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oooobobobooobooboooobob goooboobobo ooog

G : {a,byc,---,g} (1.1)

ooobbboboobobobobobobbobobobooobobobon
gbbbuoooboboboooobbboooobbbuooobbbooobobboo
gboboboooobbboooobbboodon e booogyg
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1.1.1 0000

gboboboodgobobboogobbbuoogooboaod

(1) 00 «0 500000 (eeb) 0000 GOODOOODO

(2) 000000000

(3) 0000000

(4) 000 (aeb)ec=ae(bec) 00000

0 ¢g000000000000000000000000000000000

e 0100 (Abelian group) :
aeb=>bbea 000000 IOIODODOODODO (abelian group) 00 OO

e 0000 (Non-abelian group) :
aeb#bea 000 I0OIDOOOMOO (non-abelian group) O O O O Special Unitary
OO0 SU(N)D0O00000ooooooooooooooo

1.1.2 000U

gbbbuooogbbbuoooobbbboooobooobbbouoooobon
gboobooooboboogoboon

100000 : 000 F {1,241}

googgbobodgd F{1,2,%}DDDDDDDDDDDDDDDDDDDDDD
goodgbbbuooogbbbuoooobbobuoooobbbuoooobboan
O00000000000(1) 0000000000 eeb 000000000 GO
DbOoboboboobobuoooboobobi2e2=2x2=40 FOOOO
gboboboogobbboogobbbuoogoboboood



1.1. 0000 3
[2] I,E;, Es, E5 OO
000 ¢goon
G {I,E,, Ey, E5} (1.2)

gbobbobbbuooggbbbouoooobbbbodgobuoooobbbodao
gboobooggn

E10E1:E20E2:E3.E3:]
El.EQZEg, E10E3:E2, E20E3:E1 (14)
El.]:El, EQOI:EQ, Eg.I:Eg (15)

00000 ¢gO000000000000000 (1) 00000000000 aeb
OooooooobO goooooooobobobobobobobobooboo
00000000000000 /0000000000 Ef'=F 0000000
gboboogoon

(El.EQ).E:;:El.(EQQEg) (].6)
ggoooooooooo
Eg.EgZEl.El = I=1 (17)

obobbobooboobgooboobobbobooboobooboobo

3] 000
O00 gooo

gboboodbdd n0obbooboboo Cﬁ:eyiDDDDDDDDDDD
0000000000000000000000 I=10000Cck00000

(CF) "= M (1.9)
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0000000000
(CF) ek = R o (1.10)

n

gboobooogn

1.2 Special Unitary 00 SU(N)

00000000 Special Unitary 00 SUN) DO OOOOO0OO0O0O0O0O00O0OO
gooo

1.2.1 00 SU(?2)

OO0D00D0OD00O0O 2x 20 Special Unitary U0 AODODOOOOOODO

A:(Z Z) (1.11)

OO0O000OUnitary UOOO0DOODO

AAT =1 (1.12)
00000000000 00o0Dg AtO
a* c*
AT:(b* d*> (1.13)
D00000 000 Unitary 00000000
la> 4+ b)> =1, ac* +bd* =0 (1.14)
I+ 1d> =1, ca*+db*=0 (1.15)

OO000D00DO0O0O Special DO DO OO
det A=ad —bc=1 (1.16)

0000000000000 000O0O0O SU(2)oooooooooooooooo
obhobobooboooboobuooboobobboobon



1.2.  Special Unitary O 0O SU(N) 5

1.2.2 SU(N) OO

O0o0Sy(N)D0O0o0o0o00ooo0o0oooo0ooooooooooooo
gooo

o (1) C = AB O SU(N):
000000000000000 SU(N) 000000000000000000
000000000000

CC" = AB(AB)' = ABBTAT = AAT =1 (1.17)

000000000000000000000(AB) =BAT000000000
00000000000000000

N

(AB)];; = (X AuBy) = 3 A3 B = S (BYu(AD)y, = (B4, (118)

k=1

e (2)00O:
SU(N)0000000000000000000000000000000000
1 00 FO0D00O0O0O0000000E;=6; 0000

0(3)DD:
SUN)DOODO A'0 A'0000000 AAT=10000 A'0000000
00

ATTAAT = AT = A1 (1.19)
D0000000oo0o0ood

e (4) 00O (Combination Rule):
000 (AB)C=A(BC)OD0000O0OO0O0DOODOOODOOOOOOOOODOOO
guoodooboboboboboboooooad

[(AB)Clir. = > (AB)i;Cir. =Y > AinBm;Cji = Z Aim(BC) i = [A(BC)]ix

j=1 j=1m=1
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0000000000000000000000000000000000000
000000 C=ABO0O0ODO det{4B}=1000000000000000
0000000000 det{A} =exp/TrinA] 000000000

o det{A} = exp[TrinA4] OOO :
gobooboooon

N
i=1

00000000000 A, 000000000000 A(x)0D00D00 AO 2O
000000000000000 0000 (1.2000 :t0O0O0ODDOOOODODO

ddet{A} X dA;

A 1.21
dx ”221 dx J ( )
O0000000000oooooooog AtQg
A
AYH,0 = Jt 1.22
000000000000000 (1.21)0
ddet{A} N dAU 1 _1dA
R Sh e A det{AY =Tr [ A== ) det{A 1.2
dl’ iJZI dCC ( )] e{ } r dl‘ e{ } ( 3)
Oo0oooooooo
A=e"P (1.24)
O0000000RBOIODOOONDOOOOOOOO
dA
EiE'::lgexB’ At =B (1.25)
00000000 (1.23) 0
d det{e*B
At} eB) det{e ) (1.26)

dx
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gbbbuoogbobboooobbooodgn
Indet{e”’} = (TrB)z + C (1.27)

000000 000000000000 2=000000 C=0000000
000 x=10000 A=e8, B=lnADOOODOO0O00 (1.27)0

det{A} = ¢™in4 (1.28)
0000000000

o det{C} =det{AB} =1000 :
000000 det{AB}=10000000000000

det{AB} _ 6Trln(AB) _ 6'I‘r(lnA—‘,—lnB) _ eTrlnAeTrlnB _ det{A} det{B} -1 (129)

000000000 00ooooSy(N)boooooooooooooo

1.3 000 (0O0ODO)

000000 S, (Permutation group) 0000000000000 O0O0OO (Non-
abelian) 00000000000

&E(% 2o 7) (1.30)

Z]_ Z2 PR ZTL
000000000000
1 =iy, 2=y, -+, n—ip (1.31)

oooooobooooobooobobooboooooobooooobboon s, ooooo
ooooo



1.3.1 00000000

010 bOoogod

0000000000 Ss000000 S30 SUB)O000000O00O0O0OO
O000000SU83)0000i0ddg Ssooooooooooooooooooo
0S,00000000000000 Su@3)oo000ooooooooooood
ooooooo Ssbooboooboooboooboobboobooooooobogoon

e 10O €
OO0ooQ0 eddnon

1 2 3
e =
1 23
guoooooo

e 10000 mq,my, T3, Mg, M5 :
godddoooobbbbboooooooooo

1 2 3 1 2
7'['1: =
2 1 3 2 1
1 3 2 1 3
7T2: =
3 1 2 31
2 3 1 2 3
T3 = =
3 2 1 3 2
1 2 3
Ta =
! 2 3 1
1 2 3
Ty =
3 1 2

goooooon

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)



13. 000 (0000) 9

1.3.2 000000000000

S; 0000000000000 00O00O000000
1 2 3 i1 Jo J
p=( <), pm=(t7P5 (1.39)
11 2 13 1 2 3

000000000P 0P 000 P, eR, O

pap (123 (0 i i\ _ (& B (1.40)
Lea2 iy iy s 1 2 3 i1 iy s '

obobooobobobobdnD myems U

1 2 1 2 1 2 2 1
Ty ® M5 = 3 ° 3 = 3 ° 3 =e (1.41)
2 31 3 1 2 2 31 1 2 3

gbobobodo

1.3.3 UU0O0O0O0O0O0o
S, 00000000000000
e (1) mer; D0O0DOODO :
googpoogoooogooogo
T1 @] =Ty ®Tg — T3 @73 = T4 @75 = T5 ®7T4 = €,
T @7y = T ®T3 = T3 ®T] = T5,
To @7 = TT3 @ Ty = T ® T3 = Ty,

(1.42)
(1.43)
(1.44)

T @y = T3, T ®T5 =Ty, T4®T =Ty, T5®T =3 (1.45)
Ty @ Ty = T, To®T5=T3, T4®Tg=T3, T5®mTy =T ( )
(1.47)

T3 @y = T, T3@T5 =T, Ty @ T3 =T1, T5®T3=T2



10 010 00000
e (2)000O :
00000000 0000

e(3)00 :
boodubbodoobboodbibidm, m, g UOODODOOOOOOO0O0OO00O
T4, 7T5|:||:||:||:|

T l=ms, Tal=m (1.48)

gooobodgo

e (4) 00O :
0000000000000000000000000000000000000

(71 @ T3) @ T3 = 5 @ T3 = Ty (1.49)

7T10(7T2.7T3):77107T5:7T2 (150)

gboboboogobbbooobboboooobobbuoooobbooogn
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20 0Oo0dd

0000000000000 (Group Representation) 1000000000000
000000000 gOo0O0O g00000O0OD0O (ODODOOOO0)ODODODODODOOO
goo0obooooboboooobbuoooobbboooobobboooobooboo
gobboooobobboooobbuoooobbbooobbbooobbboo
goooboooooooogd

2.1 OO0O0OoOoOooobon

oOooooobooobOo NObOooboobooboboobooo

U o {¢1,¢2,"',¢N} (21)

000000000000000 NOOOOOOOOOO0000000000
gvi=_D(9)ji; (2.2)

000000 D(g) 0000000000 D(g) 0000000000000 0OO0
gboboboogobbbooogbboboooobon



12 20 0000

2.2 0O0O0O

0 ¢gO000000 g 000000000 O0O0O0OD0OODODODO00O
0000 D(gig2) 00000000

N
9192 = Z D(ngz)jﬂ/fj (23)
j=1

obobobooboobooboobooboobo

D(g192) = D(g1)D(g2) (2.4)

oo oooono
e D(g192) = D(g1)D(g2) OO DO :
000 e 00000000 o0oooo0ooonooooooooooon

g1920; = g1 D(g2)kjtte = Y D(g2)k;D(g1) s
=1

k=1

= Z:[D(91>D(92)]ijwi = ZD(glgz)ijwi (2.5)
goooooooooon

D(g192) = D(g1)D(g2) (2.6)

gbobobodgo

23 UO0OOoOoo

0 Ggooooog DW(g)d DP(g) 0000000 O0D0 D(g) O
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00000000 D(g) 00 0000000000000 000 D(g) 000
DW(g) O DP(g) 000000000
D(g) = DV (g) ® D (g) (2.8)

0000000000000 D(g) 000 (reducible) D000 O0O0O00OOOOO0O
0000000 (irreducible) 00 OO

24 0O0O00OOOOOO

oobooboobooboobobooboboboobobobobooboboo
gboobobdoooboboboboooobooobobobobobobobon

241 00 1. G{l,E\, By, F3} 000

O Gcoono
G {I,El,EQ,Eg} (2.9)
0do0doodooooooooooboonobouobuoboonooba
U {yy =1, ¢y = Ey, 5 =Es, ¢y = E3} (2.10)
gogooogno
By = By =1y (2.11)
E1¢2:E1.E1:I:¢1 (212)
Eypg =FE, e Ey = E5 =1y (2.13)
FEipy = Ey, @ B3 = Ey = 3 (2.14)
godogoogno
" 0100
(0 1 000
E — (41, Py, Vs, 2.15
1 s (1, 2,13, 14) 000 1 (2.15)
s 0010



14 20 0000

00000 B, 00000 D(E) O

0100
1000
DE)=11 0 01
0010

gobobodgo

24.2 002 000 % {I,m}000

(2.16)

Oobooooobooog S;ooboobobbooooopoobo L, DOobOOOD

00

]:1277@:12
1 2 2 1

gbbboodgboboboooobn

U {r = u(1)v(2), Yo = u(2)v(1)}

goooboood

T = u(2)v(1)
Tty = u(1)v(2)

(e
(o

000000000000 D(m) O

wor-(1})

gbobbuoooobbboooobbon

U = u(L)u(2) + u@)o(l), v = u(l)o(2) — u(2)o(1)}

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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gbobbuooougon

o1 = Py
7T2’17D2 = —@/12 (222)
goooooo D(WQ)D
D(ms) = ( (1) _‘1 ) (2.23)

gbobboooboboooobboooobbbuooobbbooobbbooo
b0 0000000000000 0O0O0O0
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obhoobobbobbobbobboobbobbO0l Hamiltonian DO OO OO
gbbboodgbbboooobboooobbbooobbbooobbboon
gbbobuooobobobuoooobbuoooobbboogobbboogbobboo
0000000 SU(2)0o000000oooooood

3.1 0JU000ooonooooooooodg
D000 ¢ 00000000000 00000000
W = U (3.1)

D0D0D00D00D00D U 0000000000000000000000000
000000000000000 O000000000000000000000
00000000000000000 O0000000000000000000
oboooooboooboooon

(W'0"1¢") = (¥]O[¢) (3.2)
0000000000
(W[UTO'U ) = (|Ofy) (3.3)
nooooo
Ulov=0 = O =00U""! (3.4)

00000000 Hamiltonian H 0000 B =UHU-' 0000



18 O30 00000

3.2 Hamiltonian 000 0O [

0 OHamiltonian F 00000000000 U 000000000000000
ooooobooon

H =H=UHU" (3.5)
0000000000000 00000 U00000000000000
({Up|Uy) = (0|UTUY) =1 (3.6)

DDDDDDDDDDDDDDDDDDDDD(3.5)DDDDDHamiltonianlfID
D000 U00000000000000000

e HOODOUD U 0D00O0OODC0OOODODOD :
035 00HF00U0000000000

HU =UH (3.7)
000000 HF 0000000000 E,, v, 00000

Hi, = By, (3.8)
goooooo UDDDDDDDDD(B.?)DDDD

UHy, = E,Ut,
H(Ut,) = E.(Uth,) (3.9)

0000000 Uy, 0 HODODDOOOOOODODDODOOOOOOO Uy, O %,
0000000Doo00

Ulpa = lm/}a (310)

obooboobooboobooboy,d U0000000000000000000



3.2. Hamiltonian OO O O 19

3.21 0O0OOOOOOOO d—000

000 Hamiltonian H 00000 d-00000000000000000O0

A

Hiyp =E¢, (n=1,2,--.d) (3.11)
ooooooon

<¢n|wm> = Onm (3-12)

gboboobooboobobboobooboobobboboboboobon
000 ROODOOO0OODO0D0OO0O0O0000000000

RHR™ =H (3.13)
00000000000 RODOODOOOOODODODOOO
H(Ri,) = E(Ry,) (n=1,2,---.d) (3.14)

gbobooodgboooogbooboooon anDDDDDDDD rooooooon
gbboboogobbodood

m

n=1

0, 0000000000000000O D, (R)DOODOO00O0O0ODOOO0OO
goobogo

e OO DOOO

OOO00D0OO0D0O0O00O Hamilteonian DO OO OODO0OD0DO0ODOO0ODOOO0ODOO
gbbbuoodgbbbdoodobbbuoooobbboooobbbooobbbon
gobobodg
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3.2.2 U000 ogg
DDDD(DDDDDD)ri—rDDDDDDD
Py(r) = ¢(-r)

oboobooooooboobogn 10

000000000 {/, PAO0OODOOOODO

e POODOOO :
000000000000

U Y =u(r), o =u(-"r)}

gooooood

A

Py = iy
Py =y

000000000000 DP) O

- (1)

Oooobobooooobog Ss;,gooboboboooogon

O30 00000

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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3.3 00000 (0O00O00)

Oo0O000OO00oo0oOooDoOooobooboboooo »0O 2—000DAODO
O000000000oooooo0g «00000o0ooo

7 = Ryr (3.21)

gbobobodgo RQDDDDDDDDDDDDD(S.ZUD

x cos) —sinf 0 x
y | = | siné cosf 0 Y (3.22)
2 0 0 1 z
gooogg
cosf —sinf 0
Ry =] sinf cosf 0 (3.23)
0 0 1
gododood

3.3.1 R, 00000

00 R, 000000O00O00OODOO0

e Ry R, 0O0ODODODO :
000000000 RyR, 00D0DO0OOOOOOO

cos#y —sinf; 0 cosfy —sinfy, 0
Rgl RQQ = sin 6, cosf; 0 sin 6, cosfy 0
0 0 1 0 0 1

COS(91 + 92) - sin(91 + 92) 0
= sin(60; + 605) cos(0; +602) 0 | = Ry, 40, (3.24)
0 0 1




22 O30 00000
gbbbuoooobbbuooobbboooon

eI OOODO -
000000 #=0000 R=/000000

e00000DODO :
D000 (R)*=R,000000

e [10O :
DDDDDDDDDDDDDDDDDDQQDDDDDDDDDDDDDDDDD
DDDDDDDRgDDDDDDDDD

Ro(Rp)t =1 (3.25)
goodogogano

3.3.2 OUOOOOOOoOooooog

0000000000000 00000000000000000000000
0000000000000 000000000000000000000000
00 R(0)D00D00ODOO

V() = R(0)9(r) (3.26)

OO00oobOdD .—00000 f0DO0DOOOOOODOODODODODObOO
goobobooooon

W' (r') = p(r) (3.27)
gooooooooon
Y'(r) = ¢(Ry'r) (3.28)
0000000000 000000000k 100000O00O00O00OO
1 6 0
Ry‘~| -6 10 (3.29)

0 01
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000 ¢(Ry'r) O

V(r) = G(Ry'r) =z +0y,y — Oz, 2)

0 0
— 1 - R ... .
[ + <y8x xay>9+ ]1/1(7") (3.30)
Oo0ooooooooo e, d
(0 3}

OO000b0 A=10000000000

~

R.0) ~(1—il,0+--) (3.32)

OO00o0bO0o0 f0bO0bO0O0OOODOODObDdDODODLDODODOODODODO
DDD%D nU0O0O0000000

. 0.0\" .
Rwhwm@—%>sz (3.33)

n—00 n

OO0o0oboobooooboboooo bbb bOObOUODbDODbDObObOODODO

e R.(A)=c 0000000 :
D0000:-000000000000000000000 000000000
00000000000000000000000000000000000000
00000000000000000000000
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3.3.3 Euler0UOQOQOOOOO

0 ooboo

e

Y X
0000000000 00000 " Pl E
000000000000 Euler / f
“ I
0000000000000 Eu- '\\}, /
ler000000O00O0D0OOOO Ny /
/
EulerO0O (o, 5, y) OODOOO i err— — \>.7 /
00000 Euer 0000000 By e a\\\/
0000000000 000oon ) %S
O00O000Euer 000000 A\l 77 M
0000 R(a, 3, 7) 00000 "/ S
D0o0oooooog S
0 3.1: Euler O

3.34 00000 R(e, 8, 7) 00O

0000000 R(a, 8, 7) O

fi(oz, 67 7) _ e—iafze—iﬁfye—i'yéz

(3.34)

gbooboboobbobboobboboobooobuooboobobbbbo

O0O0000bO00bO0oboOo0obo0obOoboboOobO Euer0ogO

goooogn

gbobobbuooogobobuooooobobouooobbbouooooobbn
gboboboooobbbuooooboboboooobboboooobobbobboo

gbbobuoooobbobuooobbboooon
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e LIIIDDDOMO

000 —00000 «oO00O000O000004 ]A%Z(a)DDDD

e LD DOMO

OO0 vw—0000 00000000 00O

Ry, (B) = R.(a)Ry(B) R (a) (3.35)

gbooooogn

e IO DDOMO

o0 Z-0000~0O0OO0O0OO0ODOO ODOO

Rz(v) = Ry (B)R.(1)R,1(5) (3.36)

gboooogn

e L1100

gbbbooogoobbodooon

Rla. 8. 7) = R Ry (9)Re(0)
= Ry, (BB, (B)R:(0)R,(5) R (o) Be(a)
= Ru(0) Ry (9 R (0) R () Rel) R () (o) ) Ry () () e )
= R(a)R,(A)R.(y) = e t=e et

0000000 EulerO (o, 5, y) DO00O0OD0OOOCOOOOOO
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3.4 000O0O e00DOOOO

Ooo0ooooon }A%(oz, B, 7) = elabkemBle=t: I oxp 0OODOODODO
l,, ¢y, £, 000000 (generator) 10 0000000000000 O0OOODO
doooooooobooooooboooooooooooboo

e Lie OO
O000oooooooooon
Uy, Oy =il,, [y, U] =ily, [0, (]=1il, (3.37)

