is called Fock space. In normal circumstances of the
field theory models such as QED and QCD, it is practically impossible
to find the eigenstate of the quantized Hamiltonian. The difficulty of the
quantized field theory comes mainly from two reasons. Firstly, one has to
construct the vacuum state which is composed of infinite many negative
energy particles interacting with each other. The vacuum state should be
the eigenstate of the Hamiltonian

where E denotes the energy of the vacuum and it is in general infinity
with the negative sign. The vacuum state [Q)) is composed of infinitely
many negative energy particles

(s)
) =TT, 100,
p7s

where |0)) denotes the null vacuum state. In the realistic calculations, the
number of the negative energy particles must be set to a finite value, and
this should be reasonable since physical observables should not depend on
the deep negative energy particles.

D.13 Variational Principle in Hamiltonian

Now, one can derive the equation of motion by requiring that the Hamil-
tonian should be minimized with respect to the functional variation of the
state (r).

D.13.1 Schrodinger Field

When one minimizes the Hamiltonian
1 )
H :/ [—Q—WV%HWW d3r (D.13.1)
m

with respect to ¢(r), then one can obtain the static Schréodinger equation.
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Functional Derivative

First, one defines the functional derivative for an arbitrary function ;(r)
by /

% = ;;0(r —7'). (D.13.2)

This is the most important equation for the functional derivative, and

once one accepts this definition of the functional derivative, then one can

evaluate the functional variation just in the same way as normal derivative

of the function ;(r).

Functional Variation of Hamiltonian

For the condition on 1 (r), one requires that it should be normalized

according to
/wT(r)w(r) d’r=1. (D.13.3)

In order to minimize the Hamiltonian with the above condition, one can
make use of the Lagrange multiplier and make a functional derivative of
the following quantity with respect to f(r)

Hy] = / {—% D)V 2)(r') + 1/1T(T’)U2/1(r/)] By

-F </ D) (r') dPr — 1) , (D.13.4)

where E denotes a Lagrange multiplier and just a constant. In this case,
one obtains

SH[y]
i (r)

Therefore, one finds

_ / 5(r — ) {—% VPG + Ud(r') — E@Z;(r’)} &' =0, (D.13.5)

5= V(r) + U(r) = Bu(r) (D-13.6)

which is just the static Schrodinger equation.
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D.13.2 Dirac Field

The Dirac equation for free field can be obtained by the variational prin-
ciple of the Hamiltonian eq.(D.12.7). Below, we derive the static Dirac
equation in a concrete fashion by the functional variation of the Hamilto-

nian.

Functional Variation of Hamiltonian

For the condition on ;(r), one requires that it should be normalized

according to
/ Yl (r) d®r = 1. (D.13.7)

Now, the Hamiltonian should be minimized with the condition of eq.(D.13.7)

Hlw) = [ 0l(r) [i0% - D)+ m0] )

—E (/ Yl (r)abs(r) dPr — 1> : (D.13.8)

where F is just a constant of the Lagrange multiplier. By minimizing the
Hamiltonian with respect to @ZJJ (r), one obtains

(—ice - V+mpB)Y(r) — Ev(r) =0 (D.13.9)

which is just the static Dirac equation for free field.
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[0 OE Wave Propagations in
medium and vacuum

The classical wave such as sound can propagate through medium. How-
ever, it cannot propagate in vacuum as is well known. This is, of course,
clear since the classical wave is the chain of the oscillations of the medium
due to the pressure on the density.

On the other hand, quantum wave including photon can propagate in
vacuum since it is a particle. Here, we clarify the difference in propagations
between the classical wave and quantum wave. The most important point
is that the classical wave should be always written in terms of real functions
while photon or quantum wave should be described by the complex wave
function of the shape ¢*** since it should be an eigenstate of the momentum.

This part is written as Appendix to the field theory text book “Funda-
mental problems in quantum field theory” published in Bentham publish-
ers in 2013.

E.1 What is wave ?

