Chapter 1

Classical Field Theory of
Fermions

The world of elementary particles is basically composed of fermions. Quarks, elec-
trons and neutrinos are all fermions. On the other hand, elementary bosons are all
gauge bosons, except Higgs particles though unknown at present. Therefore, if one
wishes to understand field theory, then it should be the best to first study fermion
field theory models.

In this chapter, we discuss the classical field theory in which ”classical field”
means that the field is not an operator but a c-number function. First, we treat the
Schrodinger field and its equation in terms of the non-relativistic field theory model.
In this case, the first quantization of [z;,p;] = ihd;; is already done since we start
from the Lagrangian density. In fact, the Lagrange equation leads to the Schrodinger
equation or in other words, the Lagrangian density is constructed such that the
Schrodinger equation can be derived from the Lagrange equation. The Dirac field is
then discussed in terms of the Lagrangian density and the Lagrange equation. We
also discuss the electromagnetic fields which interact with the Dirac field. The gauge
invariance will be repeatedly discussed in this textbook, and the first introduction is
given here. Finally, the field theory models with self-interacting fields are introduced
and their Lagrangian density as well as Hamiltonian are described.

In this textbook, the basic parts of elementary physics can be found in Appendix,
and in fact, Appendix is prepared such that it can be read in its own interests
independently from the main part of the textbook.

Throughout this book, we employ the natural units

c=1, h=1.

This is, of course, due to its simplicity, and one can easily recover the right dimension
of any physical quantities by making use of

hc =197 MeV - fm.
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1.1 Non-relativistic Fields

If one treats a classical field 9(r), it does not matter whether it is a relativistic
field or non-relativistic one. The kinematics becomes important when one solves
the equation of motion which is relativistic or non-relativistic. If the kinematics
is non-relativistic, then the equation of motion that governs the field ¢(r) is the
Schrodinger equation. Therefore, we should first study the Schrodinger field from
the point of view of the classical field theory.

1.1.1 Schrédinger Equation

Electron in classical mechanics is treated as a point particle whose equation of
motion is governed by the Newton equation. When electrons are trapped by atoms,
then their motions should be described by quantum mechanics. As long as electrons
move much slowly in comparison with the velocity of light ¢, the equation of their
motion is governed by the Schrodinger equation. The Schrodinger equation for
electron with its mass m in the external field U(r) can be written as

(i% + 5}7—1‘72 - U(r)) Y(r,t) =0 (1.1)

where U(r) is taken to be a real potential. ¥(r,t) corresponds to the electron field
in atoms, and |¢(r,)|? can be interpreted as a probability density of finding the
electron at (r,t).
Field ¥(r,t) is Complex
The Schrédinger field (r,t) should be a complex function, and the complex field
just corresponds to one particle state in the classical field theory. This is a well
known fact, but below we will see what may happen when we assume a priori that
the Schrodinger field v(r, ) should be a real function.
Real Field Condition is Unphysical
If one imposes the condition that the field ¥ (r,t) should be real

Y(r,t) = pl(r,2)

then, one sees immediately that the field ¥ (r,t) becomes time-independent since
eq.(1.1) and its complex conjugate equation give the following constraint for a real

field y¥(r,t) S0
r,t)
o - 0.

Also, the field 1(r) should satisfy the following equation

( 21 v2 4 U(r)) b(r) = 0.

m




1.1. NON-RELATIVISTIC FIELDS 3

Since the general solution of eq.(1.1) can be written as

P(r,t) = e *Flg(r)

the field 4(r,t) may become a real function only if the energy E of the system
vanishes. That is, the energy eigenvalue of E is

E=0.

Therefore, the real field cannot propagate and should be unphysical. This means
that the real field condition of ¥(r,t) is physically too strong as a constraint.

1.1.2 Lagrangian Density for Schrodinger Fields

The Lagrangian density which can produce eq.(1.1) is easily found as

it 1ot e
= S " Imowg oz YUY (1.2)
where the repeated indices of k¥ mean the summation of k = 1,2,3 and, in this text,
this notation as well as the vector representation are employed depending on the
situations. The repeated indices notation is mostly better for the calculation, but for
memorizing the expressions or equations, the vector notation has some advantage.
The Lagrangian density of eq.(1.2) is constructed such that the Lagrange equa-
tion can reproduce the Schrodinger equation of eq.(1.1). It may also be important
to note that the Lagrangian density of eq.(1.2) has a U(1) symmetry, that is, it is
invariant under the change of the field 9 as

Y()=€ePz) - L'=L

where @ is a real constant. This invariance is clearly satisfied, and it is related to the
conservation of vector current in terms of Noether’s theorem which will be treated
in the later chapters and in Appendix A.

Non-hermiticity of Lagrangian Density

At this point, we should discuss the non-hermiticity of the Lagrangian density. As
one notices, the Lagrangian density of eq.(1.2) is not hermitian, and therefore some
symmetry will be lost. One can build the Lagrangian density which is hermitian by
replacing the first term by

400 (i 0y oyt
Wa e 2a?)
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However, it is a difficult question whether the Lagrangian density must be hermitian
or not since it is not an observable. In addition, when one introduces the conjugate

fields
_ocC _oC
H'l, = T 'pf = —
) oyt
in accordance with the fields 1 and 9!, then the symmetry between them is lost.
However, the conjugate fields themselves are again not observables, and therefore
there is no reason that one should keep this symmetry. In any case, one can, of
course, work with the symmetric and hermitian Lagrangian density, but physical
observables are just the same as eq.(1.2). In this textbook, we employ eq.(1.2) since
it is simpler.