OO00O00000b0obO Lie0O00O0O0O0OO0OD0OO0ODOO0ODODODODODOOOO
oboboobooboobooboobuooboobooo

e Casimir O OO0
D00 #=02++0200000000000000000
6% 0]=0, (i=x 9,2 (3.38)

000000000 Casimir 000000 OB)0 SU(2)0O0O0O0DO0DO0DOOOOO
000000 SUB)0000000 Casimir 000000000 0OODOO

3.4.1 UOO0O0O4O0OO
0000000 €, ¢, 000000000000 Yy(d,¢) 0000000

Y (0,0) = L+1)Yon(6, ) (3.39)
CYon(0,0) = mYen(0,0) (3.40)

gbooboooobbobogooboboooon

Clm) = L+ 1)tm) (3.41)
C.lm) = m|fm) (3.42)

gbooooogn
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e00000000D
000000000000000
Yim(m = 0,0 +7) = (=) Yom (0, ¢)
000000000
b/ Y, (0, ) Yo (6. @) sin 0d8dp = 6,
0000000

Lo, 20+ 1
2 Yiul0,0)Yem(0,0) = =

m=—{

00000000000 Yim(d,e) 00DDO0ODOODO

(=) e+ e—m),
20)11 J ey o)
df—‘rm

x (d cos 9)”’“(

Yom (‘97 90) =
sin §)2¢e™™?

gbooooo

3.4.2 0O00O0O0OO0O0OO0OOOO

27

(3.43)

(3.44)

(3.45)

(3.46)

OO00oO0booboonD 4, ¢e,0000000000O0L=6+¢000000

OO0000 &, (0000000000

Eﬂﬁlml) = 61([1 + 1)|€1m1>, 612|€1> = m1|€1m1)
£§|£2m2> = 62(62 + 1)|€2m2>, €QZ|€2> = m2|€2m2)

000000000L200000 |[LM) O

|LM> = Z (€1m1€2m2|LM) |€1m1)]€2m2>, with (M = my +m2)

mi, m2

(3.47)
(3.48)

(3.49)
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00000000000 (4mylams|LM) O Clebsch-Gordan 0000000000
00000 |[LM)O L2 L,00000

L2|LM) = L(L + 1)|LM) (3.50)
L.|LM) = M|LM) (3.51)

O000000000000000000 Clebsch-Gordan DD O0O0O0OO0OOODO
O00000000000D00O00O0n (349 0000000000000 0O0O

|€1m1)|€2m2> = Z(€1m1€2m2|LM) |LM> (352)

LM

o Clebsch-Gordan OO O OO

000 Clebsch-Gordan OO0 O0O0D0OO00OO0D0OOOOOOODOOO

Z (€1m1 gngLQ'LM) (€1m1 EgmglLM') = (5]\47 M! (353)

mi,m2

2(617711 €2m2|LM) (flm/l Egm/2|LM) = 5m1,m’16m2,m’2 (354)
JM

OO0 Clebsch-Gordan DO 0000000000 OOOOOODOODO

(JL My JoMy|JM) = (=)"277(JyMy Jy M| JM) (3.55)
= ()T = My Jy — My|J — M) (3.56)

Oobooooboono ccooo 30000

(3.57)

(J1My JoMs|JM) = (_)J1—J2+Mm< Ji s J )

M, My, —M

obobboboobo 3joboobbobooboobooboobon

Bk BN (B R B\ s (D T (g
M, M, Ms; Ms M; M, My M; M; )
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343 0O0O0OOO J=£+sO0000 s

OobooooboobooogooobbD J=¢+sUO000000OD0ODOOOO
gboboobodgag s:%DDDDDDDDDDDDDD J?, J, 000000000
00 Clebsch-Gordan OO0 O O0O00OD0O0OOOOOOOOOODOODO

1
M) = 3 (6 Sl EAL) Yo o, (3.59)

m,ms

oboobobobobooJoooooobobouboobobd xy, OODOO
000000000000 §2, s, 00000000

X;=<é>7 X_;=<(1)> (3.60)
goooooooo
9 3
S Xms = EXmsy S2Xms = MsXms (361)

000000 J?000000000 JOOODOODOOOODOOJO0ooooo
gbobboobooboobooboobobbobooboobooboobo

eJ2000OOO

o000 J? J, 0000000000000

jm) = 3 (6 maljm) Vi (6, 0) o, (3.62)

m, ms

DDDDDC]ebseh—GordanDDDDDDDDDDDDDDDjzéi%DDDD

1 (+m+1 (CFm+ i
g m =2y Yt T oy Yemii kg (869)

DDDDDDDszi%DDDDDDDDDDDD
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344 0000000 Rooooo b
0000000 RO Yuu(0,9) 000000000
4
RYim(0,90) = > Dl Yo (6, 0) (3.64)
m/'=—¢

googod DfﬁmDDDDDDDD ROOODODOOOOODODODOODOOOO
gboboooogoood

eJ0DDDODOOODODO TW

Dooooooooooooo 7 O

RT®R = Y D& 17" (3.65)

K

00000000000 7W 00000000000000000 Y, 0000
oboboobooboobooboobun vbwoboobooo

T® ~ CoYie, (CoO0O) (3.66)

gbobobooboobooboobooboboboobooboobon

3.4.5 Wigner-Eckart (00 [

0000000000000 Wigner-Eckart 10 00000000000000
00000 7® 000 |jm)0 |fm) 0000000000000 »—00000
0000 Clebsch-Gordan 000 0000000000000000000

1
V2ji+1
000000000000000 (||TW||#)0000000000000000

Oo00D000O0oDooDo m, m, x 0000000000 DODODODOOO0O00O0O0
Clebsch-Gordan OO0 OO Q0O QOQOOOO

GmITPNj m') = (7" m' kel jm) (G |T™]] 5) (3.67)
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e Wigner-Eckart 000000

000000000000000000007T®O|f#/m)0000000000
000000 (3.52)00

T8 5" m'y = C(T®) Y (5 m'kk|JM) |J M) (3.68)
JM
0000000000000 C(T™ D0 7® 00000000000000000

00000000000 JMOOOOOOO (3.68) 00000 (367000000
goo

Gm|TPlj'm)y = C(TW) 3 (5" m' k| JM) (jm|J] M) (3.69)
M
= C(T™) JZ(j'm’ kr|JM) 857 Smns (3.70)
M
= C’(T(k))(Jj’ m' kk|jm) (3.71)
gooooon
0000 Wigner-Eckart 000000000000 O0OOOO

GUT®]5")
NS

GmITP | m') = (' m’ kr|jm)
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3.5 Isospin [ [
00000000000000000000000

M, = 938.3 MeV
M, = 939.6 MeV

gbbobooodgbbbuooobobboooobbbooobbbuooobbboo
Oo0oooooboooobobooooooooooood sespmd0oooonon
gbobbooodgobbod

3.5.1 Isospin [

Isospin 00000 Pauli DO O0OO00OO00OO0O0ODOODOODODOOIsospin OO
goo t0

t=—r1 (3.73)
0000 0 PliOOODOO0ODODODOOOODODODOOOOODOO

T = (Tuy Ty, T2)

(23 (02 (1 3) e

000000000000
1
p) = (o)

) = <(1)> (3.75)

gooboooooboboooobobo . obbboooobobo

Tlp) = Ip)
T.In) = —|n) (3.76)
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gbboobuoodobibd isospin U

t:lp) = 5 Ip)
1

t:ln) = —5 In) (3.77)

0000000000 QRO Q=;1+7) 000000000000

Qlp) = Ip)
Q) = 0 (3.78)

gooo

3.5.2 Isospin DUOOOOOOO

000000000 (:—000)0

~

R,(0) = e7** (3.79)

OO0O0000D0000 Isespin DODOOOD0DO0ODOOO0OOOIsospin DODOOO
U~0000 «0O00O0D0O0O0DOO0

~

R.(a) = e "t (3.80)

gboooogooood

~ « 0%

R.(a) = cos 5~ iT, sin ) (3.81)

OO0000000000000000 expO Taylor 0000

. . i 1/aN\2 1 /—ia\® 1 /—ia\*
o = oo 6 () e ()
(@) € 5" 5\g) T\ ) ol ) T

= Cos % — T, sin % (3.82)

gbooboooon
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3.5.3 Isospin DO OOOOO

OO0O00b00oobobOooD sespin UOOOOOOODOOODOOOODOOODOO
oboooboon Vyy O

Vvn = [a+b(71 - 12)] Vo(|ri — m2]) (3.83)
O00o0o0oooboon e, b0DODOO0O0OO

e - 00000000 :
00 n-m»Olsospin 0000000000000 000000000O00O TO

1
T: 5(7’1 —|—’T2) (384)

D000000000 Isospin 0000000000 D0DO0 Isospin 000000
Ro(T;) = e~ (3.85)

gooboodoboodoooogoodoon 7;,0 7, 7, 7. 000000000
07000000

T2 = i(rf + 72T T)= ;(3 + 7T (3.86)
Doooood
T T;])=0, (i==z, vy, 2) (3.87)
D0000000000000000 «0000 T2000000
R(T)T* R,NT) = T? +iaT*, T}) + - =T (3.88)

obhougbuoobuooboobobobobbobbobd 7m0 Isospin U0
gbobobooogboobooood
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3.5.4 T?0000

gbobobuogoobbboogobbooooooboooobbbuooooon
000000000000000000000T?000000000000 &0
goo

T*®p =T (T +1)0r (3.89)
00000000000000¢t=10007T=0,100000000000

e 7'=0000 (singlet) :
goooooo

# = = (I~ [m)lp)2) (3.90)
gooooooo

T T2 (I’éo) = —3<I)éo) (3.91)
ogoond

e 7'=1000 (triplet) :
goodooo

1 _
21 = =5 (Iphin)z + Inhip)), @ = philp)a @177 = Inhiln), (3.9

00000000000000000
oo™ =0"  (n=-101) (3.93)

gooo
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3.5, OOOUUU4 Troon

000000 7,000 R(T,) =e ™= 000000000000 OODOODO
gbobobodo

R (T,) T, RN T,) = e "= T, "™ = T, cosa — T}, sin (3.94)

oobooobogoboooboooboobbo i boo0obo0ooboon
gbbbuooobobbboodobbbuoooobbbooobbbooaobbo

3.5.6 Pauli 000 SU(2)
SU(2) O special unitary 0 000 00000000000000 wO
u= et (3.95)
000000000000000ww! =100
wul = et ¢ = GiH-HT) _ 1 (3.96)
goad
H=H' ~ (H: Hermite matrix) (3.97)

00000 HO HemiteDOOOOOOODOOODOOODO

a b—ic
H = 3.98
<b+ic d ) ( )

oooooobobooood ab,e,d00000O0O00OO0ODOO

a b—1ic a 0 01 0 —2
I _ _ b 3.99
(b—l—icd ) (0 d>+ <10>+c<i 0) (3.99)
0000000000 Pauli0O oy, 0y, 0, 000

H=d +bo,+co,+d o, (3.100)

gboboboooobbobuoooobbobodao
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040 000 O(3) 000

0000000000000 00D0000000DooO0o00 O3)oooooo
gbbboodbbbduoobobboooobbbooobbboooobbboao
gbooboooobon

4.1 OO0 O(3)
0000000000 EderD o, 8, 0000000
R(o, B, v) = e e Pl (4.1)

Oooooooogoon Jg, Jy, J. 0 generator 0O OO00O000O00O00O000O0O
gooo

o, Jy) =ide, [Jy, J) =idy, [Jo)Jo] =i, (4.2)
0ooooo

41.1 J*0000
000 J*=J24+J;+J20000000000 Casimir 00000000
[J%J]) =0, (i=uz, vy, 2) (4.3)
000000000000 J,000000000000000000000

JAJMY = J(J+1)|JM)
J|JM) = M|JM)



38 040 000 O(3) 00O
0000000000 |M)=|JM)0DDOO0OO0O0O00O000
(M|J|M") = Moy (4.6)
0000000 Je O
Jy = J, £iJ, (4.7)
0000000000000 D0000

[, Ji] = £ Jx (4.8)

gbooboooooboood

J.Je—JoJ.=+J.|000 |M), [M)0000

(M| J.Jy — JoJ.|M') = £(M]|.J.| M)
ooooo (M — M F 1)(M|J| M) = 0 (4.9)

oooooooo | M=M=F1|0000 (M|JL|M')=00000000000O
gbbobooodgobbod

(M]J M —1) =
(M|J_IM+1) = B (4.11)

N
—~
=
—
(=

000 A BOOOOODOOOO
J J =0T~ J. =J]*>0 (4.12)
0000000 -J<M<JOOOODOOOODOOO0O0O
(JIJ_J |y = (J|J* = J?> = J|J) = (J|J*J) — J(J+1) =0 (4.13)
Doooooooo
(J|J?|J) = J(J +1) (4.14)

gbooooog
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4.1.2 J, 0OOOOO

00 J. 00000 (MJM—-1)0 (M|J_|M+1)00000000000
000

(e, J_] = 2J. (4.15)
00000000000000 |M)0000000

(M — 1) J_|M)]* = (M]J_|M +1)|* = 2M (4.16)

000000000 |F(M)=|(M—-1]J_|M)? 0000000 (4.16)0

F(M)— F(M+1)=2M (4.17)
000000000000 k0000
F(M) = F(M + k) = 2Mk + k(k + 1) (4.18)

0000000000000000000000000000000000000
00000000000 [k=J-M+1|0000

F(M)—F(J+1)=(J - M+ 1)(J + M) (4.19)

000000 F(J+1)=0000000O

(M = 1|J_|M) = /(] = M +1)(J + M) (4.20)

gbooooogn

(M +1J M) = /(] = M)(J + M + 1) (4.21)

gboboboobooboobuooboobobbobooboobd



40 040 000 O(B)00D0
4.2 DOOOOO
Joodooooon
R(a, B8, v) = eio)z gmiB Ty o=z (4.22)
gdooouoouoooooodgo

DY) (R) = (M]e— % ¢8>

K) (4.23)

Dooooooooooon P (R 0000000000000 0000000
00000000000000000000000000000 SU(2)0000n
0000000000000 SU(R)000000000000000000000
0 00000000DOO

DW(R™Y) = e =etlugiod: (4.24)

gbbobooogbbbuoooobbbuoooobbobuooooboboan

42.1 DY(RHYDDDODODODODOO
000 DYRYHYO «000000D0DDDDODODOOOOOO
o)

—i—DY(R™) = DY(R™)J, (4.25)
Oa
O000O00pgoOO0OO0OO0O0O0DOOoOoOon
—Z%D(J)(R_l) — eszezﬁJnyezoch — eszezﬁJyechz 6—zanJyezo¢JZ

0000000000 |eekjee” =, 000000

—4§;[ﬂ”(R‘U::[ﬂ”(R‘UJm (4.26)
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-1
00000000+0000000000{(DY(RY)) LDY(R™Y)=J,/000
000

—i—DY(R™Y) = J.DY)(R™Y) = DY)(R™Y)Jy (4.27)

goobooo

eJ, J, J.O00O0O0OO

ooo J, J,000000000000-.~0000 o000
Jz _ 095 a —sina I, (4.98)
Jy sina  cos o Jy

Jp = J, £iJ, = e (J,, £iJy,,) (4.29)

Oo0odad

Oo00ooooooog Jy, Jyoood pooooad
Jx _ c?sﬁ —sin 3 . (4.30)
Jz sinf3  cos( I

Jz = Jy, sin B+ J, cos (4.31)

goobobodgo

oboooobooooonb J,=J, 0000000

eI pgOOODOODO
Joogooooo

1
sin 3

Jo = eFe ( (Jz — J.cosB) £ in1> (4.32)
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gbooogogn

sin 3
0000000 O (4.25), (4.26), (427) 00000000

, 1
DRIy = eFeDY(R™) (iijyl + ——(Jz — J. cos ﬁ)) (4.33)

; 0 1 o o
i |4 7 - VI pD(Rp = pUO(Rp-1 434
e [ 86+sinﬁ< 87+003ﬁ8a>1 (R7) (RY)Jy (4.34)

000000000 |K)O [M)0000000000

0 1
[i% sy (K — M cos 5)1 D\ (B)* (4.35)
= DSy c(B) (T F M)(J £ M +1) (4.36)
goooono
Dk (8) = (M|e7|K) (4.37)

gbooooggn

4.2.2 0O000O0O0O0O0

goboboooobbboooooooboboboooonboon

o M=J0000

gbooboooooood

9,1
of  sinf

(K — JcosB)| D\(B)* =0 (4.38)

oooooo pY(3) 00000000000000000

dDS2(B) 1
d3 ~  sing

(K — Jcos B) DSA(5) (4.39)
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guoooooboobboood
In DS‘Q(ﬁ) = —Klntang + JInsin B + Cp (4.40)

Oooooc,bobooooooonogn

J-K J+K
DE,‘Q(ﬁ) = Ay <sin g) <cos g) (4.41)

O0000O00DOD000D0 A OObOOOOD

eI MDOOODO

MOooboooooooboobooooboboboooooboboboboo
ooooo

7 . \M-K (J+ M)
Diii(8) = () J(J_M)KHK)!U_KMX
S (Y (;Z) - (4.42)

000 ¢=sin*2 0000000000000 DOO D§x(R) O
Diix(R) = e M=K D () (4.43)

gbobobooogon
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423 DUOOOOO
gboboboogobooboooobo

e /=10D0OO
J:%DDDDDDDDDDDDDDDDDDDDDDDD DOOOOOOO
DG (B) = (M]e5 |K) (4.44)
Oo0oooono
1
D](\jl);((ﬁ):<M\cos§—iaysin§|}() (4.45)

1
00000000 DEh(a,B,v) O
1 . A B8 _gipn8
Diiic(a, B,7) = emieM=0K ( vy TN ) (4.46)

S1n b COS b

oooooboob M, KO %, —%DDDDDDDDDDDDDDDDDDDDD

e /=10D0O0O0
J=1000000 J, 0000000000000

(M 4+ 1T |M) = /(] = M)(J + M +1) (4.47)
(M = 1|J4 M) = /(] + M)(J — M +1) (4.48)

gboboboooobboboooon

J, = (4.49)

o E‘s o
Sk =gl
|
R
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45
ogoooooo JSZJyDDDDDDDDDD
D (8) = (M= | Ky = (M|1 —iJysin 3 + (cos § — 1)J2|K)  (4.50)
ooooodoo J,ooooooooooood
o cos? 2 —% sin  sin? &
DV (a, B,7) = e-ieM—0K J5sind  cosf3 —J5sin B (4.51)
s1n2§ %smﬁ cos? &

ooooboooboooobo M, KO 1,0, -100000000000D000OO
gbooooo

e JUODODODOOU

O00000000000000000 (442)000D0O0O0O0OOOOOOOO

O0000000SyU(2)o000oo0o000oo0oooo0n 442)000DO
oboooooooo
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050 SU(2) 00O

00000 SU(2) 0000000000000 Su(2)oooooooog 03)
000000000000000000 bDOoOoO0DO0DoOOoO0OO0 O3)0 booOoOd
O000000000SU(2)D0000D0O00000000O0oooooOO Su(2)
gboboobooogobobodb

5.1 SU(2) 00000

SU(2) 0000000000000 00000000ODODO0000OoOooooOO
O00000000SuU(2)ooooog

a —b a* b
= f= 5.1
000000000 Ospecial unitary 0000 wu!=100000000

lal* + |b]* =1 (5.2)

O000000O0det{u}=100000000000000000000000O0

e LIIILIODO

SU(2) 000000000 4|000000000000 UO0SU@)o00
0oooooo

Us = as+ by
Un = —b{+a'n (5.3)



48 050 SUR) OO0

000000000 SU(2)0000000000000000oOoO0oo0oonood
gbooboogooad

U, nl = [U¢ Un) = [a& + by, —b + a1
ey ) (5.4)
a
0000000000 D) O
b= (4 )= 55)
b* a

00000000 SU()Ui00oooooooooono 2oooo0o0ooogd
obooobooooooooboodon a, b0

a = e 2@ cosé
2
b = e 3l Sing (5.6)
dooobOood
—4(at7) B =% gin 8
Ly _ [ €72 cos 5 e > sin 5
D) = ( e 2@ gin 2 e 2@+ cos 2 (5:7)

0000000000000 DO0O000OD (446) 000000C0O0O
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5.2 J=1000
00J=1000000000000000000