The sound can propagate through medium such as air or water. The
wave can be described in terms of the amplitude ¢ in one dimension

¢(x,t) = Apsin(wt — kx) (E.1)

where w and k£ denote the frequency and wave number, respectively. The

dispersion relation of this wave can be written as
w = vk. (E.2)

Here, it is important to note that the amplitude is written as the real
function, in contrast to the free wave function of electron in quantum
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mechanics. In fact, the free wave of electron can be described in one

dimension as

o, t) = Tlvei<wtkw> (E.3)
which is a complex function. The electron can propagate by itself and
there is no medium necessary for the electron motion.

What is the difference between the real wave amplitude and the complex
wave function? Here, we clarify this point in a simple way though this does
not contain any new physics.

E.1.1 A real wave function: Classical wave

If the amplitude is real such as (E.1), then it can only propagate in
medium. This can be clearly seen since the energy of the wave can be
transported in terms of the density oscillation which is a real as the phys-
ical quantity. In addition, the amplitude becomes zero at some point, and
this is only possible when it corresponds to the oscillation of the medium.
This means that the wave function of (E.1) has nothing to do with the
probability of wave object. Instead, if it is the oscillation of the medium,
then it is easy to understand why one finds the point where the amplitude
vanishes to zero. The real amplitude is called a classical wave since it is
indeed seen in the world of the classical physics.

E.1.2 A complex wave function: Quantum wave

On the other hand, the free wave function of electron is a complex func-
tion, and there is no point where it can vanish to zero. Since this is just
the wave function of electron, its probability of finding the wave is always

a constant % at any space point of volume V.
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E.2 Classical wave

The sound propagates in the air, and its propagation should be trans-
ported in terms of density wave. The amplitude of this wave can be written
in terms of the real function as given in eq.(E.1). This is quite reasonable
since the density wave should be described by the real physical quantity.
Instead, this requires the existence of the medium (air), and the wave can
propagate as long as the air exists. Here, we first write the basic wave
equation in one dimension

1% _ 9%
v2 Ot Qa2

which is similar to the wave equation in quantum mechanics, though it is

(E4)

a real differential equation. Here, v denotes the speed of wave.

E.2.1 Classical waves carry their energy ?

In this case, a question may arise as to what is a physical quantity
which is carried by the classical wave like sound. It seems natural that
the wave carries its energy (or wave length). In fact, the transportation
of the energy should be carried out by the compression of the density and
successive oscillations of the medium. Therefore this is called compression
wave.

E.2.2 Longitudinal and transverse waves

Here, we discuss the terminology of the longitudinal and transverse
waves, even though one should not stress its physics too much since there
is no special physical meaning.

e Longitudinal wave : The sound propagates as the compressional wave,
and the oscillations should be always in the direction of the wave motion.
In this case, it is called longitudinal wave. This wave can be easily under-
stood since one can make a picture of the density wave.

e Transverse wave : On the other hand, if the motion of the oscilla-
tions is in the perpendicular to the direction of the wave motion, then it



82 O O E Wave Propagations in medium and vacuum

is called transverse wave. The tidal wave may be the transverse wave, but
its description may not be very simple since the density change may not
directly be related to the wave itself.

E.3 Quantum wave

Photon and quantum wave are quite different from the classical wave,
and the quantum wave is a particle motion itself. No medium oscillation is
involved. For example, a free electron moves with the velocity v in vacuum,
and this motion is also called ”wave”. The reason why we call it wave is
due to the fact that the equation of motion that describes electrons looks
similar to the classical wave equation of motion. Further, the solution

of the wave equation can be described as e**

, and thus it is the same as
the wave behavior in terms of mathematics. But the physical meaning is
completely different from the classical wave, and quantum wave is just the

particle motion which behaves as the probabilistic motion.