1.1.3 Lagrange Equation for Schrodinger Fields

The Lagrange equation for field theory can be obtained by the variational principle
of the action S
S = / Ldtd3r

and the Lagrange equation is derived in Appendix A. Since the field ¥ is a complex
field, ¥ and ¢! are treated as independent functional variables. The Lagrange
equation for the field v is given as

o _ 9oL 8 9L _ oL

%6 ~ 0oy | dmaZ) o9

(1.3a)

where the four dimensional derivative

P =(iiii)_(ﬁiﬁi)
= \O8zo’ 8z’ 8z3’ 8z3/) \Ot’ 9z’ Oy’ 0z

is introduced for convenience. Now, the following equations can be easily evaluated

oL _ .ot
Aoy Bt
9 oL 1 93!
oz 3(%1’:) T 2m Oz Oxp
aL
= = 3ty
50 ()

and therefore one obtains

(-i% + %vz - U(r)) Yi(r,t)=0

which is just the Schrodinger equation for %' in eq.(1.1).
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It should be interesting to calculate the Lagrange equation for the field AR

9 oL + d oL oL
Bt gyt 6zka(%'£) oyt

(1.3b)

In this case, one finds

20L _
Ot gyt
9 oL _ 1 8 oy
a.’l:k a(%‘:/:_t) - 2m 8:::,, 3:1:k
k
L 3y
a9t~ ot ~UY

and therefore one obtains

(i% + %W - U(r)) B t) =0
which is just the same equation as eq.(1.1).

Here, we note that the Lagrangian density is not a physical observable and
therefore it does not necessarily have to be determined uniquely. It is by now clear
that the Lagrangian density eq.(1.2) reproduces a desired Schroédinger equation and
thus can be taken as the right Lagrangian density for Schrodinger fields.

1.1.4 Hamiltonian Density for Schrédinger Fields

From the Lagrangian density, one can build the Hamiltonian density H which is the
energy density of the field 1(r,t). The Hamiltonian density H is best constructed
from the energy momentum tensor 7+

oL oL
w = 9% o
T = 50.0° ¥t 50,90

which will be derived in eq.(2.32) in chapter 2. The energy momentum tensor 7+*”
satisfies the following equation of conservation law

F Pt — Lg*

due to the invariance of the Lagrangian density under the translation. Therefore,
the conserved charge associated with the 7%

= /To"dsr

should be a conserved quantity. Thus, it is natural that one defines the Hamiltonian
in terms of the Q°.
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Hamiltonian Density from Energy Momentum Tensor

The Hamiltonian density H is defined as

L. OC .
H=T" = a—.'n/z + —Ppt - L. (1.4a)
- oyt
Therefore, introducing the conjugate fields II,, and IL;; by
H,/,Ea—L.::’i’l/)f, H,‘p E—a—€—=
g ot

one can write the Hamiltonian density as

. . 1

H=Tyy+ Myt — L= %wﬁ -V + iU (1.4b)

1.1.5 Hamiltonian for Schrodinger Fields

The Hamiltonian for the Schrodinger field is obtained by integrating the Hamiltonian
density over all space

H= / Hdr = / [%v«pf U+ ¢fv¢] &r. (1.4¢)

By employing the Gauss theorem
[ v-wveer= [ @'Vasas,
14

one can rewrite eq.(1.4c)

H= / [—%WV% + ¢*U¢] &r (1.4d)
where the following identity is employed
V- ('Vy) = Vyl . vy + 91V

In addition, the surface integral term is neglected since it should vanish at the surface
of sphere at infinity.

Now, it may be interesting to note that the Hamiltonian in eq.(1.4d) by itself does
not give us much information on the dynamics. As long as we stay in the classical
field theory, then the dynamics can be obtained from the equation of motion, that
is, the Schrodinger equation. The static Schrédinger equation can be derived from
the variational principle of the Hamiltonian with respect to v, and this treatment
is given in Appendix A.

The Hamiltonian of eq.(1.4c) becomes important when the field 9 is quan-
tized, that is, the fluctuation of the field ¢ is taken into account. In this case,
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the Schrodinger field becomes an operator and therefore the Hamiltonian as well.
This means that one has to prepare the Fock state on which the Hamiltonian can
operate, and if one solves the eigenvalue equation for the Hamiltonian, then one can
obtain the energy eigenvalue of the Hamiltonian corresponding to the Fock state.

However, the quantization of the Schrédinger field is not needed in the normal
circumstances. The field quantization is necessary for the relativistic fields which
contain negative energy solutions, and it becomes important when one wishes to
treat the quantum fluctuation of the fields which corresponds to the creation and
annihilation of particles.

1.1.6 Conservation of Vector Current

From the Schrédinger equation, one can derive the current conservation

dp .
E-*-V'J_O

where p and j are defined as

p=9t, =5 (Ve - 91Vy].

This continuity equation of the vector current can also be derived as Noether’s
theorem from the Lagrangian density of eq.(1.2) which is invariant under the global
gauge transformation

'¢' = eia¢.

As treated in Appendix A, the Noether current is written as

3 ac oL

o ol — t . 4 .
7= 1 a(aﬂﬂp)‘l) 3(3,,1,“)1/) ’ WIth Jl‘ - (p7.1)

which just gives the above current density p and j when one employs the Lagrangian
density of eq.(1.2).

It may be interesting to observe that the Lagrange equation, energy momentum
tensor and the current conservation are all written in a relativistically covariant
fashion when the properties of the Schrodinger field are derived. That is, apart from
the shape of the Lagrangian density of the Schrédinger field, all the treatments are
just the same as the relativistic description.



