Appendix B

Non-relativistic Quantum
Mechanics

The quantization has two kinds of the procedure, the first quantization and the
second quantization. By the first quantization, we mean that the coordinate r and
the momentum p of a point particle do not commute with each other. That is,

[il:,',pj] = ih&i,-.

In terms of this quantization procedure, we can obtain the Schrodinger equation
by requiring that the particle Hamiltonian should be an operator and therefore the
state 1 should be introduced.

There is another quantization procedure, the second quantization, which is the
quantization of fields. From the experimental observations of creations and annihila-
tions of particle pairs or photons, one needs to quantize fields. The field quantization
is closely connected to the relativistic field equations which inevitably includes anti-
particle states (negative energy states in fermion field case). In this respect, one
does not have to quantize the Schrodinger field in the non-relativistic quantum me-
chanics. Therefore, we discuss only the first quantization procedure and problems
related to the quantization.

B.1 Procedure of First Quantization

In the standard procedure of the first quantization, the energy £ and momentum p
are regarded as operators, and the simplest expressions of E and p are given as

E- igt—, p— —iV. (B.1.1)
For a free point particle with its mass m, the dispersion relation can be written as
2
D
E=—. B.1.2
o (B-1.2)
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If one employs the quantization procedure of eq.(B.1.1), then one should prepare
some state which receives the operation of eq.(B.1.1). This state is called wave
function and is often denoted as v(r,t). In this case, eq.(B.1.2) becomes

1

5 VZy(r,t) (B.1.3)

(1) =
which is the Schrodinger equation.

New Picture of First Quantization

At a glance, one may feel that the procedure of eqs.(B.1.1) and (B.1.2) are more
fundamental than eq.(B.1.3) itself. However, this is not so trivial. If one looks
into the Maxwell equation, then one realizes that the Maxwell equation is already a
quantized equation for classical electromagnetic fields. In this respect, the Maxwell
equation does not have any corresponding classical equation of motions like the
Newton equation. In this sense, eq.(B.1.3) can be regarded as a fundamental equa-
tion for quantum mechanics as well, even though one can derive eq.(B.1.3) from
egs.(B.1.1) and (B.1.2).

In fact, in Appendix H, we treat the derivation of the Dirac equation from the
Maxwell equation and the local gauge invariance, and there we see that the first
quantization of eq.(B.1.1) is not needed and therefore it is not the fundamental
principle any more. Instead, the Schrédinger equation is obtained from the non-
relativistic reduction of the Dirac equation. In this respect, the derivation of the
Schrodinger equation does not involve the first quantization.
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B.2 Mystery of Quantization or Hermiticity Problem ?

Here, we present a problem related to the quantization in box with the periodic
boundary conditions. We restrict ourselves to the one dimensional case, but the
result is easily generalized to three dimensions.

B.2.1 Free Particle in Box

By denoting the wave function as
¥(z) = e Pu(z)
the static Schrodinger equation without interactions is written

1 %u(zx)

5 e Eu(z). (B-2.1)
The solution can be obtained as
— 1 ikx L —ikz} : — k?
u(z) = {ﬁe , \/Ze , with E= % (B.2.2)

where one puts the particle into a box with its length L. Now, one requires that the
wave function u(z) should satisfy the periodic boundary conditions and should be
the eigenstate of the momentum. In this case, one has

ﬁuk(a:) =kuk(a:), k= —— n=0,%1,---.

Therefore, one can write the eigenstate wave function as

1 s 4XN
uy(z) = —e'z_lf”, n=0,%1,---.

vL

B.2.2 Hermiticity Problem

Now, the quantization relation is written
pr—zp=—1i (B.2.3)

and one takes the expectation value of the quantization relation with the wave
function u,(z) and obtains

(unlpz — Tpltm) = —idum. (B.2.4)

If one makes use of the hermiticity of p, then one obtains

(n— m)%(unlzlum) = —10pm- (B.2.5)
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However, the above equation does not hold for n = m since the left hand side is
zero while the right hand side is —i.

What is wrong with the calculation ? The answer is simple, and one should not
make use of the hermiticity of the momentum p because the surface term at the
boundary does not vanish for the periodic boundary condition. In fact, in the above
evaluation, the surface term just gives the missing constant of — for n = m. In
other words, one can easily show the following equation

(un|pzlun) = —i + (Pun|z|un). (B.2.6)

It should be noted that the hermiticity of the momentum in the following sense is
valid

(un|plum) = (Pun|um). (B.2.7)
From this exercise, one learns that the quantization condition of eq.(B.2.3) should
be all right, but the hermiticity of the momentum operator cannot necessarily be
justified as long as one employs the periodic boundary conditions for the wave
functions. Also, the periodic boundary conditions must be physically acceptable.
Therefore, one should be careful for treating the momentum operator and it should
be operated always on the right hand side as it is originally meant. In this case, one
does not make any mistakes.