E.3.1 Quantum wave (electron motion)

The wave function of a free electron in one dimension can be described
as

U(x,t) = Tlvei(Wt_k'T) (E.5)

which is a solution of the Schrodinger equation of a free electron,

Oy I oo
— E.6
! ot QmV 4 (E-6)
where k£ = v2mw, and V denotes the corresponding volume. Since the

Schrodinger equation is quite similar to the wave equation in a classical
sense, one calls the solution of the Schrodinger equation as a wave. How-
ever, the physics of the quantum wave should be understood in terms of
the quantum mechanics, and the relation to the classical wave should not
be stressed. That is, the quantum wave is completely different from the
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classical wave, and one should treat the quantum wave as it is. In addition,
the behavior and physics of the classical wave are very complicated and it
is clear that we do not fully understand the behavior of the classical wave
since it involves many body problems in physics.

E.3.2 Photon

The electromagnetic wave is called photon which behaves like a particle
and also like a wave. This photon can propagate in vacuum and thus it
should be considered to be a particle. Photon can be described by the
vector potential A.

e Aisreal! : However, this A is obviously a real function, and therefore,
it cannot propagate like a particle. This can be easily seen since the free
Hamiltonian of photon commutes with the momentum operator p = —iV,
and therefore it can be a simultaneous eigenstate of the Hamiltonian.
Thus, the A should be an eigenstate of the momentum operator since the
free state must be an eigenstate of momentum. However, any real function
cannot be an eigenstate of the momentum operator, and thus the vector
field in its present shape cannot describe the free particle state.

e Free solution of vector field : What should we do ? The only way of
solving this puzzle is to quantize a photon field. First, the solution of A
can be written as

1 . )
A(z) = E ————€p) (CL Ae’““ + ckAe”“) (E.7)
EN vV 2ka

with kzr = wit — k- r. Here, € ) denotes the polarization vector which will
be discussed later more in detail. As one sees, the vector field is indeed a
real function.

e Quantization of vector field: Now we impose the following quantization

conditions on c;/\ and cg »

[, CL/,,\/] = O k' ON N5 (E.8)

[cer, ] =0, [c;fm, cL,’X] - 0. (E.9)
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In this case, chA, ck,» become operators. Therefore, one should now con-
sider the Fock space on which they can operate. This can be defined as

cxAl0) = 0 (E.10)
A0y = |k,N) (E.11)
where |0) denotes the vacuum state of the photon field. Therefore, if one

operates the vector field on the vacuum state, then one obtains

1
vV 2ka

As one sees, this new state is indeed the eigenstate of the momentum

(k, \|A(2)]0) = €xre . (E.12)

operator and should correspond to the observables. Therefore, photon
can be described only after the vector field is quantized. Thus, photon is
a particle whose dispersion relation becomes

E.4 Polarization vector of photon

Until recently, there is a serious misunderstanding for the polarization
vector e’,:,)\. This is related to the fact that the equation of motion for the
polarization vector is not solved, and thus there is one condition missing
in the determination of the polarization vector.

E.4.1 Equation of motion for polarization vector

Now the equation of motion for A* = (A° A) without any source terms
can be written from the Lagrange equation as

" =0 (E.14)
where 'Y = g*AY — 0¥ A*. This can be rewritten as

0, 0" A — 970, AP = 0. (E.15)
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Now, the shape of the solution of this equation can be given as
1 . ,
At (x) = — ¥ lepae T 4l e E.16
( ) zk: z)\: \/m k| CRA kA ( )
and thus we insert it into eq.(E.15) and obtain
ke — (k,e")k" = 0. (E.17)

Now the condition that there should exist non-zero solution of e‘,;)\ is ob-
viously that the determinant of the matrix in the above equation should
vanish to zero, namely

det{k*¢g"" — k"k"} = 0. (E.18)

This leads to k? = 0, which means ky = w;, = |k|. This is indeed a proper
dispersion relation for photon.