Us = as+ by
Unp = —bé+a'n (5.8)

0000000 J=1000000 (f1, fo, f) 0000000000

flzés% fo=én, f_lzjinQ (5.9)

goo

Ulfy, fo, fl =[Uf, Ufo, Ufi] (5.10)

gooboogood

e Uf,00DO

DDDUﬁDDDDDDDDDDD

0f = \}ﬁ(Uﬁ)(Uﬁ) - %(as HIP = @+ (P 2y (5.11)
gdoooodd
Ufy = afi + V2ab* fo + (0)%f (5.12)
gdooodg

o Ufy, O Uf, 00O
Doooo Ufb0 Uf, 000000

Ufo = —V2abfi + (la]* = b]*) fo + V2a"b* (5.13)
Ufoy = b2fi —V2a*bfy + (a)?f_ (5.14)
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gbboboogogbbboooobon

a® —V/2ab b2
Ulfs, foo foal = [f1, for fa] | V2ab* Jaf2 = [b]> —v/2a%b (5.15)
(b*>2 \/§a*b* (a*)Q

obobooboobooboobo bbobgboobogo

a = 6—%(a+7) COS @
2
b = e 3@ Mgin g (5.16)
OooooDbodo
(g e et
DY) = %6_” sin 3 COSQ _,%em sin (3 (5.17)
eila=7) gip?2 g %ew‘ sin 3 et cog? g

0000000000000 J=10DOOOO0O0O (451)00000000
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5.3 UUOOOOOOOoOn

ododooooooooooooooiodoooooooooooooooo
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6.2 SU(3) O Generator 00000
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6.2.2 SU(3) O Generator

SU(3) 000000000000 0000 generator 0000 Gell-Mann 00O
O0O0 AOQOOOOOOOog AD

010 0 —2 0
M= [ 100, X=|i 00
000 0 00
1 0 0 0 01
Az = 0 -1 0|, X=[000
0 0 0 1 00
00 —2 000
As = 00 O], Xx=]001
¢t 0 0 010
1
00 O 7 10 0
/\7 == 0 0 —2 5 >\8: 0 % 0 (611)
; 2
goodoooooooood
Tr{\}=0 (i=1, 8) (6.12)
oboobon
o\, IIDOODOODLOODO
00 \00000000000D000000000 Tr{xA,}00
iy Ajl = 2ifindk (6.13)
4

000000000000 fijk, dijg O structure constant 00000000000



58 060 SU@B)OO0000
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6.4 Young Diagram
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7.4 Group Theory for Landau-Yang Theorem

Photon is a bose particle with a spin of 1. Thus two photon states must be
symmetric under the exchange of two photon states, and this is just what we should
keep in mind. Now two photon states can be reduced to the total spin states of
0, 1 and 2 where the total spin operator J is the sum of spin operator of photons
S1, So. Therefore, J is written as J = s; + s3. In what follows we prove that a
massive particle with spin 1 (here we consider Z°) cannot decay into the two photon
states. This is the result of the kinematics, and we see that the two photons must
be in a symmetric state due to the bose nature of photons while the total spin 1
state reduced from 1®1 should be anti-symmetrice. This is just the essence of the
Landau-Yang theorem.

7.4.1 Reduction of spin 1 ® 1 states

Here we present an example of the reduction of spin 1 ® 1 states in terms of
O(3) group theory where the spin operator s is replaced by the angular momentum
operator £, for simplicity. In this case, the equation of reduction of 1 ® 1 states can

be written as
{1 @ P} = (F1 - T2) @ (71 X 73) @ [ @ 7] (7.15)

where 1%, 7y can be defined as

1 .
ry = —(x+iy) = —=sinfe'¥ = Y1 41(6,
+ \/§T< y) \/5 + 3 1:|:1< 90)
z 4
r = —_ = ‘9 = _ 0 .
To . COos 3 1,0( a‘P)

In this case, eq.(7.15) can be rewritten in terms of spherical harmonics Yy, as

M) en2)} =M1 Yi@2)e V1) x Yi(2) & M(1) @ Yi(2)]®
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e Scalar

Here, the first term S = #; - 75 in the r.h.s of eq.(7.15) corresponds to a scalar
state. This is obviously symmetric under the interchange of 1 <» 2. Further we can

prove
J?S =0 (7.16)
and thus the S state has a spin zero.

e Vector

The second term V' = 71 X 5 in the r.h.s of eq.(7.15) corresponds to a vector
state. This is anti-symmetric under the interchange of 1 < 2. Now the spin 1 state
should correspond to the vector state. Here we should prove that the vector state
V has a spin 1 as the eigenvalue of total angular momentum J. Namely one may

prove
J'V =2V (7.17)

which means that the eigenvalue J is J = 1. In order to prove it explicitly, we may
only consider V; term since this is, in fact, without loss of generality. Now 1} can
be written as

Vo = i[(r)+(r2)- — (r1)-(r2)+]
= ﬁ [=Y1,1(01, 01)Y1,-1(02, 02) + Y1101, 1) Y11 (02, 02)]
After some tedious but straightforward calculations, one can find
J?Vy =2V} (7.18)

which is just the same as eq.(7.17).
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7.4.2 Rank £ Tensor and Tensor Product

A tensor with rank % is denoted as T®**) . and the tensor product of two tensors
Tl(kl) and T. 2(k2) is reducible and can be written in terms of the sum of irreducible

tensors as
I 6T — [ o T o I e T ™ (19
where ¢ = |k; — ko| and m = ky + ko are the conditions from the summation rule.

e Rank One Tensor Product

Here, we discuss the tensor product of rank one tensors and thus eq.(7.19) becomes
Ven' =r"en"9e Y e "V e 1Y @ TV@. (7.20)

Now the first term [Tl(l) ® T 2(1)](0) should correspond to the scalar product and can

7O

be written as (T} - T, ). This is symmetric under the interchange of 1 < 2.

e Vector Product

The second term in eq.(7.20) should correspond to the vector product and can
be written as (Tl(l) X Tz(l) ). This is anti-symmetric under the interchange of 1 < 2
since

(T x T = — (1Y x V). (7.21)
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7.4.3 Landau-Yang Theorem

Photon has a spin 1 and thus it should correspond to the state of rank one ten-
sor. Therefore, two photon states can make the states of rank 0, rank 1 and rank 2
from the group theoretical condition. However, there is a physical condition which
is related to the bose nature of photon. Since photon is a bose particle, two pho-
ton states must be symmetric. Therefore, this physical requirement excludes the
possibility of rank 1 tensor state (vector product) of the two photon state since it
is anti-symmetric as we see above. Therefore, massive spin 1 states (such as Z°
particle) cannot decay into two photon state. On the other hand, massive states
(such as 7 particle) can decay into two photons, which is indeed observed. This is
just the Landau-Yang theorem.
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[0 80 Quantum
Chromodynamics

Quantum chromodynamics is the theoretical frame work in which one can
treat the physics of the strong interactions. This is the non-abelian gauge
field theory, and it cannot be solved in the perturbation theory since the
free Lagrangian densities of quarks and gluons are not gauge invariant.
In the perturbation theory, we describe all the physical observables in
terms of the properties of quarks and gluons, and if they are not related to
physical observables, then there is no point of employing the perturbation
theory.

8.1 Introduction

Physics of the strong interactions is described by quantum chromodynamics (QCD),
and this is by now well established. Many experimental observations support that
the number of the color must be three, and interactions between quarks should be
mediated by gluons which are gauge bosons with colors. In addition to colors, quarks
have six flavors of up, down, strange, charm, bottom and top.

However, it is extremely difficult to solve QCD in a non-perturbative fashion and
obtain any reasonable spectrum of hadrons from QCD since quantum field theory
has infinite degrees of freedom. At the present stage, one should make some kind of
approximations in order to obtain physical observables. The perturbative treatment
is the only possible method to calculate physical observables. However, there is a
serious problem in the unperturbed QCD Hamiltonian since there are no free quark
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and gluon states in physical space, and indeed the unperturbed Fock space is gauge
dependent. In addition, we present an inherent problem connected to the gauge
non-invariance of the unperturbed and interaction Lagrangian densities due to the
non-conservation of the quark color current. Therefore there is a basic difficulty
of carrying out the perturbative expansion. Here, we clarify what are the physical
observables in QCD since some of known quantities are not gauge invariant and thus
they cannot be observed.

8.2 Properties of QCD with SU(N,) Colors

In this section, we explain some fundamental properties of QCD which are im-
portant for the understanding of the difficulties in QCD.

8.2.1 Lagrangian Density of QCD

The Lagrangian density of QCD for quark fields ¢ with SU(N..) colors is described
as

o 1 )
L =9(iy"0, — gy Ay = m)ip — S Tr{Gu G} (8.1)

where G, is written as

Guw = 0,A,—0,A,+ig[A., A (8.2)
N2-1

A, = AT = > AT (8.3)
a=1

Here Af denotes the gluon fields and T corresponds to the generator of SU(N.)
group and satisfies the following commutation relations

[T, T = iC*T* (8.4)

where C%¢ denotes the structure constant of the group generators. For SU(2) case,
the structure constant C%¢ becomes just the anti-symmetric symbol €. In eq.(8.1),



8.2. Properties of QCD with SU(N,) Colors 75

Tr { } means the trace of the group generators of SU(N.), and the generators 7

are normalized according to
1
Te{T°T"} = 55@". (8.5)
Therefore, the last term of eq.(8.1) can be rewritten as

1 v 1 a a, v
§T1"{GWG” } = ZGMVG # (8.6)

where G, is described as
G, = 0,4, — 0, A), — gC“bCAZAi. (8.7)

m denotes the fermion mass, and at the massless limit, the Lagrangian density has

a chiral symmetry.

8.2.2 Infinitesimal Local Gauge Transformation

QCD Lagrangian density is invariant under the following infinitesimal local gauge

transformation

V' = (1—igx)y = (1 —igT"x"), with x =T"x" (8.8)

Ay, = A +iglAL x] + dux or
Al = AL — O AN X + X (8.9)

"

where x is infinitesimally small. By defining the covariant derivative D, by
D, =0, +igT"Aj (8.10)
one can see

D' = [0,+ igT* (A} — gC“bCAZXC + 0, x)|(1 —igT“x*)Y (8.11)
= (L —1igT*x") D (8.12)
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Therefore, one can prove that

Pyt D ' = iy Dy (8.13)
G = (1—igT*x")Gu (1 +igT*x") (8.14)

and one obtains
Tr{G ,,G"} = Tr{(1 —igT*x")G W G" (1 +igT*x")} = Tr{G,,G"}. (8.15)

Therefore, one sees that the Lagrangian density of eq.(8.1) is invariant under the

infinitesimal local gauge transformation.

8.2.3 Local Gauge Invariance

Now, the local gauge transformation with finite x is defined as
A = VAL (0 = LU0 () (8.16)
o= UY (8.17)
where U(x) is described in terms of x as
U(x) = e 9. (8.18)
Here, one can easily prove the following equations

i D' ) = iy Dy (8.19)

G =UX)GuwUX) ™ (8.20)

and by making use of the following identity

3G G = 2T, G = 2TH{G G = 3 G, G (8.21)
a=1

a=1

the gauge invariance of the Lagrangian density is easily seen.
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8.3 Noether Current in QCD

7

The QCD Lagrangian density is invariant under the following infinitesimal global

gauge transformation

o= (L —igT0")y
Ay = AL — gC™ ALY°

where 0 is an infinitesimally small constant. In this case, one finds
oL =L, o, A" 0,A") — L, 0,1, AL, 0,A%) = 0.
By making use of the equations of motion, one obtains

0L = |~ig(i0upy" T + iy T 0,1))

—g(9,Grr et AL 4 GrreCtee, AL)] 6% = 0.

Therefore, one easily finds that
8u (?Z’Y“Ta?ﬂ + Oach/u/,bA,c/) —0.
This means that the Noether current
[ra = jia 4 CabeGrb A
is indeed conserved. That is,
0, I"" =0
where the quark color current jj is defined as

jz = 'JJ’Y;AT%D'

(8.28)

(8.29)

(8.30)

Thus, the quark color current alone cannot be conserved, and therefore there is no

conservation of the quark color charge. This is consistent with the fact that the

color current of quarks is not a gauge invariant quantity.
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8.3.1 Conserved Charge of Color Octet State

From eqs.(8.29), one sees that the color octet vector current of one quark and one
gluon state " is conserved. Since J,/"* is a gauge invariant quantity, one can

integrate it over all space

d dQ9 dQy
[u,aS — /IaB / .Ia3 — I /Ia. — I _ 31
/8# d’r pr od’r+ [ V- I%d’r o + s o 0 (8.31)
where the color charge Q¢ is defined as
Q4 = / 1%d3r. (8.32)

Therefore, the color charge Q)¢ is indeed a conserved quantity, and there may be
some chance that the color charge ()7 becomes a physical observable.

8.3.2 Gauge Non-invariance of

Interaction Lagrangian Density

The interaction Lagrangian density of QCD that involves quark currents is written
L;=—gj, A" (8.33)

Now, the interaction Lagrangian density L£; is not gauge invariant, and therefore if
one wishes to make any perturbation calculations involving the quark color currents,
then one should check it in advance whether one can make the gauge invariant quark-
quark interactions. The interaction Lagrangian density is transformed into a new

shape under the infinitesimal local gauge transformation
Lr = —gj, (A" 4+ 9"x") (8.34)

where the second term is a gauge dependent term. In the same way as QED case,
one can rewrite the second term by making use of the conserved current as

_gjgauxa — _gau(jzxa) + goabcxaauGZVAu,c‘ (835)
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The first term is a total derivative and thus does not contribute. However, there
is no way to erase the second term which depends on x*. Therefore, one sees that
one cannot make any simple-minded perturbative calculations of quark-quark inter-
actions in QCD, contrary to the QED case where the electron-electron interaction
is well defined and calculated. This means that there is a difficulty of defining any
potential between quarks, and this is of course consistent with the picture that the
color charge of quarks are gauge dependent and is not a conserved quantity.

8.4 Equation of Motion

The Lagrange equations of motion now become

(i9"0u — 97" Ay — mo)¥ = 0
(3HG“’”“ _ g[u,a =g (jl/,a + Cachup,bA;) . (836)

One can see that the equation of motion for the gauge fields has gauge field source
terms in addition to the quark color current. Even though the equation of motion
looks similar to that of QED, physics of QCD must be very different from the QED
case. Now, one can introduce the color electric field E* and the color magnetic field
B® by

A a
E* = — (%}f) — VAL — gC AP AC (8.37)
1
B*=V x A" + §g0“bCAb x A°. (8.38)

It should be noted that the fields E* and B® themselves are not gauge invariant,
contrary to the QED case. Now, eq.(8.36) can be rewritten in terms of E* and B“

V. -E*=gj?— gC"™A". E° (8.39)
E°
V x B — aat _ gja . gCabC (ASEC + Ab % BC) ) (840)
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From eq.(8.36), one sees that the current I is a conserved quantity, d,/** = 0.
In order to solve the dynamics of QCD, it should be inevitable to take into account
the conservation of this current I*®. A question is, of course, as to in which way
one should consider this effect of the current conservation in QCD dynamics, and
this is still an open question.
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Chapter 1

Classical Field Theory of Fermions

The world of elementary particles is basically composed of fermions. Quarks, electrons
and neutrinos are all fermions. On the other hand, elementary bosons are all gauge bosons,
except Higgs particles though unknown at present. Therefore, if one wishes to understand
field theory, then it should be the best to first study fermion field theory models.

In this chapter, we discuss the classical field theory in which “classical field” means that
the field is not an operator butanumber function. First, we treat the Sédmger field
and its equation in terms of the non-relativistic field theory model. In this case, the first
quantization ofz;, p;] = ihd;; is already done since we start from the Lagrangian density.

In fact, the Lagrange equation leads to the 8diger equation or in other words, the
Lagrangian density is constructed such that the &tihger equation can be derived from

the Lagrange equation. The Dirac field is then discussed in terms of the Lagrangian density
and the Lagrange equation. We also discuss the electromagnetic fields which interact with
the Dirac field. The gauge invariance will be repeatedly discussed in this textbook, and the
first introduction is given here. Finally, the field theory models with self-interacting fields
are introduced and their Lagrangian density as well as Hamiltonian are described.

In this textbook, the basic parts of elementary physics can be found in Appendix, and in
fact, Appendix is prepared such that it can be read in its own interests independently from
the main part of the textbook.

Throughout this book, we employ the natural units

c=1, h=1

This is, of course, due to its simplicity, and one can easily recover the right dimension of
any physical quantities by making use of

he = 197 MeV - fm.

1.1 Non-relativistic Fields

If one treats a classical field(r), it does not matter whether it is a relativistic field or
non-relativistic one. The kinematics becomes important when one solves the equation of

1



2 Chapter 1. Classical Field Theory of Fermions

motion which is relativistic or non-relativistic. If the kinematics is non-relativistic, then the
equation of motion that governs the fieldr) is the Schodinger equation. Therefore, we
should first study the Sctdinger field from the point of view of the classical field theory.

1.1.1 Schibdinger Equation

Electron in classical mechanics is treated as a point particle whose equation of motion
is governed by the Newton equation. When electrons are trapped by atoms, then their
motions should be described by quantum mechanics. As long as electrons move much
slowly in comparison with the velocity of light, the equation of their motion is governed

by the Schddinger equation. The Sdbdtinger equation for electron with its massin the
external fieldU (r) can be written as [102]

<i§t+2inv2—U(r)) Y(r,t) =0, (1.1)

whereU (r) is taken to be a real potentiah(r, ) corresponds to the electron field in atoms,
and|«(r, t)|? can be interpreted as a probability density of finding the electron, .
Field ¢ (r,t) is Complex

The Schédinger fieldy(r,t) should be a complex function, and the complex field just
corresponds to one patrticle state in the classical field theory. This is a well known fact, but
below we will see what may happen when we assanpeiori that the Schidinger field

¥ (r,t) should be a real function.

Real Field Condition is Unphysical

If one imposes the condition that the fieldr, t) should be real

w(Tv t) - W(Ta t)

then, one sees immediately that the fiéld-, ) becomes time-independent since eq.(1.1)
and its complex conjugate equation give the following constraint for a reahfigtc)

oY(r,t)

o 0.

Also, the fieldy () should satisfy the following equation

1
Since the general solution of eq.(1.1) can be written as

Y(rt) = e Fo(r)
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the fieldy(r, t) may become a real function only if the energyof the system vanishes.
That is, the energy eigenvalue Bfis

E=0.

Therefore, the real field cannot propagate and should be unphysical. This means that the
real field condition of)(r, t) is physically too strong as a constraint.

1.1.2 Lagrangian Density for Schibvdinger Fields

The Lagrangian density which can produce eq.(1.1) is easily found as

L=iph 28 - — 50 20 Wiy, (1.2)

where the repeated indices bfmean the summation &f = 1,2, 3 and, in this text, this
notation as well as the vector representation are employed depending on the situations.
The repeated indices notation is mostly better for the calculation, but for memorizing the
expressions or equations, the vector notation has some advantage.

The Lagrangian density of eq.(1.2) is constructed such that the Lagrange equation can
reproduce the Schdinger equation of eq.(1.1). It may also be important to note that the
Lagrangian density of eq.(1.2) ha#/&l) symmetry, that is, it is invariant under the change
of the fieldvy as

W (2) = () — L' =L,

wheref is a real constant. This invariance is clearly satisfied, and it is related to the con-
servation of vector current in terms of Noether’s theorem which will be treated in the later
chapters and in Appendix A.

Non-hermiticity of Lagrangian Density

At this point, we should discuss the non-hermiticity of the Lagrangian density. As one
notices, the Lagrangian density of eq.(1.2) is not hermitian, and therefore some symmetry
will be lost. One can build the Lagrangian density which is hermitian by replacing the first

term by )
4 OV i Lo 1O
[N (AP e N
W5 <2¢ ot 2 ot w)'

However, it is a difficult question whether the Lagrangian density must be hermitian or not
since it is not an observable. In addition, when one introduces the conjugate fields
oL oL

H = = —

in accordance with the fields and, then the symmetry between them is lost. However,
the conjugate fields themselves are again not observables, and therefore there is no reason
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that one should keep this symmetry. In any case, one can, of course, work with the symmet-
ric and hermitian Lagrangian density, but physical observables are just the same as eq.(1.2).
In this textbook, we employ eq.(1.2) since it is simpler.

