Appendix E

Maxwell Equation and Gauge
Transformation

Fundamental equations for electromagnetic fields are the Maxwell equation, and
they are written for the electric field E and magnetic field B as

V-E=p (E.0.1)
V-B=0 (E.0.2)
oB
VxE=-—- (E.0.3)
., OFE
VXB—J+W (E04)

where p and j denote the charge and current densities, respectively. These are al-
ready equations for the fields and therefore they are quantum mechanical equations.
In this respect, it is important to realize that the first quantization procedure (
[z, pi] = ihd;; ) is already done in the Maxwell equation.

E.1 Gauge Invariance

The Maxwell equation is written in terms of E and B. Now, if one introduces the

vector potential A as
B=VxA (E.1.1)

then eq.(E.0.2) can be always satisfied since
V- B=V-VxA=VxV-A=0.
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Therefore, one often employs the vector potential in order to solve the Maxwell
equation. However, one notices in this case that the number of the degrees of
freedom is still 3, that is, Az, Ay, A, in spite of the fact that we made use of one
equation [eq.(E.0.2)]. This means that there must be a redundancy in the vector
potential. This is the gauge freedom, that is, if one transforms

A=A"+Vx (E.1.2a)
then the magnetic field B does not depend on x
B=VxA=VxA +VxVx=VxA

where Y is an arbitrary function that depends on (r,t). Now, Faraday’s law [eq.(£.0.3)]
can be rewritten by using the vector potential,

0A
— ] =0. E.1.
V x (E + g ) 0 (E.1.3)
This means that one can write the electric field E as
0A
E=-— - .1.4
VA - — (E.1.4)

where Ag is an arbitrary function of (r,t) and is called electrostatic potential. Since
E in eq.(F.1.4) must be invariant under the gauge transformation of eq.(E.1.2a), it
suggests that Ag should be transformed under the gauge transformation as

Ix

— Al A )
Ap = o (E.1.2b)

In this case, the electric field is invariant under the gauge transformation of eqs.(E.1.2)

dA d d dA'
E=—VA0—E—=—V(A{,——6—):)—a(A'+Vx)=—VA§,— o

and eq.(E.1.4) can automatically reproduce Faraday’s law since

JA oB
VXE—-VXVAO_VXW——W-
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E.2 Derivation of Lorenz Force in Classical Mechanics

The interaction of electrons with the electromagnetic forces in nonrelativistic kine-
matics can be determined from the gauge invariance. This is remarkable and there-
fore we explain the derivation below since it is indeed interesting to learn the basic
mechanism of the interaction. First, one starts from a free electron Lagrangian in
classical mechanics

L= %mﬂ. (E.2.1)

When one wishes to add any interaction of electron with A and Ag to the above
Lagrangian, one sees that the Lagrangian must be linear functions of A and Ao.
This is clear since the Lagrangian must be gauge invariant under egs.(E.1.2). From
the parity and time reversal invariance, one can write down the new Lagrangian

L= %mﬁ +g(F- A — Ag) (E.2.2)

where g is a constant which cannot be determined from the gauge condition. When
one makes the gauge transformation

A=A +Vy, Ag=4p-X
ot
one obtains
1 . . ! ' dx
L= gmi + g(r- A" — Ap) + 95 (E.2.3)

Since the total derivative in the Lagrangian does not have any effects on the equation
of motion, eq.(E.2.2) is invariant under the gauge transformation. It is amazing that
the shape of the Lagrangian for electrons interacting with the electromagnetic fields
is determined from the gauge invariance.

It is now easy to calculate the equation of motion for electron,

mr =gr x B+gE (E.2.4)

where the first term in the right hand side corresponds to the Lorenz force.
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E.3 Number of Independent Functional Variables

The Maxwell equations are described in terms of the electric field E and the magnetic
field B. Once the charge density p and the current density j are given, then one
can determine the fields E, B. It should be important to count the number of the
unknown functional variables and the number of equations.

E.3.1 Electric and Magnetic fields £ and B

In terms of the electric field E and the magnetic field B, it is easy to count the
number of the functional variables. The number is six since one has

E;, Ey, E,, B;, By, B,. (E3.1)

On the other hand, the number of equations looks eight since the Gauss law [eq.(E.0.1)]
and no magnetic monopole [eq.(E.0.2)] give two equations, and Faraday’s law [eq.(E.0.3)]
and Ampere’s law [eq.(E.0.4)] seem to have six equations. However, Faraday’s law
gives only two equations since there is one constraint because

(V- B) _

5 0 (E.3.2)

VxE+%=O - V-(VxE+%> =VxV-E+

In addition, Ampere’s law has two equations since there is one constraint due to the
continuity equation because

. OE . OE\ _ . Op _
VxB-j3- 5 =0 » V (VxB 7 at)—VxV B-V-j3 ?t—O).
' E33

Therefore, the number of the Maxwell equations is six which agrees with the number
of the independent functional variables as expected.