This argument must be valid even for a very large L as long as one keeps the
periodic boundary conditions. This may look slightly odd, but the free particle
should be present anywhere in the physical space, and therefore one should give
up the vanishing of the surface term in the plane wave case. The criteria of right
physics must be given from the observation that physical observables should not
depend on L. In other words, one should take the value of L much larger than any
other scales in the model, and this is called thermodynamic limit. In order to obtain
any physical observables, one should always take the thermodynamic limit.
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B.3 Schrodinger Fields
The Schrédinger equation with a potential U(r) is written as

iaigz - ( Loz, U(r)) b(r 1), (B.3.1)

“2m

From this equation, one can derive the vector current conservation

ap .
E-}-V']——O (B.3.2)

where p and j are defined as
.1
p=¥', i=-5—(4'Ve-(Veh). (B33)

B.3.1 Currents of Bound State

Now, it is interesting to observe how the currents from this Schrodinger field behave
in the realistic physical situations. Since the time dependence of the Schrodinger
field v is factorized as

Y(r,t) = e"*Flu(r)

the basic properties of the field are represented by the field u(r). When the field
u(r) represents a bound state, then u(r) becomes a real field. In this case, the
current density j vanishes to zero,

j= —% (u(r)Vu(r) — (Vu(r))u(r)) = 0. (B.3.4)

On the other hand, the probability density of p = |u(r)|? is always time-independent,
and since the bound state wave function is confined within a limited area of space,
the p is also limited within some area of space.

B.3.2 Free Fields (Static)

When there is no potential, that is
U(r)=0

then the field can be described as a free particle solution. This solution is obtained
when the theory is put into a box with its volume V,

1 . . .
1/}(1,, t) — _e—zEte:k-r e—zEte—-tk-r (B35)

1
) '\/—‘7‘
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where E is the energy of the particle and k denotes a quantum number which should
correspond to the momentum of a particle. In this case, the probability density is
finite and constant

1
== B.3.6
P=v (B-3.6)
while the current j is also a constant and can be written as
k
= — B.3.
1= (B.3.7)

which just corresponds to the velocity of a particle.

Real Field Condition

It is important to note that the Schrédinger field 1 should be a complex function.
If one imposes the condition that the field should be real,

¥(r,t) = 9'(r,1)
then one obtains from the Schrédinger equation eq.(B.1.3)

H(r,t) _
85 0.

Therefore, the Schrodinger field 3 should be time independent. In this case, one
sees immediately that the energy E must be zero since

(_EIEV2 + U(r)) Y(r,t) =0.
Therefore, the real field condition of 9 is too strong and it should not be imposed
before solving the Schrodinger equation. This concept should always hold in the
Schrodinger field, and therefore it is most likely true that the same concept should
hold for relativistic boson fields as well. However, this statement may not be justified
if the Klein-Gordon field should not have any correspondence with the Schrodinger
field in the non-relativistic limit.

B.3.3 Degree of Freedom of Schrodinger Field

The Schrodinger field is a complex field. However, the Schrodinger field ¢ itself
should correspond to one particle. It is clear that one cannot make the following
separation of the field into real and imaginary parts

P(r,t) = p(r, 1)t (B.3.8)

and claim that p(r,t) and £(r,t) describe two independent fields (particles). When
9 is a complex field, it has right properties as a field, and the current density of the
1) field has a finite value.
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B.4 Hydrogen-like Atoms
When the potential U(r) is a Coulomb type,

Ze?

U(r)=-= (BA4.1)

then the Schrodinger equation can be solved exactly and the Schrodinger field
together with the energy eigenvalue E can be obtained as

Y(r) = Rae(r)Yem (0, ¢) (B-4.2)
mZ2et m [ Z\?
En= =T =5 (37) (B43)
where R;¢(r) and Yz, denote the radial wave function and the spherical harmonics,
respectively. The principal quantum number n runs as n = 1,2,---,00, and £ runs

as £=0,1,2,---, 00, satisfying the condition
£<n-1 (B-4.4)

It should be worth writing the explicit shape of the wave functions for a few lowest
states of 1s, 2p and 2s with the Bohr radius ap = —1—

me?
3
1s —state: Rys(r) = (é) ’ 2e_°z_<; Yo0(0, p) = 1
. s - ’ ’ - T
a Viar
3
2 Zr
2p —state: Ryp(r) = (%) ’ \/ZEZO e 20

