Appendix D

Relativistic Quantum
Mechanics of Fermions

Electron has a spin and its magnitude is 1/2. The relativistic equation of eq.(C.1.2)
has only one component of the field ¢, and therefore it cannot describe the spin one
half particle such as electron. Therefore, one has to consider some other equations
for electron, and this equation is discovered by Dirac as we describe below.

D.1 Derivation of Dirac Equation

The procedure of obtaining Dirac equation is rather simple. One starts from eq.(C.1.1)
and tries to factorize it into a linear equation for £ and p. This can be realized as

E2—p’ - m?=(E-p-a-mB)(E+p-a+mP)=0 (D.1.1)

where @ and 8 are four by four matrices, and they satisfy the following anti-
commutation relations '

{ai,a;} =265, {a;,8} =0, g:=1

where ¢ and j run ,j = z,y, 2. Some of the representations'are given in Appendix
A.6. The relativistic quantum mechanical equation for a free electron discovered by
Dirac is given as

(i%+iv-a—mﬂ> $=0 (D.12)

where 1 denotes the wave function and should have four components since a and
[ are four by four matrices,
¥

_ | ¥
b=l (D.1.3)
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In the four components of the wave function, two of them correspond to the spin
degrees of freedom and the other two components represent the positive and negative
energy states. The static Dirac equation becomes

(~iV - a+mp) ¥ = Ep. (D.1.4)

If the energy eigenvalue contains the negative energy states, which is indeed the case,
then the negative energy states must be physical, in contrast to the boson case. For
fermions, the negative energy states play a very important role in quantum field
theory.

D.2 Negative Energy States

The negative energy states in the Dirac equation are essential for describing the
vacuum of quantum field theory, and Dirac interpreted that the vacuum of quantum
field theory must be occupied completely by the negative energy states. Because of
the Pauli principle, the vacuum is stable as long as the states are full. If one creates
a hole in the vacuum, then this corresponds to a new particle with the same mass
of the particle which one considers. This can be easily seen since, from the vacuum

energy
E, = —Z Vp%+m2
n

one extracts the state ng which is one hole state
Elhole — _ E \VP3 +m2
n#ng

Therefore one obtains a hole state energy

Eh = E%hole —-E, = /pglo +m?2 (D.2.1)

which means that the hole state has the same mass as the original fermion. Further,
if the fermion has a charge e, then the hole state must have an opposite charge
which can be seen in the same way as the energy case.

hole charge ej = ( z e— Ze) =—e . (D.2.2)

n#ng n
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D.3 Hydrogen Atom

The Dirac equation is most successful for describing the spectrum of hydrogen atom.
One writes the Dirac equation for the hydrogen-like atoms as

(—iV ca+mf - Z_:f) P =FEy (D.3.1)

where Z denotes the charge of nucleus. Before presenting the solution of the above
equation, we should make some comments on this equation. It is of course clear
that there is no system which is composed of one electron, except a free electron
state. Therefore, even though eq.(D.3.1) shows a simple one body problem for
an electron with the potential which is measured from the coordinate center, the
realistic problem must be at least two body problem, a system composed of electron
and proton. In addition, there must be some contributions from photons and virtual
pairs of electron and positron in the intermediate states. If one wishes to discuss the
problem of hydrogen atom in the field theoretical treatment, it becomes extremely
difficult. This is clear since, in this case, one has to evaluate the system as a many
body problem. Even a reliable treatment of the center of mass effects is a non-trivial
issue if one starts from the Dirac equation.

D.3.1 Conserved Quantities

The Dirac Hamiltonian for electron in hydrogen atom is written as

H=-iV-a+mp- Z—:i. (D.3.2)

Now, one defines the total angular momentum J and an operator K by
J=L+ %E (D.3.3a)
K=p(X2-L+1) (D.3.3b)

where X is extended to 4 x 4 matrix of & and is defined as

== (5 2):

In this case, it is easy to prove that J and K commute with the Hamiltonian H

[H,J]=0, [H,K]=0. (D.3.4)

Therefore, the energy eigenvalues can be specified by the eigenvalues of J 2 and K
T4, = 30 + D, (D.3.50)

K55, = 6¥55,, (D.3.5b)

where k takes values according to

n=:F(j+-;—) for j=£:t%. (D.3.6)
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D.3.2 Energy Spectrum

In this case, the energy eigenvalue of the Dirac Hamiltonian in hydrogen atom is
given as

yA 2
Enj=m|1- — ( _"‘)1 — (D.3.7)
n2+2(n— (G +$) [ +$)? - (Z)? - (G +5)]
where a denotes the fine structure constant and is given as
wo L
SE
The quantum number n runs as n = 1,2--.. The energy F, ; can be expanded to
order ot
_ m(Za)? m(Za)* n 3 6
Enj—m=-——3 R e +0((Ze)®). (D.3.8)

The first term in the energy eigenvalue is the familiar energy spectrum of the hy-
drogen atom in the non-relativistic quantum mechanics.

D.3.3 Ground State Wave Function (ls% — state)

It may be worth to write the Dirac wave function of the lowest state in a hydrogen-
like atom. We denote the ground state wave function by

1/’(%:3' (r) for 1s 1 — state

since Kk = —1 and s = % The energy eigenvalue Fj, 3 is simply written as

El_,% = m\/l - (Za)2.