E.4.2 Condition from equation of motion

Now we insert the condition of k? = 0 into eq.(E.17), and obtain
ket =0 (E.19)

which is a new constraint equation obtained from the basic equation of
motion. Therefore, this condition (we call it “Lorentz condition”) is most
fundamental. It should be noted that the Lorentz gauge fixing is just the
same as eq.(E.19). This means that the Lorentz gauge fixing is improper
and forbidden for the case of no source term. In this sense, the best gauge
fixing should be the Coulomb gauge fixing

k-e=0 (E.20)

from which one finds ¢y = 0, and this is indeed consistent with experiment.

e Number of freedom of polarization vector : Now we can understand
the number of degree of freedom of the polarization vector. The Lorentz
condition k,e* = 0 should give one constraint on the polarization vector,
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and the Coulomb gauge fixing k-€ = 0 gives another constraint. Therefore,
the polarization vector has only two degrees of freedom, which is indeed
an experimental fact.

e State vector of photon: The state vector of photon is already discussed.
But here we should rewrite it again. This is written as

€L\ ik
k,\A(2)|0) = —==e"". E.21
(k, A A(2)]|0) N (E.21)
In this case, the polarization vector ¢, ) has two components, and satisfies
the following conditions

Ek,)\ . Gk:,)\’ = (5>\7)\/, k . Ek,)\ = 0 (E22)

E.4.3 Photon is a transverse wave 7

People often use the terminology of transverse photon. Is it a correct
expression 7 By now, one can understand that the quantum wave is a
particle motion, and thus it has nothing to do with the oscillation of the
medium. Therefore, it is meaningless to claim that photon is a transverse
wave. The reason of this terminology may well come from the polarization
vector €, which is orthogonal to the direction of photon momentum.
However, as one can see, the polarization vector is an intrinsic property
of photon, and it does not depend on space coordinates.

e No rest frame of photon ! : In addition, there is no rest frame of
photon, and therefore, one cannot discuss its intrinsic property unless one
fixes the frame. Even if one says that the polarization vector is orthogonal
to the direction of the photon momentum, one has to be careful in which
frame one discusses this property.

In this respect, it should be difficult to claim that photon behaves like a
transverse wave. Therefore, one sees that photon should be described as
a massless particle which has two degrees of freedom with the behavior of
a boson. There is no correspondence between classical waves and photon,
and even more, there is no necessity of making analogy of photon with the
classical waves.
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E.5 Poynting vector and radiation

We have clarified that the propagation of the real function requires some
medium which can make oscillations. Here, we discuss the Poynting vector
how it appears in physics, and show that it cannot propagate in vacuum at
all. Also, we present a brief description of the basic radiation mechanism
how photon can be emitted.

E.5.1 Field energy and radiation of photon

Before discussing the propagation of the Poynting vector, we should
first discuss the mechanism of the radiation of photon in terms of classical
electrodynamics. The interaction Hamiltonian can be written as

H; = —/j - Adr (E.23)

which should be a starting point of all the discussions. Now, we make a
time derivative of the interaction Hamiltonian and obtain

_dH; ([0 A7

Since we can safely set A° = 0 in this treatment, we find

E = T (E.25)

Therefore, we can rewrite eq.(E.24) as
. 3 9j 3
W= |[j-Edr— E-Adr. (E.26)
Defining the first term of eq.(E.24) as Wy, we can rewrite Wy as

d 1 €
= y . 3 —_— —— _ 2 _0 2 3 — . 3
WE_/J Edr o [/ <2M0|B| + 2|E| ) dr] /V Sd’r (E.27)

which is just the energy of electromagnetic fields.
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E.5.2 Poynting vector
Here, the last term of eq.(E.27) is Poynting vector S as defined by
S=ExB (E.28)

which is connected to the energy flow of the electromagnetic field. This
Poynting vector is a conserved quantity, and thus it has nothing to do with
the electromagnetic wave. In addition, it is a real quantity, and thus there
is no way that it can propagate in vacuum. In addition, the Poynting vector
cannot be a target of the field quantization, and thus it always remains
classical since it is written in terms of £ and B. However, there is still
some misunderstanding in some of the textbooks on Electromagnetism,
and therefore, one should be careful for the treatment of the Poynting
vector.

e Exercise problem: Here, we present a simple exercise problem of circuit
with condenser with C (disk radius of a and distance of d) and resistance
with R. The electric potential difference V' is set on the circuit. In this
case, the equation for the circuit can be written as