1.1.3 Lagrange Equation for Schibdinger Fields

The Lagrange equation for field theory can be obtained by the variational principle of the
actionS

S:/ﬁdtdgr

and the Lagrange equation is derived in Appendix A. Since theiédca complex fieldy)
andy ' are treated as independent functional variables. The Lagrange equation for the field
1 is given as
oL 0 oL 0 0L oL
ohye=r—~=——++— —F—=—, 1.3a
Po0u) Ot o Om o(fL) 0% (1.3a)
where the four dimensional derivative

g =(092 9 9 9\_(90 9 0 9
B\ 0xy 0z Oxy’ Oxg )  \ Ot 0z’ Oy’ 0z

is introduced for convenience. Now, the following equations can be easily evaluated

ooc_out
ot oy Ot
0 oL 1 9 oyl
Oz, 3(%) 2m Oz, Oz’
oL
hdaduYA |
o v

and therefore one obtains

o 1
<_i8t - %W — U(r)) Yi(r,t) =0

which is just the Sclirdinger equation for™ in eq.(1.1).
It should be interesting to calculate the Lagrange equation for theyfield

0 oL N g oL 0L
ot 9y ovty oyt
ot gyt~ Owy o(55r) oY

(1.3b)

In this case, one finds

0 oL
——=0
Ot ot

Y
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g oL 1 0 O
Oz 9(2%y — 2m dxy Oz
oxy, @(axk) m O0xp Oxy,

oL (9¢
it~ or Y

and therefore one obtains

G;+-V2 w)>wnw:o

which is just the same equation as eq.(1.1).

Here, we note that the Lagrangian density is not a physical observable and therefore it
does not necessarily have to be determined uniquely. It is by now clear that the Lagrangian
density eq.(1.2) reproduces a desired 8dimger equation and thus can be taken as the
right Lagrangian density for Sobdinger fields.

1.1.4 Hamiltonian Density for Schiodinger Fields

From the Lagrangian density, one can build the Hamiltonian dehsitshich is the energy
density of the field)(r, t). The Hamiltonian densit§t is best constructed from the energy
momentum tenscr #”

oL oL
al/
50,0) ¥ T 80,0

which will be derived in eq.(2.32) in Chapter 2. The energy momentum téfitgosatisfies
the following equation of conservation law

pr —

ayw’f [/glﬂl

0, TH =0

due to the invariance of the Lagrangian density under the translation. Therefore, the con-
served charge associated with the¥

Ql/ — /TOV dST’

should be a conserved quantity. Thus, itis natural that one defines the Hamiltonian in terms
of the Q°.

Hamiltonian Density from Energy Momentum Tensor

The Hamiltonian densit¥{ is defined as

H=7T%= =t — 1.4
w¢+aw¢ (1.4a)
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Therefore, introducing the conjugate fieldg andIl,; by

HwE%:ﬁ/JT, HwTE%:
oY oYt
one can write the Hamiltonian density as
. . 1
H =Ty + Myt — £ = %wﬁ -V + U (1.4b)

1.1.5 Hamiltonian for Schrodinger Fields

The Hamiltonian for the Scbdinger field is obtained by integrating the Hamiltonian den-
sity over all space

HE/Hd3r:/ anwwwwwzp] d3r. (1.4¢)

By employing the Gauss theorem

[V wvodr= [wv.was,
v s
one can rewrite eq.(1.4c)

o= / [-Hﬂv% + wTUw} i, (1.4d)
2m
where the following identity is employed
V- (@IVy) = vyl vy + TV,

In addition, the surface integral term is neglected since it should vanish at the surface of
sphere at infinity.

Now, it may be interesting to note that the Hamiltonian in eq.(1.4d) by itself does not
give us much information on the dynamics. As long as we stay in the classical field theory,
then the dynamics can be obtained from the equation of motion, that is, thed8uajer
equation. The static Sabdinger equation can be derived from the variational principle of
the Hamiltonian with respect tp, and this treatment is given in Appendix A.

The Hamiltonian of eq.(1.4c) becomes important when the fielslquantized, that is,
the fieldy is assumed to be written in terms of the annihilation operaias discussed in
Chapter 3. In this case, the SoHinger field becomes an operator and therefore the Hamil-
tonian as well. This means that one has to prepare the Fock state on which the Hamiltonian
can operate, and if one solves the eigenvalue equation for the Hamiltonian, then one can
obtain the energy eigenvalue of the Hamiltonian corresponding to the Fock state.

However, the quantization of the Séllinger field is not needed in the normal circum-
stances. The field quantization is necessary for the relativistic fields which contain negative
energy solutions, and it becomes important when one wishes to treat the quantum fluctua-
tion of the fields which corresponds to the creation and annihilation of particles.
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1.1.6 Conservation of Vector Current

From the Schiidinger equation, one can derive the current conservation

dp
LTiv.7=0
8t+ .7 9

wherep andj are defined as

. 1
p=vlv, §=g—|(Vehu—ulvy].
m
This continuity equation of the vector current can also be derived as Noether’s theorem from

the Lagrangian density of eq.(1.2) which is invariant under the global gauge transformation
17/}/ — e’iaw'
As treated in Appendix A, the Noether current is written as

L [ec o
7= 180w Y 90,00

which just gives the above current dengitgndj when one employs the Lagrangian density
of eq.(1.2).

It may be interesting to observe that the Lagrange equation, energy momentum ten-
sor and the current conservation are all written in a relativistically covariant fashion when
the properties of the Scbdinger field are derived. That is, apart from the shape of the
Lagrangian density of the Sdbdinger field, all the treatments are just the same as the rela-
tivistic description.

Y|, with j* = (p,j)

1.2 Dirac Fields

Electron in hydrogen atom moves much slowly compared with the velocity ofdighbw-
ever, if one considers a hydrogen-li%?Bi atom whereZ = 83, for example, then the
motion of electron becomes relativistic since its veloecityan be given as

v 83\
;™2 (137)

which is already comparable with

In this case, one should employ the relativistic kinematics, and therefore the
Schibdinger equation should be replaced by the Dirac equation which is obtained by a
natural extension of the relativistic kinematics. However, the Dirac equation contains new
properties which are essentially different from the $dmger equation, apart from the
kinematics. They have negative energy solutions and spin degrees of freedom. Both prop-
erties are very important in physics and will be repeatedly discussed in this textbook.
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1.2.1 Dirac Equation for Free Fermion

The Dirac equation for free fermion with its massis written as [25, 26]

<igt+iv-amﬂ> Y(r,t) =0, (1.5)
whereiy has four components
(1
_ | Y2
V= 3
Y4

a and g3 denote the Dirac matrices and can be explicitly written in the Dirac representa-

tion as
0 o 1 0
a=(o5) 7=(o &)

whereo denotes the Pauli matrix.

The derivation of the Dirac equation and its application to hydrogen atom are given
in Appendix D. One can learn from the procedure of deriving the Dirac equation that the
number of components of the electron fields is important, and it is properly obtained in the
Dirac equation. That is, among the four components of the ficksvo degrees of freedom
should correspond to the positive and negative energy solutions and another two degrees
should correspond to the spin with= % It is also important to note that the factorization
procedure indicates that the four component spinor is the minimum number of fields which
can take into account the negative energy degree of freedom in a proper way.

Eq.(1.5) can be rewritten in terms of the wave function components by multiplying
from the left hand side

(10" —m)ijp; =0 for i=1,2,3,4, (1.6)

where the repeated indices pfindicate the summation of = 1,2,3,4. Here, gamma
matrices

Y = (70,7) = (B, fax)
are introduced, and the repeated indices of Greek lett@rdicate the summation @f =
0,1,2,3 as defined in Appendix A. The expression of eq.(1.6) is callediriant since
the Lorentz invariance of eq.(1.6) is manifest. It is indeed written in terms of the Lorentz
scalars, but, of course there is no deep physical meaning in covariance.
1.2.2 Lagrangian Density for Free Dirac Fields

The Lagrangian density for free Dirac fermions can be constructed as

L =¥ [10(i0,7" — m)],; 5 = (07" — m)y, (1.7)
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wherey is defined as .

¥ =Py
This Lagrangian density is just constructed so as to reproduce the Dirac equation of (1.6)
from the Lagrange equation. It should be important to realize that the Lagrangian density

of eq.(1.7) is invariant under the Lorentz transformation since it is a Lorentz scalar. This is
clear since the Lagrangian density should not depend on the system one chooses.

Non-hermiticity of Lagrangian Density

This Lagrangian density is not hermitian, and it is easy to construct a hermitian Lagrangian
density. However, as we discussed in the context of&thger field, there is no strong rea-

son that one should take the hermitian Lagrangian density since proper physical equations
can be obtained from eq.(1.7).

1.2.3 Lagrange Equation for Free Dirac Fields

The Lagrange equation f(q'xriT is given as

o 0L _ 0oL 9 oL _ oL
18(8;”;) ot aﬂ}iT O 8(‘3—5’{) oy}

and one can easily calculate the following equations

0 oL

— == =0,
ot o
g oL

Dok (26l

oxy,

oL
w = [70(’5.6#7“ - m)]l] %‘

and thus, this leads to the following equation
[’YO(iau'Yu - m)]z] Y; =0

which is just eq.(1.6). Here, it should be noted thatz/tzlgandw;t are independent functional
variables, and the functional derivative with respecpiamr wj gives the same equation of

motion.
1.2.4 Plane Wave Solutions of Free Dirac Equation

The free Dirac equation of eq.(1.5) can be solved exactly, and it has plane wave solutions.
A simple way to solve eq.(1.5) can be shown as follows. First, one writes the wave function
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1 in the following shape

Ps(r,t) = (g) \/IV e Bt (1.9)

where(; and(, are two component spinors

In this case, eq.(1.5) becomes
-m—-E o-p G\ _
(1P ) () - 1)

E? =m? + p*.

which leads to

This equation has the following two solutions.

Positive Energy Solution E, = /p? + m?)

In this case, the wave function becomes

¢§+)(r,t) = A ués)e_iEPth"', (1.11a)

VvV

X,
E ° 1
W = [ L , with s =+, (1.11b)
2E, X, 2
E,+m

wherey, denotes the spin wave function and is written as

Negative Energy Solution ¢, = —/p? + m?)

In this case, the wave function becomes

- 1 S) —1 ipr
" )(r,t)zﬁv;)e Bpttipr (1.12a)

E s
o = Bl (TR X (1.120)
2/ .
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Some Properties of Spinor

The spinor wave functionly) andv;” are normalized according to

ul(;)Tuéf) =1,
v,(,s)TU,(,s) =1

Further, they satisfy the following equations when the spin is summed over

_ puYH +m
ZU;S)U;S) = lisz, (1130,)
s=1
() _ pEm
Szl'l)p Up = W (113[))

1.2.5 Quantization in Box with Periodic Boundary Conditions

In field theory, one often puts the theory into the box with its voluvhe= L3 and re-
quires that the wave function should satisfy the periodic boundary conditions (PBC). This
is mainly because the free field solutions are taken as the basis states, and in this case, one
can only calculate physical observables if one works in the box. Itis clear that the free field
can be defined well only if it is confined in the box.

Since the wave functiotts(r, t) for a free particle in the box should be proportional to

Cl) 1 iBttip
s(r, 1) ~ —— e TP
vl 1) (cg NG

the PBC equations become

eiPe® _ ezpz(x+L)’ etPyy — e”’y(?ﬂ’L), ePz% — elpz(erL). (114&)

Therefore, one obtains the constraints on the momenpjuas

P P P
=, py:%ny, pz:%nz, np = 0,41, 42, ... . (1.14b)

In this case, the number of stat&sin the largeL limit becomes

3
N = Z Z =2 (;)3 /d3p, (1.15)

Ng,Ny,Nz S

where a factor of two comes from the spin degree of freedom.
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1.2.6 Hamiltonian Density for Free Dirac Fermion

The Hamiltonian density for free fermion can be constructed from the energy momentum
tensor7 #¥

oL oL
T _ 9%, o T _ L
2 (a(aw» B Do) w’) ’

which will be treated in eq.(A.12.3) of Appendix A.

i

Hamiltonian Density from Energy Momentum Tensor

Now, one defines the Hamiltonian denshiyas

HETQOZZ gj %Jréif*w:) - L. (1.16)

Since the Lagrangian density of free fermion is given in eq.(1.7) and is rewritten as
L =il + 9l oy - V - myol;; ¥
and calculate them

one can introduce the conjugate fields, andII :,
_ 9L _ _

In this case, the Hamiltonian density becomes

H=" (T it T 9] ) ~L = [y - V] = [y - V4m] 6. (1.18)

1.2.7 Hamiltonian for Free Dirac Fermion

The Hamiltonian for free fermion fields is obtained by integrating the Hamiltonian density
over all space

H:/Hdgr:/&[—i’y-v+m]z/}d3r. (1.19)

As we discussed in the Sdidinger field, the Hamiltonian itself cannot give us much in-
formation on the dynamics. One can learn some properties of the system described by
the Hamiltonian, but one cannot obtain any dynamical information of the system from the
Hamiltonian. In order to calculate the dynamics of the system in the classical field theory
model, one has to solve the equation of motions which are obtained from the Lagrange
equations for fields.

When one wishes to consider the fluctuations of the fields or, in other words, creations
of particles and anti-particles, then one should quantize the fields. In this case, the Hamil-
tonian becomes an operator. Therefore, one has to prepare the Fock states on which the
Hamiltonian can operate. Most of the difficulties of the field theory models should be to
find the vacuum of the system.
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1.2.8 Conservation of Vector Current
The Lagrangian density of the Dirac field has a global gauge invariance,
wlzeia¢_>£l:£

and therefore there is a Noether current associated with the symmetry. As treated in Ap-
pendix A, the Noether current is written as

oL oL
H = —1 - t
A P R R R
and therefore the vector curreptbecomes
=ty

Due to the global gauge invariance of the Lagrangian density, the vector cjjisatisfies
the continuity equation
Oug" = 0.

1.3 Electron and Electromagnetic Fields

The main part of the physical world is governed by the interaction between electrons and
electromagnetic fields. Therefore, the Dirac equation, the Maxwell equation and their inter-
actions are most important to understand the basic physics in many fundamental researches.

1.3.1 Lagrangian Density

When electron interacts with electromagnetic fields, the Lagrangian density becomes
L= ﬁ(i@,ﬂ“ — gAN — m)z/; — %FWF“”, (1.20)
whereF),, denotes the field strength and is given as
Fu =0,A, — 0,A,.

A* denotes the gauge field with
AP = (Ap, A),

whereAy and A are the scalar and vector potentials, respectivetienotes the gauge cou-

pling constant, and in the classical electromagnetism, it corresponds to the electricecharge
In the four dimensional field theory of QED, the coupling constaiig dimension-

less, and therefore it is renormalizable in the perturbation calculation. In the two dimen-

sional case, the coupling constanhas a mass dimension, and thus it is cakegber-

renormalizable In this case, there appear no infinities from the momentum integral in

the perturbative calculations, and therefore one does not have to renormalize the coupling

constant.
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1.3.2 Gauge Invariance

The Lagrangian density of eq.(1.20) has an interesting feature. The free fermion Lagrangian
density part

P(i0uy" —m)
is just the same as free Dirac Lagrangian density, and the last term in eq.(1.20)

1
-4 F F™

corresponds to the field energy term of the electromagnetic fields. The important point is
that the shape of the interaction term

— g At

can be determined by the requirement of the invariance under the local gauge transforma-
tion.

Local Gauge Transformation
We consider the following local gauge transformation
W =Xy A, = AL+ 0, (1.21)
wherey is an arbitrary real function of space and time, thaii&;, ¢) which is therefore
calledlocal. It is easy to prove that the shape of the field energy term of the electromagnetic
fields does not change under the local gauge transformation of eq.(1.21)
Fl=0,A"") —0,A",, =0,(A, +0ux) — 0u(Au + 0ux) = Fuu.

In addition, one can easily prove that the Lagrangian density of

Yo" — gAY —m)y
does not change its shape under the local gauge transformation of eq.(1.21). That s,
1/;/(2'8#7“ - QAIM"YM - m)w’
= e~ XX (i, " + gD — gAN" — gOuxA — m) Y
= 1/;(1'81/}’“ - QAM’YN - m)w (1.22)
Therefore, a new Lagrangian densitybecomes equal to the original ofie

_ 1 v
L= (i@lﬁ“ —gA' W - m) - 1 F’WF’“ =L.

The invariance of the Lagrangian density under the local gauge transformation determines
the shape of the interaction between electron and electromagnetic fields. This is surpris-
ing, but it is, in a sense, the same as the classical mechanics as discussed in AppendixE. In
this respect, it is interesting to realize that the gauge invariance that arises from the redun-
dancy of the vector potential in solving the Maxwell equations plays an important role for
determining the shape of the fundamental interactions.
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1.3.3 Lagrange Equation for Dirac Field

The Dirac equation with the electromagnetic interaction can be easily obtained from the
Lagrange equation fap
(10" — gA " —m)y = 0. (1.23)

This is the Dirac equation for the hydrogen atom when the potential is static, that is
A=0

and )
Ze
gAU = T
r

where we puy = e with e the electric charge.

1.3.4 Lagrange Equation for Gauge Field
The Lagrange equation for the gauge fidldis written as

)
" 9(0,4,) 04,

Since one can easily calculate

E TV
8141, - _ng w7
oL 1
- - _ M AV _ AV AM — 124
a“a(auA,,) 28#(814 OV A*) x 2 ouF
one obtains B
OuFH = gy = gj”, (1.24)

where the current density is defined as

37 =7 = (970, Pvip). (1.25)
Eq.(1.24) is the Maxwell equation, and more explicitly, one can evaluate eq.(1.24)
OF™  OE
[v=0] — orr Oy v gjo, (1.26a)
OF%  gFik : OB; : ,
[v =k T e = —E) + e,m-ja—xj =—Er+(V x B)p=gjr (1.26b)

which are just the Maxwell equations. It is of course easy to see that no magnetic monopole

V-B=0
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and Faraday’s law

0B
E=——
V x 5

are automatically satisfied in terms of the vector potentjakince
B=VxA=—V-B=V.-VxA=VxV-A=0,

0A 0A 0B

1.3.5 Hamiltonian Density for Fermions with Electromagnetic Field

Now, one can construct the Hamiltonian density of fermion with electromagnetic field. The
Hamiltonian density{ can be defined by the energy momentum tes8t[eq.(A.12.3)] as

oL - oL . oL .
nt Z ((‘Wi vit a@wl) +; 0A; : £

7

since7 " is a conserved quantity. By introducing the conjugate figlgls 11 " andll4, as

oL oL oL
i ooyl 0Ay
one can rewrite the Hamiltonian density as
HZZ (Hwi¢i+H¢T¢3> +ZHAkAk—[,. (1.27)
i k

The conjugate field$L,,, ng andIl4, can be calculated by employing the Lagrangian
density of eq.(1.20)
oc 4 . 04
My, = — =4, ;=0 Ilx, =Ar+ —— = —FE.
vi O Wi vl A Bt Oy, g

It should be noted that there is no corresponding conjugate fieldfam the Hamiltonian
density, and thus there is no kinetic energy term presentifor Now, the Hamiltonian
density can be calculated as

- 0
H—i [—m ma gA,ﬁ“] y
oxy,

2 .
:2 <8Ao) <8Ak 8Ak 8Ak 8AJ) (1.28@)

— A — | —= —
+ F a’L'k a’t]‘ 8xj 8xj Bxk

2
Eq.(1.28a) can be written in a familiar form

_ 1 .
H=9(=iy-V+m)p—gj A+ gjodo+ [A2 —(VAp)? + BQ} . (1.28b)
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1.3.6 Hamiltonian for Fermions with Electromagnetic Field

The Hamiltonian can be obtained by integrating the Hamiltonian density over all space
— (s A . 1 {2 2 2 3
H= [ |¢(—iv-V+m)—gj 'A—i-gjvo—i-Q A*—(VAy)*+B=)|d’r. (1.28¢)
Now, one makes use of the equation of motion

V- E =gjo

in order to rewrite thed, in terms of the fermion current densify. Since there is a gauge
freedom left and one should fix it to avoid the redundancy of the field variables, one may
take a Coulomb gauge, for example

V- -A=0. (1.29)
In this case, the equation of motion for the gauge fiégjdbecomes
V24, = —gjo (1.30)

which is just a constraint. This is not an equation of motion any more since it does not
depend on time. This constraint can be easily solved, and one obtains

Ao(r) Q/W. (1.31)

T |r! — 7|

Now, one can make use of the following equation

1 1 : 2 (o) jo(r) d3rd3r!
2/(VA0)2d3T_ _2/(V2A0)A0d3,r_ 9/90( )ﬁfjﬂ . (1.32)

where the surface integrals are set to zero. Alsp|is introduced which denotes the trans-
verse electric field
Er=-A

and it satisfies
V. -Er=0.