The ground state wave function is explicitly given as

- (-1) .
’d)(%,r:z). (r) = (_ia'-f. ,».g((fz) (7‘)) %—4‘;‘ (D.3.9)

where x;n, denotes the two component spinor and is given as

=) xa=()

¥ is defined as

e )
il
] _| -
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The radial wave functions f(~1(r) and g{~1)(r) can be analytically written

-
fE(r) = NpV 1-(201)’67 (D.3.10a)

=D(r) = —Zay e’ e(\/1—"m)~2—1)—201
gN(r) = NpV1-(Za) _ [ A it e D100

where p and ¢ are defined as

p= mz-Ef_,i r=Zar

m - By 1 = (Za)

N is a normalization constant and should be determined from

[ (2 + (10 e =1.
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D.4 Lamb Shifts

The important consequence of the Dirac equation in hydrogen atom is that the
energy eigenvalues are specified by the total angular momentum j apart from the
principal quantum number n, and indeed this is consistent with experimental ob-
servations.

There is one important deviation of the experiment from the Dirac prediction,
that is, the degeneracy of 2p1 —state and 231 —state is resolved. The 2p1 —state
is lower than the 231 —state m hydrogen atom This splitting is orlgmated from
the second order effect of the vector field A which affects only on the 23% —state.
Intuitively, the second order effects must be always attractive. However, in the
calculation of the Lamb shift, one has to consider the renormalization of the mass
term, and due to this renormalization effect, the second order contribution of the
vector field A becomes repulsive, and therefore the 2s 1 —state becomes higher than

the 2p 1 —state.

D.4.1 Quantized Vector Field

Here, we briefly explain how to evaluate the Lamb shift in the non-relativistic kine-
matics. In this calculation, the quantized electromagnetic field A should be em-
ployed ‘

A 1 —ik t jikz
T) = zk:;::l me(k,)\) [ck,,\e it BV ] (D.4.1)

where cg ) and cL ,, denote the creation and annihilation operators which satisfy the
following commutation relations

[Chens CL,,\:] = Ok, k02 N
and all other commutation relations vanish.

D.4.2 Non-relativistic Hamiltonian

We start from the Hamiltonian for electron in the hydrogen atom with the electro-
magnetic interaction

H=P 2 _ €54 (D.4.2)

where the A? term is ignored in the Hamiltonian.
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D.4.3 Second Order Perturbation Energy

Now, the second order perturbation energy due to the electromagnetic interaction
for a free electron state can be written as

__ e\’ 1 [p'le(k,) - plp)?
0E = ;Zk:g(mo) 2Vwr Ey+k-Ep (D-4.3)

where |p) and |p’) denote the free electron state with its momentum. Since the
photon energy (wx = k) is much larger than the energy difference of the electron
states (Ep — Ep)

|Ey — Ep| << k (D.4.4)
one obtains
1 e\? ,
$E = —5A E) p (D.4.5)

where A is the cutoff momentum of photon. This divergence is proportional to the
cutoff A which is not the logarithmic divergence. However, this is essentially due to
the non-relativistic treatment, and if one carries out the relativistic calculation of
quantum field theory, then the divergence becomes logarithmic.

D.4.4 Mass Renormalization and New Hamiltonian
Defining the effective mass ém as

om = éiAe2 (D.4.6)

the free energy of electron can be written as

2 2

2
P L om ~ P

Br = 2mg 2m3 2(mg + ém)

(D.4.7)

where one should keep only the term up to order of e? because of the perturbative
expansion. Now, one defines the renormalized (physical) electron mass m by

m = mgp + om (D.4.8)

and rewrites the Hamiltonian H in terms of the renormalized electron mass m
e . 2
= - — 4 ——0m - —p- A. (D-4.9)
m m

Here, the third term ( %;6m ) corresponds to the counter term which cancels out
the second order perturbation energy [eq.(D.4.3)].
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D.4.5 Lamb Shift Energy

Using eq.(D.4.3), one can calculate the second order perturbation energy due to the
electromagnetic interaction for the 2s; /5 electron state in hydrogen atom

1 e\2 R
AEy,, = E‘EA (E) (251/219°]231/2)

2 nf|e(k, A) - p|2 2
Xk ont \T 2V En,t +k- E2sl/2

where the first term comes from the counter term. This energy can be rewritten as

1 € 2 N A En,g - Eg,
ABy), = g3 (E) th |(n, €}$|2s12)I? /0 e E o E‘;:m (DA.11)
n,

where the following identity equation is employed

3" (n, €1p|2s1/2) 7 = (2517219281 /2)- (D.4.12)

n,t

Further, neglecting the dependence of E,, in the energy denominator because of
eq.(D.4.4), one can carry out the summation of 3°,, , in eq.(D.4.11) as

- 1 IR
> Kn, 01p|2512) P (Bt — E2s,)5) = 5(231/2| [[P, Ho],p] 1251/2)
n,t
= 2nZe?(251/2|6(r)|231/2) (D.4.13)
where Hj is the unperturbed Hamiltonian of hydrogen atom
ﬁ2 Ze2

Hy=2 2",
0 2m r

Choosing the value of the cutoff A as
A~m
one obtains the energy shift for the 2s;/, electron state
AEy,,,, ~ 1040 MHz
which is close to a right Lamb shift for the 2s,, state
Angf’n =1057.862 +0.020 MHz.

It should be noted that there is no energy shift for the 2p, /, state.