Integrated Gauss’s Law

In the electro-static exercise problems, one often employs the integrated Gauss law

/SE-dS=/VV-Ed3r=/Vpd3r=Q. (E.3.4)

For the spherical charge distribution of p, for example, one can determine the electric
field E, in spite of the fact that one has employed only one equation of the Gauss
law. This is of course clear because the symmetry makes it possible to adjust the
number of the independent functional variable E, which is one and the number of
equation which is also one.
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E.3.2 Vector Field A, and Gauge Freedom
When one introduces the vector field A, as

0A

B=VXxA, E=-VA) - ¥ (E.3.5)
then the number of the independent fields is four since
Ao, Az, Ay, A.. (E.3.6)

On the other hand, the number of equations is three since the Gauss law [eq.(E.0.1)]
gives one equation '

_v. (VA0 + %4) =p (E.3.7)

and Ampere’s law gives two equations as discussed above due to the continuity
equation

d JA
A=3j-=-(V -—)- E.3.
V x (V x A) = j at( A0+at) (E.3.8)
It is of course easy to see that no magnetic monopole
V-B=V-VxA=VxV-A=0 (E.3.9)
and Faraday’s law
O0A JA oB
VXE—VX(—E—VA())——VX-E——E (E310)

are automatically satisfied in terms of the vector potential A,.

Gauge Freedom

Therefore, the number of the unknown functional variables is four, but the number
of equations is three, and they are not the same. This redundancy of the vector
field is just related to the gauge freedom, and if one wishes to solve the Maxwell
equations in terms of the vector potential A,, then one should reduce the number
of the functional variables of the vector potential by fixing the gauge freedom.

Electromagnetic Wave

As an example, if there is no source term present [p = 0 and j = 0], then the solution
of the Maxwell equations with the Coulomb gauge fixing gives the electromagnetic
wave which is composed of the transverse field only

AO = 0, Az = 0, (Az, Ay) # 0 (E.3.11)

where the direction of k is chosen to be z—direction.
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E.4 Lagrangian Density of Electromagnetic Fields

For the electric field E and magnetic field B, the total energy of the system becomes

1 1 . 8Ao\? |, [0AL0Ar A, DA
E= 5 /(EkEk + BkBk)dsr - 2 / [(Ak + axk) + (3.’12]' 3:1:j 3$j 3$k dsr

(E.4.1)

Now, one introduces the field strength Fj,, as
F“y = a"Ay - ayA“ (E-4.2)

which is gauge invariant. In this case, one sees that F),, just corresponds to the
electric field E and magnetic field B as

Fou=F® = _Fig=-F*=E;, F;=F9=—-Fj=-F"=-¢;B;.

The Lagrangian density can be written as

1 1 ; dAg 2 0Ar 0Ar  O0Ag OAj
£ =3(BB — BeBy) = 3 [(A*+ axk> (az,- dz; 0z; dzx (E.43)

which leads to the following Lagrangian density

L= % (—For F% — FeoF* — FyFo*) = —iF,wF""- (E.4.4)

The Lagrange equation for A, is given as

oc _ 0 oC o oL oc

15) = — — + = (E'4'5)
“8(9,Av) ~ OtoAy  Omro(3r) OA
which becomes
_ a : 0Ag\ _ _
v=0 — axk(Ak+3:ck)_0 5> V-E=0
_ 9 (4. 4 94 9 (. BY= 9E _ _
[V——k] - _3_t(Ak+$;)+a_I;(€]hB')—0 — ot VxB=0.

They are just the Maxwell equations [egs.(E.0.1) and (E.0.4)] without any source
terms. Since no magnetic monopole and Faraday’s law [egs.(E£.0.2) and (E.0.43]
can be automatically satisfied in terms of the vector potential A, the Lagrangian
density of eq.(E.4.4) is the right one that reproduces the Maxwell equations.
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E.5 Boundary Condition for Photon

When there is no source term present (p =0, j = 0), then eq.(E.3.8) becomes

(v2 - gf) A=0 (E.5.1)

where the Coulomb gauge fixing condition
V-A=0

is employed. In this case, one sees that eq.(E.5.1) is a quantum mechanical equation
for photon. Yet, one does not discuss the bound state of photon. This is clear
since photon cannot be confined. There is no bound state of photon in quantum
mechanics and eq.(E.5.1) has always the plane wave solution

2
1 . .
A(r) = E Z —2\/V__w:€’\ [ck,,\e"k"’ + cl,,\e'k"”] (E.5.2)

k =1

where the polarization vectors €, has two components
€] = (1,0, 0), €2 = (0, 1,0) (E.5.3)

when the direction of k is chosen to be z—direction.

This is basically due to the fact that photon is massless and therefore one cannot
specify the system one measures. It always propagates with the speed of light !
But still the equation derived from the Maxwell equation is a quantum mechanical
equation of motion, though relativistic.