Therefore, the Hamiltonian of fermions with electromagnetic fields becomes

H:/{Q/_)(—i’y-V—i—m)w—gj-A}dgr

2 . 1AV 3 3,/
9° [ jo(r)jo(r) d°rd°r 1/ 2 | @2\ 53

= [ (E2+B?)d 1.
+87r/ P +5 (E7 + B*)d’r  (1.33)

which is a desired form.
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1.4 Self-interacting Fermion Fields

Interactions between fermions are mediated by the gauge fields and this is the basic princi-
ple for the description of the fundamental field theory models. The reason why the gauge
field theory is employed in modern physics is partly because the electromagnetic interaction
is described by the gauge field theory but also because the gauge field theory is a renormal-
izable field theory. This is important since the renormalizable field theory has a predictive
power in the perturbative calculations.

On the other hand, the field theory model with current-current interactions is not renor-
malizable in four dimensions since the coupling constant has the dimension of mass inverse
square. Nevertheless, the model proposed by Nambu and Jona-Lasinio has been discussed
frequently since it demonstrates, for the first time, the spontaneous symmetry breaking in
the vacuum state in fermion field theory models. Therefore, we briefly discuss the La-
grangian density of the Nambu-Jona-Lasinio (NJL) model [93]. In addition, we treat the
Thirring model which is the current current interaction model in two dimensions [109].
This model becomes important for the discussion of the spontaneous symmetry breaking
which will be discussed in detail in Chapter 4.

1.4.1 Lagrangian and Hamiltonian Densities of NJL Model

The Lagrangian density of the NJL model is given as

L= iy — miy + 5 G[0) + (Finse)?]. (134

In this case, the Hamiltonian density of the NJL model can be written as

. = 1 — -
H = =)'V - o)+ mipyp — o G[($0) + (Pirsy)’]. (1.35)
The coupling constant in this model has a dimension of inverse mass square,
G ~m™2 (1.36)

Therefore, the NJL model is not renormalizable in the perturbative sense. Some of physical
observables calculated in terms of the first order perturbation theory should have diver-
gences ofA2. When the cut-off momentum becomes very large, the physical quantity
diverges very quickly, and there is no chance to renormalize this divergence into the cou-
pling constant=.

The NJL model has been discussed often in the context of the spontaneous symmetry
breaking physics [83, 84], and therefore we are bound to discuss it here since we will
discuss the symmetry and its breaking in the later chapter of this book. Further, it should be
fair to mention that, if one solves the field theory model exactly or non-perturbatively, then
one may find that the theory has some predictive power. But this problem is too difficult to
discuss further.
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1.4.2 Lagrangian Density of Thirring Model

There is a popular field theory model in two dimensions with current current interactions.

It is called Thirring model which has been extensively studied since it has an exact solution
due to the Bethe ansatz technique. This will be treated in detail in the later chapter. Here,
we should only introduce the model Lagrangian density. The Thirring model is described

by the following Lagrangian density

T - r ..
L =i, 0" —movy — 5 95" ju, (1.37)
where the fermion curreny, is given as

Ju = by (1.38)

The coupling constanj in two dimensional current current interaction model is a dimen-
sionless constant. Therefore, it is renormalizable, and the model has a predictive power in
the perturbation calculations.

1.4.3 Hamiltonian Density for Thirring Model

The Hamiltonian density of the Thirring model can be written as

- . 1 ..
H = —ithy' 019) + mohap + 3 99" 3 (1.39)

Here, the chiral representation fpmatrices in two dimensions is chosen

0 1 0 -1 1 0
70:<1 0>, 71:<1 0), 7557071=(0 _1>~ (1.40)

By introducing the state as
Ya
= 1.41
o= (%) (1.41)

the Hamiltonian density can be written
H=—i <w2(§1 TR m) +mo(Yly + ¥lve) + 200 batin.  (142)
Therefore, the Hamiltonian of the Thirring model can be written as
= [do =i (vl ba—tl g v0) +molulun-+ v+ 20000afn) . (143)

In Chapter 7, we will discuss the diagonalization procedure of the Thirring model Hamilto-
nian in terms of the Bethe ansatz technique.
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1.5 Quarks with Electromagnetic and Chromomagnetic Inter-
actions

It should be worthwhile writing the total Lagrangian density which is composed of quarks
interacting with electromagnetic fields as well as chromomagnetic fields. Normally, one
considers either electromagnetic interactions or chromomagnetic interactions separately
since they become important at the different physical stages. Here, we write them together
since in reality there are always two different types of interactions (QED and QCD) for
quarks present in nature. In addition, we include the interaction terms which violate the
time reversal invariance as well as parity transformation just for academic interests.

1.5.1 Lagrangian Density
The Lagrangian density of quarks interacting with electromagnetic fields as well as chro-

momagnetic fields is given as

) 1 1
L= [2 (O + 195 ACT +ie s A, ) A — mo} by = 3 ™ — £ G, G

i~ - i -
—5 dfbrounsT G — = b5t P, (1.44)

where the summation of flavor rurfs= up, down, strange, charm, bottom and top quarks.
T denotes the generator of ti$d/(3) color group. The last two terms represent e
andP-violating interactionso,,,, and~s are defined as

1 .
Ouy = ) (%’YV - %w), Y5 = 1Y0Y17273-

Field Strength of Electromagnetic Field

F,., denotes the electromagnetic field strength and is written as
Fu=0,A, —0,A,, (1.45)

whereA,, is the gauge field as given in Section 1.3.

Field Strength of Chromomagnetic Field

G, denotes the chromomagnetic field strength and is given as

G4, = 0, A5 — 0,A% — g, Ab A, (1.46)
whereAj, is the color gauge field€ > denotes the structure constant in 81€(3) group.
The coupling constantg, ande; denote the gauge coupling constantfefiavor quarks
interacting with chromomagnetic field and electromagnetic field, respectively.
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1.5.2 EDM Interactions

The last two terms in eq.(1.44) represent the interaction terms which violate the time rever-
sal invariance as well as the space reflection at the same time. These terms are given just
for references in order to understand fheiolating interactions in future in terms of EDM
(Electric Dipole Moments). That is,

—% d 10,5 TG . EDM for chromomagnetic fields

—% dprousrF* . EDM for electromagnetic fields

The coupling strengthéf andd; denote the strength of the time reversal and parity vio-
lating interactions of quark with the chromomagnetic fields and the electromagnetic fields,
respectively. Thdf andd; have the dimension of the mass inverse, and, in fact, they are
related to the electric dipole moment.

The existence of the EDM interactions should be determined from experiments. If there
is any finite EDM interaction observed in future experiment, it should indicate an existence
of a new scale which is different from the quark masses. In this respect, the observation of
the EDM interaction must be physically very interesting and important indeed.






Chapter 2

Symmetry and Conservation Law

The Lagrangian density of fermions which is constructed in the previous chapter possesses
various symmetries such as Lorentz invariance, time reversal symmetry and so on. These
symmetries play a fundamental role for the determination of the vacuum state as well as the
spectrum emerged from the model Hamiltonian. Therefore, one should be accustomed to
these basic symmetries to understand the field theory.

In this chapter, we explain fundamental symmetry properties of Lorentz invariance,
time reversal invariance, parity transformation, charge conjugation, translational invariance,
global gauge symmetry, chiral symmetry & (3) symmetry in field theory. In particular,
the invariance of the Lagrangian density under these symmetries is discussed in detail since
it is important to determine the vacuum structure.

If the Lagrangian density has a continuous symmetry, then there is a conserved cur-
rent associated with this symmetry due to Noether's theorem. From the conservation of the
current, one finds a conserved charge which plays an important role for the determination
of physical states such as the vacuum state. All of the field theory models discussed here
possess the translational invariance of the Lagrangian density, and this leads to the con-
served quantity of the energy momentum tensor. From this energy momentum tensor, one
can define the Hamiltonian density which is the energy density of the system. Clearly, the
Hamiltonian is most important for the quantized field theory models since it can determine
all of the physical states as the eigenstate of the Hamiltonian.

2.1 Introduction to Transformation Property

When one considers the transformation of the Lagrangian density or Hamiltonian density
under the symmetry operatbr, one first evaluates the transformation of the figlds

W = Uy.

Then, one calculates and sees how the Lagrangian defshould transform under the
symmetry operatot/

L= L, 00" = LU, 8,(UY)).

23
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If the Lagrangian density does not change its functional shape,
L =L

then it is invariant under the transformation(of

After the field quantization, the transformation procedure becomes somewhat different.
The basic physical quantity in quantized field theory becomes the Hamiltéhiamd the
important point is that the Hamiltonian is now an operator and the problem becomes the
eigenvalue equation for the field Hamiltonian

H|Y) = E|V),

where| ) is calledFock state Since an operatd® transforms under the symmetry operator
U as
o' =vou!

the Hamiltonianfl transforms as
H =UHU L.
In this case, the Fock sta®) should transform as
|y = U|P).

The transformation properties of the Lagrangian density should be kept for the quantized
Hamiltonian after the field quantization. However, the vacuum state (the Fock state) may
break the symmetry and indeed this can happen for the continuous global symmetry like
the chiral symmetry. This physical phenomena are cajshtaneous symmetry breaking
which will be treated in Chapter 4.

2.2 Lorentz Invariance

The most important symmetry in physics must be the Lorentz invariance. The Lorentz
invariance should hold in the theory of all the fundamental interactions. This is based on
the observation that any physical observables should not depend on the systems one chooses
if the systemsS andS’ are related to each other by the Lorentz transformation,

2" =at v, (2.1)

If the S" system is moving with its velocity of along thex;-axis, then the matrix/;, can
be explicitly written as

1 v

Ny _\/11_1)2 00 coshw —sinhw 0 0
v —sinhw coshw 0 O
Wl=\"T—2 Vo 0 o 10 |2
0 0 1 0 0 0 0 1
0 0 0 1
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where
1

V1 —?
is introduced. In this case, the Dirac wave functiprshould transform by the Lorentz
transformation as

coshw =

U (2) = Sy (x), (2.3)

whereS denotes @ x 4 matrix. Now, the Lagrangian density for free Dirac field is written
both inS andS’ systems

L = (x)(i07" — m)ip(z) = ¥/ (2)(i0,'+" — m)y/'(a”). (2.4)

From the equivalence betweé&randS’ systems, one obtains
P (a') = P(2)S, (2.5a)
SyS ) =+ (2.5b)

If one solves eq.(2.5b), then one can determine the shapexilicitly when theS’ system
is moving along the:;-axis

S = exp (—i wawlﬁ”> ,

whereo,,, andI},” are defined as

i

Oy = D) ('Y;L’Yu - ’YV'Yu) )
0 -1 0 O
o 1 0 00
" 0 0 0 0
0 0 0 O

2.2.1 Lorentz Covariance

If physical quantities like Lagrangian density or equation of motions are written in a man-
ifestly Lorentz invariant fashion, then they are callastentz covariant The simplest case

is that these equations are written as a Lorentz scalar. In this case, it is trivial to recognize
that they are Lorentz invariant. For example, the continuity equation of the vector current
reads 9

a—f L V.j=0.

This is shown to be Lorentz invariant under the Lorentz transformation. However, it is not
manifest, and therefore one defines the four vector cujrehy

= (P7])
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In this case, one can rewrite the current conservation as
Ougt =0

which is obviously Lorentz invariant since it is written in terms of the Lorentz scalar, and it
is a Lorentz covariant expression.

However, one should not stress too much the importance of the Lorentz covariance.
The Lorentz invariance is, of course, most important. However, as long as one starts from
the Lorentz invariant theory, one does not have to worry about the violation of the Lorentz
invariance since it can never be broken unless one makes mistakes in his calculations. In this
respect, the Lorentz covariance may play an important role for avoiding careless mistakes
if one carries out the perturbative calculation of Sunatrix in a covariant way.

2.3 Time Reversal Invariance

The world we live does not seem to be invariant under the time reversal transformation.
Time flows always in the same direction. However, the physical law in the macroscopic
world is quite different from the microscopic world, and time arrow defined by the entropy
may not necessarily be related to the fundamental interactions.

Almost all of the fundamental interactions are invariant under the time reversal transfor-
mation. It is therefore important to understand the time reversal invaridiagv@riance)
in field theory models.

2.3.1 T-invariance in Quantum Mechanics

Before going to field theory, we should first understand the definition of tHimvariance
in guantum mechanics. When we make-» —t, then the basic operators that appear in
physics behave
T — Tk
t—s—t: | PP PR (2.6)
O — —0k
F— F

However, when the momentupg and the energy are replaced by the differential opera-
tors as

Pe=—i5—, E=i1 (2.7)

then, the explicitt-dependences of the, and £ become just opposite to eq.(2.6), and
therefore one should recover them by hand. This can be realized when one makes complex
conjugate of the operatogg and £

t— —t : ]fk — ]fk* = Zaixk = —]fk, (2.8a)
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~ 0N\" .0 A

t——t: E— <—zat> =ig = E (2.8b)
which can reproduce eq.(2.6). Therefore, the time reversal transformation in quantum me-
chanics means that the operator should be made complex conjugdte-asA*. This
means that if the Hamiltonian contains an imaginary term, then this system violates the
T-invariance. As one can see, the complex conjugate operation in accordance With the
transformation should not be taken for the Pauli matsixas seen from eq.(2.6). For the
Pauli matrixoy, one should make just the transformatiorgf— —oy, fort — —t.

2.3.2 T-invariance in Field Theory

In field theory, momentum operators are all replaced by the differential operators, and there-
fore T-transformation of the fielg)(z, t) means

t— —t : (zg,t) — Y(ag, —t)" with o — —oy. (2.9)

As an example, one takes the plane wave solution of eq.(1.11) and maKEgrtmesfor-
mation. Then, one obtains

X, R
t— —t : w(xk, t) — M OkPk Le—lEpt—H,pkmk
2Ep E, + m s vV

= Pz, t) (2.10)
which is indeed invariant under tHétransformation. The,, matrices transform under the
T-transformation

t— —t (70_’%). (2.11)
Ve =~k

Therefore, the free Dirac Lagrangian density of eq.(1.7) transforms

t——t : L— {z/}j [’yo(—iao’yo — z'é?m’“ — m)] ’(/J]} =L (2.12)
%]
which is, of course] -invariant as expected.

2.3.3 T-violating Interactions (Imaginary Mass Term)

At present, it is most important and fundamental to discover any interactions which violate
the T-invariance. The simplest way to introduce tHeviolating interaction must be an
imaginary mass term,

Hr = i, (2.13)

wheren denotes a real constant. In fact, the CP violating phase is originated from this type
of interaction.
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2.3.4 T and P-violating Interactions (EDM)

The direct examination of thE-violating interaction is based on the measurement of elec-
tric dipole moments (EDM) in isolated systems. The fundamental interaction of the T and
P-violations can be written

7 _
HTP = 5 dfl/}f@'#l,’}/g;wauy, (214)

whered; denotes the intrinsic EDM of thg-fermion. F,, ando,,,, denote the electromag-
netic field strength and the anti-symmetric tensor, respectively and they are defined as

Fu=0,A, —0,A,,
1
Ouy = 9 (’7#71/ - '71/7#)'

~s5 is defined as
V5 = 10717273

The Hamiltonian of eq.(2.14) can be obtained by integrating the Hamiltonian density over
all space, and in the nonrelativistic limit, the particle Hamiltonian becomes

HTP ~ —dfO' - FE. (215)

The measurements of the neutron EDM have been carried out extensively, and we will see
in near future whether the neutron EDM is finite or not. It may be worth quoting the recent
experimental measurement on the neutron EHM64]

dp~ (1.945.4) x 1076 ¢ - cm.

2.4 Parity Transformation
The space reflection operation is calfeatity transformation?, and it is defined as
PyP'=—xp, PtP'=t¢ (2.16a)
Py Pl = —y, PyP ! =1 (2.16b)
In this casey) should also transform intg’ as
V' (zh,t) = Pop(ap, ) = ot (g, t). (2.16¢)

The strong and electromagnetic interactions are invariant under the parity transforma-
tion. For example, the fermion Lagrangian density with the electromagnetic interaction of
eq.(1.20)

_ 1 ,
L= @b(la;ﬁu - gAu’VN - mW - Z F,uuF'u
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can be seen under the parity transformation as follows.
PP 1idgyo Py = pidoroty, P Vidkye Py = Pidky,
bP M Agyo Py = Ao, YPT APy = DA,
where the following relations are employed
PAP~ = Ay, PAP'=—A4. (2.17)

Therefore, one sees that the fermion Lagrangian density with the electromagnetic interac-
tion is invariant under the parity transformation.

Interaction with Parity Violation
For parity violating interactions, one takes for example
Ly = g byurs A" (2.18)
Under the parity transformation, one finds
PP s PY = iy

which shows that the Lagrangian density&fis odd under the parity transformation.

2.5 Charge Conjugation

The Lagrangian density for electrons interacting with the gauge field is invariant under
the charge conjugation operation. The charge conjugate operation starts from the Maxwell
equation which is invariant under the sign change of the vector potential.

2.5.1 Charge Conjugation in Maxwell Equation

The Maxwell equation is invariant under the sign change of the vector potential
Charge Conjugatioa=- AL = —A*. (2.19a)

This is clear since the Lagrangian density of the gauge field is written as

L= f% (00, — D, A,) (D" A — 9 AP)

which is obviously invariant under the operation of eq.(2.19a)

L.= —i (OpAcy — Oy Ac,)(OMAL —OVAM) = L.
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When the gauge field interacts with the fermion current, then the Lagrangian density be-
comes

L= giu A = § (0,4, ~ 0,4,)(0°4 0 A").

This Lagrangian density should be invariant under the charge conjugation operation and
thereforegj,, should change its sign

Charge Conjugatior=> (gj.)c = —gju- (2.190)

This is a constraint on the Dirac field and it is indeed realized in the Dirac equation.

2.5.2 Charge Conjugation in Dirac Field

The invariance of the charge conjugation on the Dirac field starts from the Dirac equation
with the electromagnetic interaction

i(0uy")ig; — g(Auy")ij; — map; = 0. (2.20)

Now, one can make the complex conjugate of the above equation and mutifpym the
left. This can be rewritten with the transposed representation of the gamma nfatrix

—i(0"y))ijhs — g(AFL)ijiby — maps = 0. (2.21)
Now, thee is transformed as
Y= Cyyr =0y, (2.22)

whereC is a 4x4 matrix, and)© denotes the state with charge conjugation and corresponds
to an anti-particle state. Further, the operd&tds assumed to satisfy the following equation

Y= —C(y) O (2.23)
In this case, one obtains
{015 (¥9); + g(Aur")ij (V°); — m(¥©), = 0. (2.24)

This equation is just the same as eq.(2.20) if the signiefreversed, and indeed, the sign
change of; is the requirement of the charge conjugation of eq.(2.19b). The op&rdtat
satisfies eq.(2.23) is found to be

C= i’yg’}/o (2.25)

which is the charge conjugation operator in the Dirac field.
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2.5.3 Charge Conjugation in Quantum Chromodynamics

The Lagrangian density of QCD
7 s . aa 1 a v,a
L= [i(0" +igs AT )y, —mo | — 1 G, G"

with
GHE — it AV@ _ GY APa _ gsCabcAu,bAu,c

is invariant under the charge conjugation operation
APt =AM (gs)e = —gs.
This can be easily seen since
(GH*)e = DFAL® = AL — (g:) O AL ALS = —Gve.

In addition, the Dirac field part of the Lagrangian density is invariant in the same way as
the QED case, and therefore one sees that the Lagrangian density of QCD is invariant under
the charge conjugation operation

_ 1
Lo= e (0" +i(g2)c AL T") 3 = mo e = 7 (G )e( G = L.

2.6 Translational Invariance

When one transforms the coordinatg into =, + a5 with a; a constant, then the wave
functionvy(x) becomes

Y(xg) — Y(xk + ag). (2.26)

This translation operatioﬁﬁak can be written for a very smadl as

- 0
Ro,¥(zr) = (g + ag) = (1 + ay, 6xk> Y(zg). (2.27)
For the finitea;, one can write
. aj 0 " ;
Y(zp +ag) = lim <1 +—= ) Y(zk) = PR (). (2.28)
n—o0 n Oxy

Therefore, one finds the translation operatignin three dimensions as

A~

Rg = ek = ¢'P@, (2.29)
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2.6.1 Energy Momentum Tensor

If the Lagrangian density is invariant under the translation, then there is a conserved quantity
associated with this symmetry, which is calktergy momentum tensas will be defined
below. Under the infinitesimal translation @f, the field« transforms as
Y=Y+ 0y, 0= (dpt)a”
O’ = 0up + 6(0u),  8(0uh) = (0u0utp)a” + (01)(Opa”).