' .
Yis(0,0) =~/ e sin 6™
3
Y10(6, ) =/ 4~ cos8
Y1-1(0 )—‘/isinOe—""’
| 11-1l, ) = 87

A

3
2s—state: Rgs(r) = 375 (—) ? (2 - ﬁ) 6_2?'0, Yoo(0, p) = —1‘*
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B.5 Harmonic Oscillator Potential
The harmonic oscillator potential U(x)

U(z) = %mwz:r2
is a very special potential which is often used in quantum mechanics exercise prob-
lems since the Schrodinger equation with the harmonic oscillator potential can be
solved exactly. However, the harmonic oscillator potential is not realistic since it
does not have a free field-like solution. The Schrodinger field in the harmonic oscil-
lator potential is always confined and there is no scattering state solution.
Nevertheless, it should be worth writing solutions of the Schrodinger field ¢ with
its mass m in the one dimensional harmonic oscillator potential. The Schrédinger
equation can be written as

" 2m 812

( 1 &, %mw2:c2) #(z) = Ev(z). (B.5.1)

In this case, the solution of the Schrodinger field ¢ together with the energy eigen-
value E can be obtained as

1
a? ‘ _1,2.2
Pn(z) = (W) H,(az)e 2** (B.5.2a)
1
E,,=w(n+§), n=0,1,2-.- (B.5.2b)
where « is given as
a = +v/muw. (B.5.3)
H,,(¢) denotes the hermite polynomial and is given as
2 d" _gp2
H, () = (-)"¢t &Zn° ¢

since Hy(£) can be expressed in terms of the generating function as

(e o]
1
S ETa R WP VDR
!
Some of them are given below

Ho®) =1, H(E)=2%  H(=4"-2 (B.5.4a)

Ha(¢) = 8¢3 — 12¢, Hy(€) = 16¢* — 4862 + 12. (B.5.4b)
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B.5.1 Creation and Annihilation Operators

The Hamiltonian of the one dimensional harmonic oscillator potential
A=L2 4 -l-nw2x2 (B.5.5)

can be rewritten in terms of creation a! and annihilation a operators

S P TP [ R B56
@ =TT P 2 * Y omat (B-5.6)

~

1
H=w (a"a + 5) . (B.5.7)
a! and a satisfies the following commutation relation
[a,al] =1 (B.5.8)

because of the definition of a' and a in eq.(B.5.6).

Number Operator N

By introducing the number operator N as

~

N =ale (B.5.9)

one finds A R
[N,a] = —a, [N,al]=al. (B.5.10)

With the eigenstate |¢,) of the number operator N and its eigenvalue n

ﬁl‘ﬁn) = 1|¢n) (B.5.11)

one can easily prove the following equations

atl¢n) =vn+ 1|¢n+1), a|¢n) = \/ﬁ|¢n—1)- (B.5.12)

This indicates that a! operator increases the quantum number n by one unit while a
decreases it in the same way. Therefore, at and a are called creation and annihilation
operators, respectively. In addition, one can evaluate the expectation value of the
number operator N with the state |¢,) as

n = (¢alalalgn) = [laga|* >0

which shows that the n must be a non-negative value. Therefore, one finds from
eq.(B.5.12)
algo) = 0. (B.5.13)
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Therefore, one sees that the smallest value of n is n = 0. This leads to the constraint

for n as-
n=0,1,2---. (B.5.14)

Operating the Hamiltonian H on |¢,), one finds

Algn) = (W +3) o) = (n+ ) 160) = Baldh). (B.5.15)

Thus, the energy E, can be written as

1
En=w(n+5), n=0,1,2---

which agrees with the result given in eq.(B.5.2). The state |¢,) can be easily con-
structed by operating a' operator onto the |¢g)

1
= B.5.16
It should be noted that the state |¢,) is specified by the quantum number n. If one

wishes to obtain an explicit expression of the wave function, then one should project
the state |¢,) onto the |z} or |p) representation as given below.

Explicit Wave Function in z-representation

The wave function v, (z) = (z|¢,) in the z—representation can be obtained in the
following way. First, one solves the differential equation from eq.(B.5.13)

mw

(zlalz) (zl o) = ( \/__ - )1/)0(:1:) (B.5.17)
which leads to the ground state wave function
1
a2 1 1.2,2
Po(x) = — e 2% with a=vnw. (B.5.18)
From eq.(B.5.16), one obtains the wave function for an arbitrary state vy (z)

ale) = (ol (of)" I} eldo) = ( ) (- A2 et

which can be shown to be just identical to eq.(B.5.2a).