_ pdQ Q@
V=Ro-+ 2

This can be easily solved with the initial condition of ) =0 at ¢t = 0, and
the solution becomes

Q:CV(1—6*%).
Therefore, the electric current J becomes
dt R
In this case, we find the electric field £ and the displacement current j,
Vv ¢
B - Y. _YC (1 —e—m> e. (E.29)
Ta? goma?
) oE Vo
Ji = 5 T praat e (E.30)

Thus, the magnetic field B becomes

B idT r _ .t
= _69 = ———— e RC 69
2 2ra’R
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where fCB dr = ppigrr? is used. Therefore, the Poynting vector at the
surface (with r = a ) of the cylindrical space of the disk condenser becomes

V2

o % oraRd

__t_ __t_
e RC <1—€ RC)er.

It should be noted that the energy in the Poynting vector is always flowing
into the cylindrical space. Therefore, the electric field energy is now ac-
cumlated in the cylindrical space. There is, of course, no electromagnetic
wave radiation, and in fact, the Poynting vector is the flow of field energy,
and has nothing to do with the electromagnetic wave.
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E.5.3 Emission of photon

The emission of photon should come from the second term of eq.(E.26)
which can be defined as Wy and thus

/ % . A (E.31)

In this case, we can calculate the term by employing the Zeeman effect
Hamiltonian with a uniform magnetlc field of B,

e
2me,

The relevant Schrodinger equation for electron with its mass m. becomes

81& e
875 = Zmea - By . (E.33)
Therefore, we find
d5 e &N i A@@/} B e?
ot m. DY) + 'p = _2m§ V By(r). (E.34)

In order to obtain the photon emission, one should quantize the field A in
eq.(E.31).

e Field quantization : The field quantization in electromagnetic inter-
actions can be done only for the vector potential A. The electric field E
and the magnetic field B are classical quantities which are defined before
the field quantization.

E.6 Gravitational wave

People often discuss the gravitational wave which is supposed to come
from the Einstein equation. In this case, one sees that the equation for
the metric tensor is all real, and thus the solution of this equation must
be also real. Therefore, the gravitational wave, if at all exists, is a real
function, and thus it cannot propagate in vacuum unless one believes the
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aether hypothesis.

e No quantization of gravity : In addition, there is no physical meaning
to quantize the metric tensor and therefore, there is no chance that the
gravitational wave propagates in vacuum.

E.6.1 General relativity

Since we treat the gravitational wave, we should make a comment on
the general relativity. Einstein invented the general relativity which is the
second order differential equation for the metric tensor ¢"”. A question
may arise as to why the general relativity can be related to the gravi-
tational theory. This reason is simply because Einstein claimed that he
had proved the gravitational Poisson equation should be derived from the
general relativity at the weak gravitational limit. However, in his proof,
he assumed the following strange equation

g ~1+2¢ (E.35)

where ¢ denotes the gravitational field. Because of this equation (E.35),
he could derive the gravitational Poisson equation

V3¢(r) = 4nGp(r) (E.36)
where GG and p denote the gravitational constant and the density, respec-
tively.

e Eq.(E.35) is correct ? : Here, we show that eq.(E.35) is not only

strange but simply incorrect. In order to do so, we should examine the
physical meaning of the equation ¢"° ~ 1 + 2¢. We should notice that 1
(unity) in the right hand side of eq.(E.35) is a simple number. This is clear
since the metric tensor is just the coordinate system itself. However, the
gravitational field ¢ is a dynamical variable, and therefore this summation
of two different categories is simply meaningless.

e No connection between general relativity and gravity : By now it
should be clear that the general relativity has nothing to do with gravity.
It is a theory for the coordinate system (metric tensor), but it is not a
theory for nature.
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Note :

The new gravitational theory is explained in detail in Chapter 6 in the
text book of

“Fundamental problems in quantum field theory” .

Reference :

Fundamental Problems in Quantum Field Theory
T. Fujita and N. Kanda, Bentham Publishers, 2013
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