Since the Lagrangian density is invariant under the infinitesimal translati@f, ohe has

J— / / aﬁ
oL , aL 85 vy _ a

By making use of the foIIowmg equation
oL oL oL
0 oyha ) ( V¢> a’ + ———— 0, (9,a"
(a0 9(0,0) 9@,0) )

and using the fact that the total divergence does not contribute to the action, one can obtain
the following equation

5L = [gi (@) + 8(625«#) (0,0,0) — 0, <a<gf¢) M)] o (2.300)
In addition, the following identity can be employed
6 8£
and one finds
0L =0, {Eg‘“’ _ oL 8”1/1] a, = 0. (2.31)
A(9uy)

The same thing should hold as well for the fietd which is an independent functional
variable in the Lagrangian density, and therefore eq.(2.31) should be modified

oL oL

6L =09, |Lg™ — OV — avw} a, = 0. 2.31/
|5 - s s (2:31)

This means that, if one defines the energy momentum tefié6as

oL oL
o= OV + vyt — Lgt 2.32
50,0 " " 0,0m) (232
then7#" is a conserved quantity, that is

0, T" = 0. (2.33)

The reason whyZ * is calledenergy momentum tensisr becauseZ?” is related to the
Hamiltonian and momentum densities.
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2.6.2 Hamiltonian Density from Energy Momentum Tensor

Since the energy momentum tengdt is a conserved quantity, one can define the Hamil-
tonian density by 7%

oL . oL - . .
H=T0= "2 ool = L= Ty + Tyl — £, (2.34)

T
where the conjugate field$,, andIl,; are introduced as

oL oL

H _ == .

The HamiltonianH can be obtained by integrating the Hamiltonian density over all space

H—/Hd3r

and it corresponds to the total energy of the figld

2.7 Global Gauge Symmetry
If one transforms the fieldh into ¢’ as
Y =€) (a is areal constait (2.35)

then it is calledylobal gauge transformatiom which o does not depend on the coordinate
x. This is a simple phase transformation which is also found in quantum mechanics since
physical observables do not depend on the value. of

Now, we discuss the invariance of the global gauge symmetry in the Lagrangian density.
As examples, we consider the Lagrangian density of QED and the Thirring model

_ 1
L= w(i(?“’y“ —gAN — m)w ~1 F, F", (2.36a)

- - 1 . . . -
L= im0 — mpp — 5 9" ju, with i = 9. (2.36b)

Obviously, the Lagrangian densities of eqs.(2.36) are invariant under the global gauge trans-
formation

oL = L, 0 ", 0 — L(, 0,0, 9T, BT) = 0,
In this case, the Noether current associated with the global gauge symmetry is conserved as
discussed in Appendix A.11
oL - oL
00u) " 0(0ut)

5L = iad), Yl =0 (2.37a)
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which leads to the conservation of the vector current

oc_, o
00u) ~ 0(0uyt)

For the Lagrangian densities of egs.(2.36), the vector cujjeinteq.(2.37b) just becomes

duj" =0 with j# = —i ot . (2.37b)

ju = 15%##-

In any field theory models, the conservation of the vector current is known to hold at any
level of quantization or regularization, and therefore the ch@rgsesociated with the vector
current is always conserved.

2.8 Chiral Symmetry

In egs.(2.36), if the fermion is massless & 0), then there is another symmetry which is
calledchiral symmetryIf one transforms the fielg into ¢/’ as

Y = ey (o is areal constait (2.38)

then one finds that the Lagrangian densities of the massless QED and the massless Thirring
model are invariant under the chiral transformation. This is clear sincg #eti-commutes
with ~,,

{57} =0

and therefore one obtains far=0,1,2, 3
eI AR = Al (2.39)
Thus, one sees that thie/“+) transforms by the chiral symmetry as
&/,Yuq// — wTe—ia’%,yO,yueia’st — &Wuw'

Since the Lagrangian density is invariant under the chiral transformation, the axial vector
current

3E = Pyt
is conserved, that is,
Oujt = 0.

2.8.1 Expression of Chiral Transformation in Two Dimensions

The chiral transformation of eq.(2.38) can be explicitly written in two dimensions for the
field 4.
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Chiral Representation

In the chiral representation of thematrix, they; ande’®”> become

(1 0 iy (€% 0
75_<0 —1)’ ¢ _<0 emio )

P (Ve 2 gios (wa> _ <€iwa> 2.40
o = () = () = (D). (2.40
In the Dirac representation of thematrix, thevys ande®s become

(0 1 jays _ [ COSQ isina
V5= <1 O> € - \isina cosa /)’
Therefore, one has

i (V' _ iays (Va) _ (VYacosa+ipsina
v <wlb> = <¢b> B (% cos av + i1)q sina> ' (2.41)

Therefore, one has

Dirac Representation

2.8.2 Mass Term

The mass term B
m
is not invariant under the chiral transformation
my = mape® P % mapy.

Therefore, if the system has a finite fermion mass, then the chiral symmetry is not preserved.
In this respect, when one takes the massless limit

m — 0

then the massless system may not necessarily be connected to the massive one if the chiral
symmetry plays an important role for the determination of the vacuum. In fact, the mass-
less limit is the singular point in the Thirring model, and the vacuum structures between
the massive and massless Thirring models are completely different from each other. This is
reasonable since the massless Thirring model has a vacuum which breaks the chiral symme-
try while the massive Thirring model does not possesses the chiral symmetry and therefore
its vacuum cannot be connected to the symmetry broken state. In addition, the massless
Thirring model has no scaleful parameters, and thus physical observables should be mea-
sured in terms of the cutoff, while, in the massive Thirring model, they are described by

the massn which cannot be set to zero after the system is solved.
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Transformation of Mass Term in Two Dimensions

The mass term in two dimensions in the chiral representation transforms explicitly by the
chiral transformation as

mpry! = m (5 + Wi, ) = m (2Ol + Mol ) # miy

which shows again that the mass term is not invariant under the chiral transformation.

2.8.3 Chiral Anomaly

The conservation of the axial vector current is violated if there is a chiral anomaly. The
chiral anomaly is closely related to the conflict between the local gauge invariance and the
axial vector current conservation when the vacuum is regularized consistently with the local
gauge invariance.

Four Dimensional QED

In four dimensional QED, the axial vector current is not conserved due to the anomaly and
the conservation of the axial vector current is modified as

2
. 9
6M]g 1671'2 6pa'uprUpr7 (2.42)

wheree”?#” denotes the anti-symmetric symbol in four dimensiafig, denotes the elec-
tromagnetic field strength as given in eq.(1.44).

Two Dimensional QED
The same anomaly equation is found in the two dimensional QED and is written

Bl = % e PV, (2.43)
wheree,,,, denotes the anti-symmetric symbol in two dimensions. The explicit derivation of
the anomaly equation eq.(2.43) will be treated in detail in the context of the two dimensional

QED in Chapter 5.

Two Dimensional QCD

There is no chiral anomaly in the two dimensional QCD. This can be easily understood
when one writes a possible anomaly equation in QCD

gt = % e GH.

However, the right hand side has the color index while the left hand side is a color singlet
object, and there is no way to construct a color singlet object in the right hand side.
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Four Dimensional QCD

Contrary to the two dimensional QCD, there is an anomaly in four dimensional QCD. The
axial vector current conservation is modified as

2

g v
593 7 GGl (2.44)

aujg =

whereG?, is the chromomagnetic field strength as given in eq.(1.46).

2.8.4 Chiral Symmetry Breaking in Massless Thirring Model

The massless Thirring model has no local gauge invariance, and therefore there is no
anomaly. Thus, the axial vector current is always conserved. Therefore, the axial charge is
also a conserved quantity.

In the quantum field theory of the massless Thirring model, one quantizes the fermion
fields and therefore the Hamiltonian becomes an operator. Thus, the eigenvalue equation
for the Hamiltonian should be solved, and the lowest state is the vacuum where all the
negative energy states are occupied by the negative energy particles. The construction of
the vacuum state is very difficult since one has to solve infinite many body problems in the
negative energy particles. Apart from the exactness of the vacuum state, one can discuss
some properties of the vacuum state. One example is the symmetry of the Lagrangian
density, and the vacuum can break the symmetry possessed in the Lagrangian density. When
the symmetry broken vacuum is realized because it is the lowest energy, then it is called
spontaneous symmetry breakipigenomenon if the current associated with the symmetry
is conserved. We will discuss physics of the symmetry breaking in the vacuum state in
detail in chapters 4 and 7.

2.9 SU(3) Symmetry

In guantum mechanics, if the particle Hamiltonifhis invariant under the unitary trans-
formation of SU(3) group,

UHU '=H

then the eigenvalues of the particle HamiltoniBlhare specified by the eigenvalues of
SU(3) group. The same transformation can be applied to the field theory models. Sup-
posey should have degenerate states, and one transfornas

W = Uy.

If the Lagrangian density is invariant under tB&(3) transformation, then the Hamilto-
nian constructed from this Lagrangian density is specified by the eigenvaluessiftiie
group. In particular, hadron masses predicted by the Hamiltonian should be specified by the
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eigenvalues of th&U (3) group. In the description of light baryons, one can assumeaihat
d ands quarks belong to the same multiplet. In this case, one can wide

Y(x) = | Yalz) | - (2.45)
Vs(z)

By the unitary transformation & x 3 matrix U, 1 transforms)’ = U1 or explicitly

P () Yu () uir wie wz\  [hu(e)
(Wd(l")) =U (wd(x)) = (u21 u22 u23> (1/}(1(33)) : (2.46)
Y () ¥s(z) ugr uzz usz) \¥s(z)

If the HamiltonianH is invariant under the unitary transformation, then the hadron mass
M can be described in terms of some funct@®fu) as

M = G([A p), (2.47)

where[\, ] denotes the quantum number of the symmetric group which specifies the rep-
resentation of th&U (3) group.

2.9.1 Dimension of Representatiof\, y]

The dimensiorD), , of the state represented by, ;] becomes

D[Aaﬂ] = %(/\+1)(M+1)()\+M+2). (2.48)

In fact, [1, 0] or [0, 1] are three dimensional representation which should just correspond to
1 or its anti-particle state. In this way, one sees thafth&| representation should have 8
states which are in fact found in nature as octet baryons

p, n, A, ©F, 0 =% (2.49)

Indeed, their masses are found at around 1 GeV/c

This success of the flava#U (3) is due to the fact that the interaction Hamiltonian
is invariant under thesU (3) transformation. Therefore, the flavsiU(3) invariance of
the Hamiltonian is broken by the mass term of the quarks. In particular, the mass of
quark is assumed to be much larger than the masses ahd d- quarks by one order
of magnitude. However, the quark mass is still smaller than the hadron mass at least by
an order of magnitude, and this is probably the main reason why the #dv@3) works
well. It is interesting to realize that, the fact that hadron masses are much larger than
those of quarks indicates that the basic ingredients of generating hadron mass must come
from the kinetic energy of quarks inside hadron which should give always positive energy
contributions to the mass of hadron. Since the confinement of quarks must be due to the
non-abelian character of the gauge fields, it should be most important to understand the
properties of the non-abelian gauge field theory.
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2.9.2 Useful Reduction Formula

Here, we summarize some examples of useful reduction formula o$th@) product
representations. First, we show the representation in terms of the dimension of the repre-
sentation.

[1,00=3, [0,1] =3 [0,0]=1, [1,1]=S8, (2.50a)
2,0 =6, [3,0]=10, [0,2] =6 [0,3]=10" (2.50b)

The following reduction formula may be useful
323=3"96, 33" =108, 306=8a10. (2.51)

For example, we can find the following results
333=(3"96)3=10838 10, (2.52)

8®8=15G8d8010¢ 10* & 27. (2.53)






Chapter 3

Quantization of Fields

In Chapter 1, we saw that the Lagrange equations for the fermion fields reproduce the Dirac
equation which is the relativistic quantum mechanical equation of spin 1/2 fermions. In the
Dirac equation, the field) would never disappear since the classical fields should always
be present since they are c-number functions. The energy spectrum of the hydrogen atom
can be described quite well by the Dirac equation.

However, if the hydrogen atom is in the excited state, then it naturally decays into the
ground state at the final stage. During the process of transitions, the hydrogen atom emits
photons. For example, when the hydrogen atom is ir2thestate, then it decays into the
ground state of s; -state by emitting a photon. In this cas2e, the photon is created during the
transition. There%ore, one has to invent some scheme which takes into account the creation
or annihilation of electromagnetic fields, and indeed the gauge fields should be quantized
in terms of the commutation relations for the creation and annihilation operators.

The Dirac field should be always quantized because of the Pauli principle. The exper-
imental observations in atoms show that one quantum state can be occupied only by one
electron (Pauli principle). In order to accomodate the Pauli principle, one has to quantize
the Dirac field in terms of anti-commutation relations for the creation and annihilation oper-
ators. The quantization of Dirac field with anti-commutation relations is also required from
the presence of the negative energy states as the physical observables, and the negative en-
ergy states can be well fit into the theoretical framework in terms of the Pauli principle.
The field quantization is also consistent with the observation that the pair of electron and
positron can be created from virtual photons in the scattering process if some physical con-
ditions are satisfied. In this sense, the field quantization should be made in terms of the
creation and annihilation operators of fermion fields, and therefore, the field becomes an
operator, and consequently the Hamiltonian becomes an operator.

H — H (operator after field quantizatipn

In this case, one should solve an eigenvalue equation for the Hamiltonian with a corre-
sponding eigenstat@)
H|w) = E|b), (3.1)

41



42 Chapter 3. Quantization of Fields

whereE denotes the energy eigenvalue. The siéteis calledFock stateand in quantum

field theory, the problem is now how one can solve the eigenvalue equation and determine
the energy and eigenstate of the Hamiltonian. In general, it is extremely difficult to solve
the eigenvalue equation in quantum field theory. The basic difficulty of the quantized field
theory comes mainly from the fact that one has to construct the vacuum Qjatehich

is composed of infinite numbers of negative energy particles interacting with each other.
In addition,|¥) should be constructed on this vacuum state by creating particles and anti-
particles, and it should satisfy eq.(3.1).

In this chapter, we first treat the quantization of free fermion fields. In most of the
field theory models with interactions, the field quantization is done for free fields since one
cannot directly quantize the interacting fields. Then, we discuss the quantization of the
Thirring model since it can be solved exactly in terms of the Bethe ansatz method. Since
the Thirring model gives a non-trivial field theory model, we can learn a lot from this field
theory model. We also present the quantization of gauge fields so that we can calculate
some scattering processes between electrons in the later chapter.

3.1 Quantization of Free Fermion Field

Classical fermion fields with the Dirac equation can describe the spectrum of the hydrogen
atom quite well. However, the representation of the classical field has a limitation since
experimental observations indicate that fermion and anti-fermion pairs can be created from
the vacuum if the conditions of pair creations are satisfied. This means that the fermion
fields cannot be taken as a c-number field. Instead, one should consider the fermion field as
an operator. If the field becomes operator, then the value of the field should vary, depending
on the state (Fock state) which should be prepared in accordance with the process one
wishes to calculate in the perturbation theory.

3.1.1 Creation and Annihilation Operators

We start from the quantization of free Dirac fields. The Lagrangian density of free Dirac
field is written as

L= (i —m)e = i + 9] [inoy - 7 —mol;; 0.
In this case, the Hamiltonian can be obtained as given in eq.(1.19)
H:/Hd%:/zp[—w.Ver]wd%. (1.19)
Now, we write the free Dirac field as

1 S S ) r—1 S S 3 . )
Y(r,t) = Z \/? <a£,,)u$,,)e“’" r—ibnt 4 bg,,)v,(,,)elp“ ’"'HE"t) , (3.2)
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Whereugf) ande) denote the spinor part of the plane wave solutions as given in Chapter

1, and can be written as
() JEntm (5o
Up, = Toh < p v | (3.3a)

E,+m
g Pn
E -7
o) =22 (TR ) (3.3)
28, .

27
pn:fny E, = \/p%“"'n2

and s denotes the spin index with = i%. Inserting this field into eq.(1.19), one can
express the Hamiltonian as

where

H=> E, (aTS)an) — b*,(f)bgf)) + some constants

The Hamiltonian is a conserved quantity, and therefore we can quantize it. Here, the basic
method to quantize the fields is to require that the annihilation and creation openfé}ors

and aTS,/) for positive energy states arbéf) and bT,f,,) for negative energy states become

operators which satisfy the anti-commutation relations.
Anti-commutation Relations

The creation and annihilation operators for positive and negative energy states should satisfy
the following anti-commutation relations,

{as‘f); GTS’/)} = 68,8/571,,1'1/7 {bg‘f), bTS’/)} = 55,5’571,,71/- (3'4)
All the other cases of the anti-commutations vanish, for examples,

{ald.al0Y =0, (050} =0, a5} =0, (3.5)

n' n
This corresponds to the field quantization, and the quantization in terms of creation and
annihilation operators should be the fundamental quantization procedure.
3.1.2 Equal Time Quantization of Field

The quantization of fields can also be written in terms of equal time anti-commutation
relations for fields as,

{wi(’l“, t), 7Tj(’l“,, t)} = 152](5(’)“ — ’l“,), (3.6)
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where the conjugate field; is given by the Lagrangian density as
ok _ i)
i

Therefore, the quantization condition of eq.(3.6) becomes

m =

{wi(r, 1), 0l (r" 1)} = 6;50(r — 7). (3.7)

It is important to note that the field quantization must be done always with equal time.
Further, one may consider the quantization conditions of fields in terms of egs.(3.4) and
(3.5) as being more fundamental than eq.(3.6), and eq.(3.6) should be taken as the field
guantization method which can be derived from egs.(3.4) and (3.5) together with eq.(3.2).

3.1.3 Quantized Hamiltonian of Free Dirac Field

Now one finds the quantized Hamiltonian which is given as

= ZE ( 1)) _ pt eyl ))+C (3.8)

where () is a constant and normally it is discarded since it does not affect on physical
observables. This Hamiltonia is written in terms of the creation and annihilation oper-
ators.

It may be worthwhile noting that the Hamiltonian is obtained by integrating the Hamil-
tonian density over all space, and therefore it does not depend on space and also it is a
conserved quantity. Instead it is not a c-number but the operator. Therefore, one should find
Fock states which must be the eigenstates of the Hamiltonian. For free Dirac fields, one can
easily find the eigenstates of the Hamiltonian, and indeed the vacuum state is constructed
by filling out all the negative energy states by the negative energy particles as will be treated
below.

Anti-particle Representation

The representation (bﬁf) corresponds to the negative energy state. The anti-particle repre-
sentation can be obtained by defining a new opeﬂaﬁféras

bS) — bT(S) .

In this case, the operatbff) describes the annihilation of an anti-particle. In this represen-
tation, the Hamiltonian of free Dirac field becomes

= ZE ( 194 4 ptepe )+ (3.9)
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Perturbative Vacuum

This expression is employed in most of the field theory textbooks, and it is suitable for
describing the processes of fermion creation and annihilation. However, one cannot treat
the interacting vacuum state since it is assumed that the vacuum is a simple one which
satisfies

a{’10) =0, b0y =0

which defines the vacuum stdt® in the perturbative sense. The construction of the vac-
uum state in interacting systems is quite difficult and mostly impossible in four dimensional
field theory models.

3.1.4 Vacuum of Free Field Theory

When there is no interaction, one can easily construct the exact vacuum state. In this case,
one considers the maximum number of freedom td\heand the particles are put into the
box with its lengthL.. The momenta and energies of the negative energy particles can be

written as 5
v
pn:fn7 E,=—vm?+p2, (3.10)

wheren,, are integers and run
np=0,4+1,42,...,+N.

Further, one defines the cut-off momentinby

2
A= — 11
< (3.11)

and one letsV and L as large as required, keepindinite. If the model field theory has no
scaleful parameter with massless fermions, then physical observables must be measured by
the A. But they should not depend on eith€rnor L.

Fock Space Vacuum

The Fock space vacuum can be written as

0y = TJ6'S10)). with En = —v/m? + p2, (3.12)

ng

where|0)) denotes a null vacuum state which is defined as
b10)) =0, al|0)) =o0. (3.13)

This exact vacuum state of the free Dirac field is capedturbative vacuum statgnce it
is often employed for the quantum field theory with interactions.
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It should be noted that the construction of the exact vacuum state is most important
since from this vacuum one can create any physical states by applying creation operators.
However, it is, at the same time, clear that the exact vacuum state cannot be normally
obtained in the field theory models in four dimensions. There are two fermion field theory
models which can be solved exactly. That is, the Schwinger model and Thirring model can
be solved exactly, but they are two dimensional field theory models and will be treated in
the later chapter.

3.2 Quantization of Thirring Model

Now, we present the quantized Hamiltonian of the Thirring model as an example. In the
chiral representation of thematrices, the Hamiltonian of the Thirring model becomes

. 0 0
- / i [—z’ (wgax da—tf wb) o (bl da)+ 200l el | . (3.14)

Now, the fermion fields are quantized in one space dimension with a box length of

- () HE@)m e

where

2
pn:%n, with n=0,+1,... .

The creation and annihilation operators satisfy the following anti-commutation relations

{anva;fn} = {bnabjn} = 5nm7 {anvam} = {bna bm} = {anabm} =0. (3-16)

Quantized Hamiltonian in Chiral Representation

In this case, the quantized Hamiltonian can be written

=Y { . (a;rlan — bILbn> +mo <a;bn + bLan) + %gja(pn)ib(pn) ;o (3.17)

where the currents, (p,,) andj,(p,) in the momentum representation are given by

Ja(pn) = Z ajarin, (3.18a)
l

b(pn) = blbin. (3.18b)
l
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3.2.1 Vacuum of Thirring Model

In general, it is very difficult to construct the vacuum state for interacting field theory mod-
els. One has to solve the eigenvalue equation of the Hamiltonian with the infinite number
of the negative energy particles, and normally it is impossible.

Fortunately, however, the massless Thirring model can be solved exactly by the Bethe
ansatz technique . Furthermore, the solution of the vacuum state is given analytically. Since
detailed discussions will be given in Chapter 7, we give only the vacuum state which is
constructed by operating creation operators.

Exact Vacuum

The exact vacuum state of the massless Thirring m@tletan be written as
Q) = HaLbeTJT_|O>>7 (3.19)
KOk

where|0)) denotes the null vacuum state with
age|0)) =0, ber|0)) = 0. (3.20)

The momentd:! and k% should satisfy the periodic boundary condition (PBC) equations

which are solved analytically and the momehfdor left mover andk; for right mover are
given as

2N
k] = 20 tan! (g) for ny =0, (3.21a)
L 2
2mn; 2N _
K==+ L tan ™! (%) for n; =1,2,..., N, (3.21b)
2mn;  2(Ng+1
k:f = 7;”1 — ( 0L+ ) tan ! (g) for n; = —1,-2,..., —Np. (3.21¢)

In this case, the vacuum energy becomes

2(Ng +1
Eime = A {No +1+ Mtan*1 (g)} ,
7r

whereA denotes the cutoff momentum.

Cut-off momentum A

Here,g, L and Ny denote the coupling constant, the box length and the particle number in

the negative energy state, respectively. The cutrdff defined as

27TNO
L

Since there is no mass scale in the massless Thirring model, all the observables must be
measured in terms of th&. The numberVy and the box lengtli can be set to any large
number as required, and any physical observables should not depend on NgittoerL.

A=




48 Chapter 3. Quantization of Fields

3.3 Quantization of Gauge Fields in QED

In this section, we present the quantization of the gauge fi¢|din QED. This can be
found in any textbooks, and therefore we discuss it briefly so that we can calculate some of
the scatterings-matrix in QED processes.

Here, we employ the quantization procedure with the Coulomb gauge fixing condition.
The Hamiltonian of the electromagnetic fields is written as

. 1 0AN\?  [0A, 0A, A, DA,
Hem =3 H2 —\ 53 - g
2 / [ k <8xk> + <8$] a.’I}j 6xj 81‘k

wherell is a conjugate field tel;, and is given as

d3r, (3.22)

0, = —Ag.

It should be noted that there is no term corresponding tadthsince there is no kinetic
energy term arising from thg, term. In this sense, thd, is not a dynamical variable any
more.

Coulomb Gauge Fixing

Therefore, one should quantize the gauge fiéldHowever, one should be careful for the
number of the degree of freedom of the gauge fields since there is a gauge fixing condition.
For example, if one takes the Coulomb gauge.

V-A=0 (3.23)

then, the gauge field should have two degrees of freedom. In this case, the gaugedfield
can be expanded in terms of the free field solutions

2
1 . _
Ax) = g E e(k,\) [ch,\e_““ + CL’AQZ’W , (3.24)
k

where
w = |k|.
The polarization vectog(k, \) should satisfy the following relations

€(k,\) k=0, ek, ) e(k,\) =y (3.25)

since the gauge field should satisfy eq.(3.23).
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Commutation Relations

Since the gauge fields are bosons, the quantization procedure must be done in the commu-
tation relations, instead of anti-commutation relations. Therefore, the quantization can be
done by requiring thaty, », cL ,, Should satisfy the following commutation relations

ek, CL/,N] = Okl O7 N (3.26)

and all other commutation relations vanish.
In this case, the HamiltoniaH,,, of the electromagnetic fields is written in terms of
the creation and annihilation operators as

2
) 1
Ao =Y wi (Jmcm + 2) . (3.27)

kE A=1

From eq.(3.27), one sees that there are two degrees of freedom for the quantized gauge
fields. Since the gauge field has always a gauge freedom, it may be the best to quantize
the gauge fieldd in terms of the creation and annihilation operatays,, cJ,fM after the

gauge fixing is done.

Zero Point Energy

Eq.(3.27) contains a zero point energy. That is, the vacuum state where there is no electro-
magnetic field present has an infinite energy

Evac—Qx;%:wk—Z\k|—>oo.

However, there is nothing serious since the vacuum state cannot be observed. Therefore,
one should measure the energy of excited states from the vacuum, and thus

9 2
ABom =Y ) wr (cL,A%A + ;) — Broe = D ) WkCh \CkA

k =1 kE =1

must be physical observables.

3.4 Quantization of Schibdinger Field

As we discussed in the first chapter, the non-relativistic fields do not have to be quantized

since there are no creation and annihilation of particles in the non-relativistic kinematics.
Nevertheless, one can quantize the 8diger field and work out physical observables

in the second quantized representation. Itis, of course, the same as the classical field theory

calculation, but sometime the second quantized representation is easier than the classical

field version.
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3.4.1 Creation and Annihilation Operators

We consider the Lagrangian density of eq.(1.2)

1
2m

£:i¢*%—f— vyl - vy — iUy,

In this case, the Scdinger fieldy (r, t) can be expanded in terms of the free field solutions

Ulrt) = 2o S ae i, (3.28)
k

whereay, andaL are required to satisfy the following anti-commutation relations

{ag,al} = Oppr, {ag,an} = {al,al,} =0. (3.29)

Since one assumes that the Sihinger field corresponds to fermions, one can carry out the
field quantization in the anti-commutation relations.

3.4.2 Fermi Gas Model

From eq.(3.28), one sees that there is no anti-particle present in this model. This is clear
since one starts from the vacuum which has no patrticle at all. On the other hand, if one starts
from the Fermi surface and identifies the vacuum state in which all the states are occupied
up to the Fermi energyy, then one can discuss the particle-hole states which have some
similarity with the Dirac hole state. In fact, the formulation is just the same as the Dirac
vacuum, but there is of course no anti-particle. The hole state is just a hole in the Fermi sea.

Fermi Momentum

In this picture, particles corresponding to the Scdlinger fields are assumed to obey the
Pauli principle. In this respect, the Séklinger field is considered as the fermion field
which should satisfy the anti-commutation relations as shown in eq.(3.29). Therefore, in
the Fermi gas model, particle states are occupied up to the Fermi momegafamnd when

the system has the number of partidle then one finds

L3 3 L3
N: = - d k: 7]{; . .30

Z (27)3 / 6n2 ' F (3-30)
|k|<kp

Nz, Ny ,Nz

In this case, the Fermi energy is written as

1 2

whereM denotes the mass of the Sotimger particle. Eq.(3.30) indicates that the density
p of the system becomes

N 1



3.5. Quantized Hamiltonian of QED and Eigenstates 51

Spin and Isospin

If the particle is a nucleon, it has spirand isospirt. In this case, eq.(3.32) becomes

where
1
s=t 5 (3.34)

3.5 Quantized Hamiltonian of QED and Eigenstates

The Hamiltonian of fermions with electromagnetic fields is given in eq.(1.33)

H:/{@Z)(—i'y-v—l—m)dJ—gj-A}d?’r

2 .
g JO( ) () 3 3! 4 1/ 2 2\ 33
— 7d d’r E B)d
+87r [ — 7| 2 (B + B%) d°r

Now, the fermion field) and the gauge fieldl are quantized as

Z \ﬁ (an ugl)elp" T4+ b( ) (S)eip"'r> , (3.35)

[\

(k, A) e et + cLAeik"’} . (3.36)

3.5.1 Quantized Hamiltonian

In this case, the quantized Hamiltonian of eq.(1.33) can be written as

2
=3 () <0 4 S (s )

kE =1

—g / Dr)yd(r) - Alr)dr+ 2 / PV @0 g, g3, (357)

| — 7|

The interaction terms are so complicated that we do not write them here in terms of the
creation-annihilation operators in an explicit fashion. However, one notices that the inter-
action terms should induce particle-anti-particle creations or destructions.
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3.5.2 Eigenvalue Equation

Now, one should solve eq.(3.1) with the above Hamiltonian eq.(3.37)
H|V) = E|T), (3.38)

where|¥) may be written even for simple bosonic excitation cases

‘\I’>: Z f((p1751)7"‘7(pn58n)7(qlatl)a”'u(qnutn))
(PLSI) 7777 (p7l1571)1(q11t1) 7777 ((Inytn)
xaly! - alyr b)), (3.39)

wheref is the wave function which should be determined so as to satisfy eq.(3.1). The en-
ergy eigenvalug? in eq.(3.38) may be calculated by the diagonalization procedure where
the space is spanned in terms Of(p1, s1),..., (Pn,5n), (@1,t1),--.,(qn), tn)). Fora
practical evaluation, one has to truncate the space significantly so as to carry out any nu-
merical calculations. Numerical calculations in two dimensional QED with finite fermion
mass will be discussed in Chapter 5.

3.5.3 Vacuum Statg(?)

|2) denotes the vacuum state which should satisfy the eigenvalue equation of eq.(3.1)
H|Q) = Eal®),

whereE, denotes the vacuum energy, dfj is full of negative energy particles

) =TT o)),

where|0)) denotes the null vacuum which satisfies
b 0)) =0, ap’(0)) = 0.

One sees clearly that it is practically impossible to solve the eigenvalue equation of the
Hamiltonian in eq.(3.1).



Chapter 4

Goldstone Theorem and
Spontaneous Symmetry Breaking

The continuous symmetry of the Lagrangian density leads to the conservation of currents
and therefore the system should have a conserved charge associated with the symmetry. The
best example must be a global gauge symmetry in which the Lagrangian density is invariant
under the transformation of the Dirac fieldas

Y= =L =L,
wherea is a real constant. In this case, the vector current
ju = &P)’uw

is conserved. That is,
Oug" = 0. (4.1)

In fermion field theory models, the global gauge symmetry is not broken at any level even
though the vacuum state can, in principle, break its symmetry. In particular, the gauge
invariance of the local gauge field theory should hold rigorously since the violation of the
local gauge invariance should lead to the breakdown of defining physical observables.

On the other hand, the chiral symmetry behaves quite differently from the global gauge
symmetry. When the Lagrangian density is invariant under the chiral symmetry transfor-
mation

W = = L' = L
the axial vector current
Gt = Py st
is also conserved, that is,
Oy = 0. (4.2)

53
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However, the chiral symmetry is broken not only because of the chiral anomaly but also in
terms of the spontaneous symmetry breaking mechanism. In the former case, the conser-
vation of the axial vector current is violated by the anomaly term while, in the spontaneous
chiral symmetry breaking, the vacuum loses its symmetry since the vacuum state prefers
the lowest energy state which does not have to keep its symmetry. The discussion of the
anomaly term is given in Chapter 5 in the context of the Schwinger model where the basic
mechanism of the chiral anomaly and the violation of the axial vector current are described
in a transparent fashion.

In this chapter, we discuss the symmetry breaking phenomena in fermion field theory
models. In particular, we clarify what is physics of the spontaneous symmetry breaking
and the Goldstone theorem [60, 61]. Normally, the mathematics in the theorem can be un-
derstood in a straightforward way, but its physics in connection with the theorem is always
difficult since one has to examine all the possible conditions in nature when the symmetry
is broken spontaneously.

First, we explain the general feature of the symmetry and its preservation in quantum
many body theory, before going to the discussion of the Goldstone theorem. Then, we
explain the Goldstone theorem and the problem related to the proof of existence of the
Goldstone boson. Also, we present a new interpretation of the Goldstone theorem. In
particular, we give a good example of the chiral symmetry breaking in the Thirring model
together with the exact solution of the vacuum state.

Further, we comment on the symmetry breaking of boson field theory models together
with the Higgs mechanism. However, this part is presented with reservation since there are
still some problems which are not yet clarified completely in this textbook. The difficulty of
the symmetry breaking physics in boson field theory is partly because the scalar boson field
itself has some serious problems as will be discussed in Appendix C and partly because
there is no model which can present exact solutions of the boson field theory models.

4.1 Symmetry and Its Breaking in Vacuum

Various symmetries of Hamiltonian play an important role for determining the energy
eigenvalues, and in quantum mechanics, one often sees that the lowest state (ground state)
preserves the symmetry of the Hamiltonian. In fact, those states which break the symmetry
are, in general, higher than the symmetry preserving state for the same quantum numbers or
configurations of the wave function. This can be naturally realized in quantum many body
theory as our experiences tell us.

However, the physics of the symmetry breaking in quantum field theory is quite dif-
ferent, and phenomena which seem to be in an apparent contradiction with the picture of
guantum many body theory can indeed occur. This is caleshtaneous symmetry break-
ing and it has been discussed extensively in many field theory textbooks. In the spontaneous
symmetry breaking, the vacuum state of the field theory models is realized with the sym-
metry broken state. That is, the true vacuum prefers the symmetry broken state, contrary to
the naive expectation in quantum many body theory.
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A question may arise as to what should be an intuitive explanation why the vacuum
of the field theory models has the symmetry broken state as the most favorable state, in
contradiction with the experiences of quantum many body theory. Here, we show that the
symmetry broken state of the vacuum in the field theory models is naturally realized in the
context of quantum many body theory. In short, the vacuum of quantum field theory is
constructed by the negative energy particles, and therefore, the symmetry preserving state
should have the absolute magnitude of its total energy which is smaller than the symmetry
broken state. This is just consistent with the prediction of quantum many body theory.
However, energies of the vacuum are all negative, and thus the lower state is, of course, the
one that breaks the symmetry since the absolute magnitude of its energy is larger than that
of the symmetry preserving state. This is exactly what one observes in the Thirring model
as will be discussed in Chapter 7.

4.1.1 Symmetry in Quantum Many Body Theory

In quantum mechanics, the ground state energy of the particle Hamilt&inéam be written
Eiot = (0|H|0), (4.3)

where we denote the ground state|dywhich preserves the symmetry of the Hamiltonian

H. In this case, the lowest state is normally the one that keeps the symmetry. The total
energy of the states which do not keep the symmetry should be found in higher energies
than the symmetry preserving state. This energy of¥hparticle state may be written
more explicitly as

N
Biot = »_ &i(k), (4.4)
i=1

where we denote the energy of théh particle by&;(k;). The momentunk; should be
determined by solving the many body equations of motion

Fi(ky,...,ky)=0, i=1,...,N. (4.5)
Now, suppose there is a symmetry in the HamiltontanThe solution of the above equa-

tions should be specified by the symmetric and the symmetry broken solutions. In quantum
many body system, it is often the case that the symmetric sol@igff is lower than the

symmetry broken solutiof:¥™"" .

Eo" < B (4.6)

This, of course, depends on the interactions between patrticles in the system, and one can
only claim that there should be some systems in which eq.(4.6) can hold.
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4.1.2 Symmetry in Field Theory

In quantum field theory, the symmetry breaking phenomena occur in a completely different
fashion. The lowest state which is calleacuumsometimes breaks the continuous symme-
try since it is found to be lower than the symmetry preserving state. Since the continuous
symmetry has the Noether current associated with its symmetry, the current conservation
should hold true in the process of determining the lowest state of the model field theory as
long as the model has no anomaly.

Why is it possible that the symmetry broken state becomes lower than the symmetry
preserving state in an obvious contradiction with the picture of quantum many body theory?
Here, we present a simple intuitive picture why it may occur. The basic point is that the
vacuum in field theory models is constructed by particles with the negative energies which
are solved in the many body Dirac equations. To be more specific, the vacuum éhgrgy
can be written as

By = — lim Y &(ki), (4.7)

where the energy of théth particle is denoted by;. Since the system is infinite, one
should make the numbéY infinity at the end of the calculation. It should be noted that
one cannot make the system infinity from the beginning since in this case one cannot define
the total energy of the system. This construction of the vacuum in terms of thefinite
particle system and then making the numBeinfinity must be well justified since the deep
negative energy states in the vacuum should not have any effects on the physical properties
of the vacuum state.

In order to determine the momenta of the negative energy particles, one should solve
the equations of motion which may be similar to eq.(4.5)

Gi(ky,....ky) =0, i=1,...,N. (4.8)

Again, one can assume that there is a symmetry in the Hamiltaiiiain this case, the
solution of the above equations should be specified by the symmetric solution and the sym-
metry broken solution. Just in the same way as the positive energy case, if one defines the
total energyE:ot by

N
Etor = Z&(k‘z) (4.9)

then the symmetric solutiodZ;’," must be lower than the symmetry broken solution

sym.br
Etot

B < B (4.10)

However, the energy of the vacuum is all negative, and therefore one sees that the symmetry
broken vacuum state must be the lowest, that is

Esym.br < Esym (411)

vac vac



4.2. Goldstone Theorem 57

which is just opposite to the prediction of the quantum many body theory.

In this way, the vacuum in field theory models prefers the symmetry broken state. The
symmetry preserving state has the lowest energy in magnitude, but due to the negative
sign in front (eq.(4.7)), the lowest energy must be the one that breaks the symmetry. This is
exactly what happens in the spontaneous symmetry breaking in fermion field theory models.
This appearance of the two states, one that preserves the symmetry and the other that breaks
the symmetry must depend on the dynamical properties of the models one considers. Up
to now, the Thirring model exhibits the two states in the vacuum, and therefore it presents
a good example of the spontaneous symmetry breaking physics. In the next section, we
discuss the Goldstone theorem, keeping this fact in mind.

4.2 Goldstone Theorem

The physics of the spontaneous symmetry breaking started from the Goldstone theorem.
The theorem states that there should appear a massless boson when the symmetry of the
vacuum state is spontaneously broken. In this process of the spontaneous symmetry break-
ing, the current conservation should hold. This is important since the Goldstone theorem is
entirely based on the current conservation, and without the current conservation the theorem
cannot be proved.

Here, without loss of generality, we can restrict our discussion to the chiral symmetry
breaking of the fermion field theory models. In this case, the chiral ch@ggaust be a
conserved quantity.

4.2.1 Conservation of Chiral Charge

When the Lagrangian density has the chiral symmetry which can be represented by the
unitary operatot/ («), there is a conserved current associated with the symmetry, which is
eq.(4.2). In this case, there is a conserved chiral ch@ege

Qs = / 39(z) d3r. (4.12)

The quantized Hamiltonia#l of this system is invariant under the unitary transformation
U(a), ) )
Ula)HU(a)™! = H. (4.13)

Therefore, the chiral charge operaéds commutes with the Hamiltoniafl

A A A A

OsH = HOs. (4.14)

4.2.2 Symmetry of Vacuum

The symmetry of the vacuum is determined in terms of its energy, and when the lowest
energy state is realized, the vacuum may break the symmetry which is possessed in the



58 Chapter 4. Goldstone Theorem and Spontaneous Symmetry Breaking

Hamiltonian. Here, the symmetry of the vacuum can be defined in the following way. The
symmetric vacuum is denoted hy) while the symmetry broken vacuum is denoted %Y.
They satisfy the following equations,

U(a)[0) = 10), (4.15a)
U(a)|2) # |Q2). (4.15b)

These equations can be written in terms of the chiral charge opéj’gtm
Q5(0) =0, (4.16a)

Qs5|Q) # 0. (4.16b)

4.2.3 Commutation Relation

In the Goldstone theorem, one starts from the following commutation relation which is an

identity equation,
[Qa/w Jys(a) dPr ] — 2 [ By (4.17)

Now, one takes the expectation value of the above equation with the vacuun{staad
obtains

|G, [ Bapita) ] 10) = ~2(0] [ Gyt drio) (4.18)

If the right hand side (fermion condensate) has a finite value, then the vacuunitstate
must be a symmetry broken state since it should at least satisfy eq.(4.16b) because of the
finite value of the left hand side.

Now, one can rewrite eq.(4.18) and assume that the right hand side is nonzero because
of the finite fermion condensate

> (2m)%(pn) [(Qljglnﬂnw%@blme_m”t — (Qrsln) (nlig| Qe | £ 0, (4.19)

n

where|n) denotes the complete set of the fermion number zero states of the field theory
model one considers. Therefore, bosonic states as well as the pair of massless free fermion
and anti-fermion states should be included in the intermediate states. From eq.(4.19), one
sees that the right hand side is nonzero and time-independent while the left hand side is
time dependent unless there is a stafethat satisfies

E, =0 for p,=0. (4.20)

Eq.(4.20) is just consistent with the dispersion relation of a massless boson.
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4.2.4 Momentum Zero State

However, one easily notices that the free massless fermion and anti-fermion pair can also
satisfy eq.(4.20). To be more specific, one can write the energy and momentum of the state
|n) as

E,=FE¢+ Ej, (4.21a)

Pn = Pf + Py, (4.21b)
wherep; (p7) andEy (E7) denote the momentum and energy of the fermion (anti-fermion),
respectively. For the free massless fermion and anti-fermion pair with

pr=0 and p;=0 (4.22a)

one obtains [41, 42, 43, 69]
Ey=0 and E;=0 (4.22b)

and therefore eq.(4.20) is indeed satisfied

Pn=pr+p;j=0=E,=E;+ E;=0.

Dispersion Relation of Massless Boson

From one information of eq.(4.20), one could derive the dispersion relation of a massless
boson if the state must be covariant

ETQL - p721 = (pn)upp, = 0.

The requirement of the covariance for the statemay be justified when the state is an
isolated system. However, it is difficult to show the covariance from only one information
on the zero momentum state which is just eq.(4.20) since the vacuum is always in the
momentum zero state.

On the other hand, the dispersion relation of a massless boson

E = |p|

contains information which should be valid for arbitrary momengurmtuitively, it is clear

that one cannot obtain the dispersion relation of a massless boson from only one information
which is atp = 0. Therefore, one sees that the Goldstone theorem proves the existence of
a free massless fermion and anti-fermion pair for the fermion field theory models, and this
is, of course, a natural statement. But there exists ho massless boson.
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4.2.5 PoleinS-matrix

In the spontaneous symmetry breaking, a massless pole if-thatrix calculations is
sometimes found, and they claim that the pole should be related to a massless boson (Gold-
stone boson). However, the-matrix in these calculations is evaluated in the trivial (per-
turbative) vacuum, and it has nothing to do with a physical massless boson. Furthermore,
one has to be careful that a pole in tBematrix may not have to correspond to a bound
state, and if one wishes to find a bound state pole, then one should calculate poles in exact
Green’s function in which the evaluation should be based on the symmetry broken vacuum
state. But this is just the same as solving the system exactly.

4.3 New Interpretation of Goldstone Theorem

Here, we present a new interpretation of the Goldstone theorem and clarify what is indeed
the physics of the spontaneous symmetry breaking in fermion field theory models. Since the
spontaneous symmetry breaking is connected with the structure of the vacuum, we should
understand the physical feature of the vacuum. However, most of the difficulties of the
field theory models are concentrated in the dynamical evaluation of the vacuum state, and
therefore, we should first treat the spontaneous symmetry breaking physics in terms of finite
number of freedoms. After that, we should examine whether the procedure can be justified
when the number of the freedom is set to infinity.

4.3.1 Eigenstate of Hamiltonian ands
Since the operataps; commutes with the Hamiltoniafl as discussed in eq.(4.14),
QsH = HQs
the Q5 has the same eigenstate as the HamiltonianA. If one defines the symmetry broken
vacuum stateQ2) by the eigenstate of the Hamiltonidh with its energy eigenvalué,

then one can write X
H|Q) = Eq|Q). (4.23)

In this case, one can also write the eigenvalue equation fapthe
Q5|9 = g5|Q) (4.24)

with its eigenvaluey;. These equations should hold for the exact eigenstates of the Hamil-
tonian.

Now, if one takes the expectation value of eq.(4.17) with the symmetry broken vacuum
|Q) which is the eigenstate of the Hamiltonian as weltas then one obtains for the left
hand side as

1 |Gs. [ dlamita) ] )
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= Qs [ st - ( [ st d3r) GO =0  (4.25)

with the help of eq.(4.24). This means that the right hand side of eq.(4.18) must vanish,
that is,

©] / Blay(z) driQ) = 0. (4.26)

Therefore, the exact eigenstate of the vacuum has no fermion condensate even in the sym-
metry broken vacuum. The relation of eq.(4.18) has repeatedly been used, and if there is a
finite fermion condensate, then the symmetry of the vacuum must be broken since the left
hand side of eq.(4.18) vanishes due to eq.(4.16a) for the symmetric vacuum state. However,
as seen above, the condensate must vanish even for the symmetry broken vacuum state if
the vacuum is the eigenstate of the Hamiltonian, which is a natural consequence.

4.3.2 Index of Symmetry Breaking

The way out of this dilemma is simple. One should not take the expectation value of the vac-
uum state. Instead, the index of the symmetry breaking in connection with the condensate
operator[ v (z)y(x) dz should be the following operator equation

([ s ér) o) =) + o, (a.27)
where|Q)’) denotes an operator-induced state which is orthogonal ti§xthe
Q) = 0.

(1 is related to the condensate value. For the exact eigenstate which breaks the chiral
symmetry, one finds

Cy=0. (4.28)
In this case, the identity equation of (4.17) can be applied to the|Statend one obtains
(@5~ a5) [ dlapsvle) die) = -28) (4.29)

with the help of eq.(4.24). Indeed, eq.(4.29) holds true for the exact eigenstate. It is now

clear that one should not take the expectation value of eq.(4.17) by the vacuum state. It just
gives a trivial equation of0” = “0”.

4.4 Chiral Symmetry in Quantized Thirring Model

In this section, we show explicitly how the chiral symmetry in the quantized Thirring model
Hamiltonian behaves in terms of the creation and annihilation operators.
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4.4.1 Lagrangian Density

The Lagrangian density of the Thirring model is written as

- 1 - -
L= W’ma“w - 5 gwmﬂﬁ w’Y’“/f (4'30)
which is invariant under the chiral transformation
Y = €5, (4.31)

Therefore, the chiral charge
Qs = /¢($)7075¢($) d’r
is a conserved quantity. In fact, it commutes with the Hamiltodian
[H,Qs) = 0.

4.4.2 Quantized Hamiltonian

The fieldsy is quantized as

%(SC)) 1 <an> iPn T : 2m

T) = :—E e’Pn®  with p, = —n, 4.32
v (wbm VL = \bn 7 (452
where the operators, andb,, should satisfy the anti-commutation relations

{ama;[n} = {bnabjn} = 5nm7 {amam} = {bmbm} = {anabm} =0.
In this case, the quantized Hamiltonian of the Thirring model becomes

H=>" [ n (aILan - bLbn) + %g (zl: a}aHn) (Z bfnbern)] . (4.33)

n

4.4.3 Chiral Transformation for Operators

The chiral transformation of eq.(4.31) is written in termsigfandb,, as

v ()t = (i) v (;) Ul<a>=<eefbfﬁ>- (434

In this case, one easily sees that the Hamiltonian is also invariant under the transformation
of eq.(4.34)

U()HU (o) =)

n

+2f" Ula) (Z al al+n> U a)U(a) (Z bgme) U—l(a)] =H.  (4.35)
l m

U (o) (aLan — bLbn> U ()
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4.4.4 Unitary Operator with Chiral Charge Qs
Now, the unitary operatdy («) can be explicitly written as
Ula) = e~0Qs, (4.36)

where the chiral charge operatQg is expressed in terms of the creation and annihilation
operators as

Qs = /@Z)(m)’yofyg)lb(x) dr = Z [aLan — bLbn} .

n

In this case, one can confirm the following identities

U(a) <ZZ> U_l(a) _ e—ia@5 (Zz) ez‘aQs - <:—iofbgn> ’ (4.37a)

T A T A —ia T
Gn —1 — —iaQs an iaQs — € an 4 b

which are just the same as eq.(4.34).

4.45 Symmetric and Symmetry Broken Vacuum

In the Thirring model, the Bethe ansatz solutions show that there are symmetric viiguum
and symmetry broken vacuuif?) states, and the energy of the symmetry broken vacuum is
found to be lower than the symmetric vacuum energy. They are the eigenstate of the chiral
chargeQs and one finds

Qs|0) =0, (4.38a)

Qs|Q) = £|Q). (4.38b)
Therefore, for the unitary operatbi{«) = e—m@, the symmetric vacuum does not change
U(a)]0) = e~@3|0) = |0) (4.39q)
while the symmetry broken vacuum becomes
U(a)|Q) = e 7% |Q) = e*|0) # Q) (4.30)

which indeed satisfies the criteria of the symmetry broken vacuum state in egs.(4.15).

4.5 Spontaneous Chiral Symmetry Breaking

There is one good example which perfectly satisfies the above requirements of the spon-
taneous chiral symmetry breaking and zero fermion condensate. That is the Bethe ansatz
vacuum of the massless Thirring model which will be discussed in detail in Chapter 7. Here,
we employ the results of the Bethe ansatz vacuum of the Thirring model and discuss the
vacuum and its properties in the context of the spontaneous symmetry breaking.
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4.5.1 Exact Vacuum of Thirring Model

Now, the left and right mover fermion creation operators can be denotefl, by, respec-
tively, and thus the vacuum stgte) can be written as

= Hazf HbT;\0>>, (4.40)
g

where|0)) denotes the null vacuum state with
akf\0>> = 0, bk;|0>> =0. (4.41)

The momentakf for left mover andk] for right mover should satisfy the periodic boundary
condition (PBC) equations which are solved analytically, and therefore one can determine
the momentakf andk;, as will be given in Chapter 7.

4.5.2 Condensate Operator

Now, the condensate operatpi)(z)i(z) dz can be written as

/ P(a)(x) de = (bhan + afbn). (4.42)

n

Therefore, €q.(4.27) becomes

/ B)p(@) dlQ) = 3 (Bhan + alba)|2)

n

Z{ 11 kabTerO +Hake [T ®lalio) } (4.43)

AT bk

Clearly, the right hand side of eq.(4.43) is different from the vacuum state of the Bethe
ansatz solution of eq.(4.40), and therefore denoting the right hand side of eq.(4/43),by
one obtains

/ b)) (@) dalQ) =Y (bhan + afib,)[Q) = |2). (4.44)
Obviously, the value of’; in eq.(4.27) is zero in the massless Thirring model, and indeed
this confirms eq.(4.29).

It is now clear and most important to note that one cannot learn the basic dynamics of
the symmetry breaking phenomena from the identity equation. If one wishes to study the
symmetry breaking physics in depth, then one has to solve the dynamics of the vacuum in
the field theory model properly even though it is extremely difficult to solve it exactly.
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4.6 Symmetry Breaking in Two Dimensions

In two dimensional field theory models, it is well known that there should not exist any
physical massless bosons because of the infra-red singularity of the propagator of the mass-
less boson. Therefore, if one assumes the Goldstone theorem, then one finds that there
should not occur any spontaneous symmetry breaking in two dimensional field theory mod-
els, which is known as Coleman’s theorem [22, 31, 91].

4.6.1 Fermion Field Theory in Two Dimensions

However, as we will see in the later chapters, the vacuum states of the massless Thirring
model as well as QCD in two dimensions prefer the symmetry broken vacuum states to-
gether with the current conservation. Therefore, the spontaneous symmetry breaking of the
vacuum indeed takes place in two dimensional field theory models of Thirring and.QCD

By now, this is not surprising since the Goldstone theorem does not hold in fermion field
theory models. On the contrary, the spontaneous symmetry breaking in these models are
consistent with the new picture of the symmetry breaking physics. As far as the spontaneous
symmetry breaking physics is concerned, the two dimensional field theory is not at all spe-
cial since there appears no massless boson after the symmetry is spontaneously broken in
the vacuum.

4.6.2 Boson Field Theory in Two Dimensions

The spontaneous symmetry breaking should not occur in boson field theory models in two
dimensions. This may be reasonable since the Goldstone theorem may hold for the boson
field theory models where a massless boson should appear. However, there should not exist
any physical massless boson in two dimensions, and therefore, the spontaneous symmetry
breaking should be forbidden in two dimensional boson field theory models.

4.7 Symmetry Breaking in Boson Fields

In the subsequent two sections, we stray from the main stream of the spontaneous sym-
metry breaking physics in fermion field theory models, and come to discussions of the
spontaneous symmetry breaking in boson field theory in four dimensions. In most of the
field theory textbooks, the discussion of this subject can be found, and therefore, we discuss
it briefly in this section.

4.7.1 Double Well Potential

Now, we discuss the spontaneous symmetry breaking in boson field theory models. This can
be found in any field theory textbooks, and therefore we only sketch a simple picture why
the massless boson appears in the spontaneous symmetry breaking. But it should be noted
that the treatment here is approximate, and there is still some unsolved problem left when
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one wishes to understand the spontaneous symmetry breaking in boson field theory models
in an exact fashion. The Hamiltonian density for complex boson fields can be written as

1
H=5(Vo) (Vo) +U (l9]). (4.45)
This has &/ (1) symmetry. However, the Hamiltonian density must be real, and therefore

theU (1) symmetry of the Hamiltonian density is a trivial constraint. Now, when one takes
the potential as a double well type

U (19]) = uo (Jo = )", (4.46)
whereuy and\ are constant, then the minimum of the potentidl|¢|) can be found at
()] = A

However, one must notice that this is a minimum of the potential, but not the minimum of
the total energy.

4.7.2 Change of Field Variables

The minimum of the total energy must be found together with the kinetic energy term. Now,
one rewrites the complex field as

(@) = (A + (@)l (4.47)

wheren is assumed to be much smaller than the

In(z)| < .

In this case, one can rewrite eq.(4.45) as

1

H =S [(VOVE + (V) (V)] + U(A+n(@)]) + - . (4.48)

O |

Here, one finds the massless bogomhich is associated with the degeneracy of the vac-
uum energy. The important point is that this infinite degeneracy of the potential vacuum is
converted into the massless boson degrees of freedom when the degeneracy of the potential
vacuum is resolved by the kinetic energy term.

This is the spontaneous symmetry breaking which is indeed found by Goldstone, and
he pointed out that there should appear a massless boson associated with the symmetry
breaking. The degeneracy of the potential vacuum is converted into a massless boson degree
of freedom. This looks plausible, and at least approximately there is nothing wrong with
this treatment of the spontaneous symmetry breaking phenomena in contrast to the fermion
field theory model. However, the treatment is still approximate, and one should confirm that
the terms neglected in eq.(4.48) may not cause any troubles. At least, one cannot claim that
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the massless boson which appears after the spontaneous symmetry breaking is an isolated
particle of the system. Also, the Goldstone theorem shows that there should be a boson
state as given in eq.(4.20)

E,=0 for p,=0

which is consistent with a massless boson. However, to be rigorous, one may still have to
prove that the state with the above constraint is an isolated system.

In this respect, it should be most important to solve the boson field theory model with
the double well potential in an exact fashion, and then one may learn the essence of the
symmetry breaking physics in the boson field theory in depth, and this is indeed a future
problem.

4.7.3 Current Density of Fields

In addition, the boson fieldsandn are real fields, and therefore the current dengjty:)
of the boson field§ andn must vanish as the classical field

€T t x
jn(e) =i (€10 25 - I e(0)) 0 since €1(0) = ela)

and the same equation holds for thdield as well. However, they diverge when they

are quantized as will be discussed in the Appendix C. Therefore, both of the fields cannot
propagate as a physical particle. In this sense, one may say that the model field theory of
eq.(4.45) is not realistic.

4.8 Breaking of Local Gauge Symmetry?

At present, all of the realistic field theory models have the local gauge symmetry. Quantum
electrodynamics (QED), quantum chromodynamics (QCD) and Weinberg-Salam model
have the local gauge invariance. The local gauge symmetry in QED and QCD should hold
rigorously, and this is just what we observe from experiments.

However, this local gauge invariance seems to be broken in the Higgs mechanism, and
therefore we should discuss the essence of the spontaneous symmetry breaking of the local
gauge invariance [67]. This concept is employed in the electro-weak theory by Weinberg-
Salam, and the&'U(2) ® U(1) gauge field model is quite successful in describing many
experimental observations.

4.8.1 Higgs Mechanism

The Lagrangian density of the complex scalar figld:) which interacts with thd/(1)
gauge field can be written as

1

L= 5 (D) (D"0) o (|6~ 2)° — | Fu P, (4.49)
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where
D, =0, +i9A,, F. =0,A,—0,A,..

Here, the same double well type potential as in eq.(4.46) is assumed for the complex scalar
field. Now, one rewrites the complex scalar field as

6(x) = (A +n(2)e 5, (4.50)

wheren(z) and{(z) denote new fields, and therefore one can obtain a new Lagrangian
density

1

£ =5 @um)(@n) = uo (A+nf* = 3)*
+392A2 A +iag Aﬂ+iaﬂg L (4.51)
2 Bgat g\ 4 ’ '

This Lagrangian density is still invariant under the following gauge transformation

Aly(z) = Ap(z) + dux (), &(x) = &(x) — gix(z),

wherex(z) is an arbitrary function of space and time.

4.8.2 Gauge Fixing

Now, one fixes the gauge such that
§(x) =0

which is calledunitary gauge This means that one takes the following gauge fixing

1
x(z) = 97 §(x).
In this case, the Lagrangian density of eq.(4.51) becomes

L= % @um)(0"n) —uo (A + 12 = \2)* + %gz)\QANA“ — ipﬂuFﬂ” +ooo . (4.52)
This new Lagrangian density shows that the gauge field becomes massive and the complex
scalar field has lost one degree of freedom and becomes a real scalag(figl&ince the

new Lagrangian density is obtained by fixing the gauge, it does not have a gauge freedom
any more. The peculiarity of this gauge fixing is that ffie) = 0 has nothing to do with

the redundancy of the gauge fielg, itself. In fact, this gauge fixing does not reduce the
number of freedoms of the gauge field. If all the physical observables can be reproduced by
this gauge fixing, then this gauge fixing can be justified [53].
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4.8.3 What Is Physics Behind Higgs Mechanism?

In the Higgs mechanism, the gauge field acquires the mass by the spontaneous symmetry
breaking of the Higgs fields. This is mainly because one takes the double well type potential
for a scalar field and the potential has a minimum at

()] = A

Therefore, the kinetic energy part of the Higgs field which couples with the gaugeifield
becomes a constant Therefore, this part has lost a coupling between the Higgs and the
gauge fields. However, this mass-term-like interactions should be still gauge invariant and
it cannot be considered as a mass term of the gauge field. The mass term of the gauge field
is obtained by fixing the gauge at the Lagrangian density level. Therefore, after fixing the
gauge, there is no gauge freedom any more in the Lagrangian density.

Normally, one fixes the gauge at the point where one calculates the physical observ-
ables. In terms of physics, the gauge fixing becomes necessary when one wishes to deter-
mine the gauge field solutions from the equations of motion. This is clear since the gauge
field has redundant variables at the level of solving the equations of motion. By fixing the
gauge, one can determine the gauge field, but of course physical observables should not
depend on the choice of the gauge fixing.

At the same time, one should be careful for the choice of the gauge fixing. There is
no guarantee that any kind of the gauge fixing can give the same physical observables. At
least, one should examine whether the gauge choice one takes can indeed reproduce the
right physical observables or not.

Here, thel’ (1) gauge field is discussed, but it is straightforward to extend it to the non-
abelian case. In the non-abelian gauge field theory, gauge fields themselves are not gauge
invariant, and therefore they cannot be a physical observable. However, after the sponta-
neous symmetry breaking of the complex scalar fields, the non-abelian gauge fields become
physical observables after the gauge fixing as Weinberg-Salam model shows. The physics
behind this statement is difficult to understand, and in this respect, the Higgs mechanism
should be understood more in depth in future.
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